Name: \qquad

Multiple Choice

Directions: Read all questions carefully. In this section, you do not need to show your work. Mark the box that corresponds to the best answer. Unless otherwise directed, mark one box only. If you would like to change your answer, completely erase your old answer.
(3 $\left.3^{\text {pts }}\right)$ 1. The amount of water W (in thousands of gallons) in a pool is a function of time t (in days) since it was filled. Translate the statement $W(15)=12$ into English.
\square For every 15 days, the pool looses 12 gallons of water.When the pool has 12,000 gallons of water, it has been 15 days since it was filled.
\square When the pool has 15,000 gallons of water, it has been 12 days since it was filled.

After 12 days, the pool contains 15 thousand gallons of water.
\square For every 12 days, the pool gains 15 gallons of water. After 15 days, the pool contains 12 thousand gallons of water.
2. Graphs of $f(x)$ and $g(x)$ appear below.

(a) Find $g(-3)$.
$\square-2$
$\square 3$
$\square-1$
$\square 4$
$\square 0$

$\square-3$
$\square 2$
(b) Find $f(g(3))$.
$\square-4$
$\square 2$

(c) Find $g(f(3))$.
$\square-2$
\square
$\square-0.5$
$\square 0$
$\square 4$

(d) Find the average rate of change in $f(x)$ between $x=-2$ and $x=3$.
$\square-0.4$
$\square 0.4$
$\square 1$
$\square-1.6$
$\square 2.5$

(e) Find all value(s) of x such that $f(x)=-1$. Mark all that apply.

$\square 2$	$\square-0.5$	$\square-3$	$\square 3$	$\square-4$
$\square-2$	$\square-1$	$\square 0$	$\square 4$	$\square 1$

3. At the end of summer, a tree has 4,600 leaves. After 2 weeks, the tree has 4,100 leaves. Find the relative rate of change in the number of leaves.-250 leaves per week
$\square-12.19 \%$
$\square-10.87 \%$250 leaves per week 12.19\% 10.87\%
4. Decide whether the following tables might represent linear functions, exponential functions, or neither.

x	$f(x)$
0	3
1	5
2	10
3	9
4	14

x	$g(x)$
0	83
1	66
2	49
3	32
4	15

x	$h(x)$
0	1.4582
1	1.1666
2	0.9332
3	0.7466
4	0.5973

x	$r(x)$
0	3
1	9
2	27
3	81
4	243

x	$s(x)$
0	12
1	12
2	12
3	12
4	12

(a) Which table(s) might represent linear functions? Mark all that apply.
$\square f(x)$
$\square s(x)$
$\square g(x)$
$\square h(x)$

$$
\square r(x)
$$

(b) Which table(s) might represent exponential functions? Mark all that apply.
$\square g(x)$ \square $\square f(x)$ \square $\square r(x)$
(c) Which table(s) represent neither? Mark all that apply.$s(x)$ \square
\square $r(x)$ \square $\square f(x)$
5. A radioactive substance with a half-life of 18 days is accidentally spilled in a laboratory. Safety regulations forbid anyone from entering the laboratory until at most 2.5% of the original amount spilled remains. How many days must pass before people be able to return to the laboratory?

$\square 133.6$ days	$\square 129.2$ days	$\square 720.0$ days	$\square 95.8$ days	$\square 101.59$ days
\square Infinitely many $\square 59.8$ days	$\square 56.4$ days	$\square 18.0$ days	\square None of these	

6. You own a small business that has just negotiated a new contract. The contract calls for your company to receive an immediate payment of $\$ 40,000$, a payment of $\$ 45,000$ after 1 year, a payment of $\$ 50,000$ after 2 years, and a payment of $\$ 55,000$ after 3 years. Assume that invested cash earns interest at a rate of 3.2%, compounded continuously.
(a) Find the future value (in 3 years time) of the 4 payments made to your company.

$\square \$ 190,280$	$\square \$ 198,970$	$\square \$ 199,020$	$\square \$ 190,610$	$\square \$ 190,000$
$\square \$ 198,490$	$\square \$ 190,390$	$\square \$ 198,630$	$\square \$ 0$	\square None of these

(b) Find the present value of these payments.

$\square \$ 0$	$\square \$ 181,448$	$\square \$ 190,000$	$\square \$ 190,391$	$\square \$ 181,212$
$\square \$ 40,000$	$\square \$ 180,449$	$\square \$ 180,876$	$\square \$ 180,593$	\square None of these

7. Which discrete interest rate is equivalent to a continuous interest rate of 7.41% ?
$\square 7.58 \%$
$\square 7.24 \%$
$\square 7.63 \%$
$\square 7.41 \%$

$\square 7.69 \%$
$\square 7.55 \%$
8. The following is a graph of the function $f(x)$. Some points are labeled.

(a) At which of the labeled points is the derivative of f zero? Mark all that apply.
\qquad AF \square H \square B \square EG
DC
(b) At which of the labeled points is the derivative of f negative? Mark all that apply.
\qquadB \square FG \square EA \square CH
(c) At which of the labeled points is the derivative of f positive? Mark all that apply.
\square A \square B \square C \square E \square $\square \mathrm{G}$ \square $\square \mathrm{H}$ \square F
(d) At which of the labeled points is the derivative of f most negative?
\square
\square H \qquad C \square EF
\squareG

Free Response

Directions: Show all work. No credit for answers without work.
9. Sketch graphs of functions with the following properties.
(a) Increasing and concave up.
(b) Increasing and concave down.
(c) Decreasing and concave up.
(d) Decreasing and concave down.
$\left(6_{\text {ea. }}^{\text {pts }}\right)$ 10. Find formulas for the following functions.
(a) The linear function through $(-2,6)$ and $(3,1)$.
(b) The exponential function through $(-2,6)$ and $(3,1)$.
$\left(3_{\text {ea. }}^{\text {pts }}\right)$ 11. The quantity q (in millions of boxes) of corn flake cereal demanded by the market when the price of a box is p dollars is given by the equation $q=44-5 p$.
(a) Find the p-intercept and q-intercept and interpret them in terms of consumer demand.
(b) The supply curve is given by $q=p^{2}+2 p$, where q (in millions of boxes) is the quantity of corn flakes produced when the price of a box is p dollars. Find the equilibrium price and quantity sold.
($\left.4_{\text {ea. }}^{\text {pts }}\right)$ 12. Solve the following equations for x exactly. Decimal approximations are worth partial credit.
(a) $3 e^{2 x}=4$
(c) $4 \ln (7 x+6)=12$
(b) $5 e^{6 x+1}=2^{2 x}$
(d) $8 e^{-x+2}=\ln (3)$

