Name:

Do not turn the page until instructed.

Directions:

- 1. Write your name on this page.
- 2. Round all numerical answers to three (3) decimal places.
- 3. Show your work unless you are instructed otherwise. No credit for answers without work.
- 4. You may use a calculator provided it is not equipped with a Computer Algebra System (CAS).
- 5. Turn off and put away all other electronic equipment (especially cell phones), notes, and books.
- 6. Good luck!

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Section:	Test 1	Test 2	Test 3	Avg. Value
Max Points:	50	50	50	10
Points Earned:				

= Begin Section: Test 1 Material

1. [6 parts, 3 points each] Short Answer Questions.

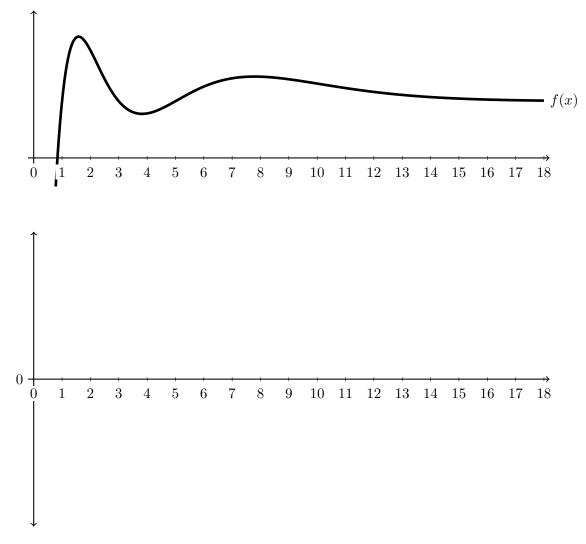
(a) Let $f(x) = (1-x)^3$ and $g(x) = \frac{x}{x+1}$. Find g(f(-1)).

(b) Find the equation of the line through (2,1) and (-3,2).

(c) Solve for x in the equation $4\ln(2x+1) = 2$.

(d) Solve for x in the equation $e^{4-x} = 3$.

(e) Solve for x in the equation $2^x = 3^{x+1}$.


(f) Find the average rate of change of the function f(t) = t(t+1) over the interval [-2,3].

- 2. [3 parts, 5 points each] At time t = 0 years, Town A has a population of 12.2 million and Town B has a population of 3.62 million.
 - (a) Experts project that the population of Town A will decline exponentially at a continuous annual rate of 2.7% for the foreseeable future. Give a formula for the population of Town A at time t.

(b) Experts predict that at time t = 1 year, the population of Town B will be 3.71 million. Assuming that the population of Town B grows exponentially, give a formula for the population of Town B at time t.

(c) When will the towns have the same population?

3. [10 points] The graph of a function f(x) appears below. In the space provided, sketch the derivative f'(x). Your sketch should capture the important features of f'(x), such as where f'(x) = 0, the local extrema of f'(x), and the behavior of f'(x) as x grows.

4. [7 points] Carbon-14 is a radioactive substance with a half-life of 5,730 years. A fossil is discovered that contains only 14% of its original Carbon-14. How old is the fossil?

[10 parts, 2 points each] Differentiate the following functions.			
(a) $f(x) = 4$	(f) $f(x) = 4x^{1.5}$		
(b) $f(x) = -3x^3 + 8x^2 + 1$	(g) $f(x) = 2\ln(x)$		
(c) $f(x) = \frac{1}{x}$	(h) $f(x) = e^{-x} + e^x$		
(d) $f(x) = 3^x$	(i) $f(x) = \frac{2+e^{-\sqrt{13}}}{\ln(8)+1}$		
(e) $f(x) = e^{-3x}$	(j) $f(x) = x^{\ln(3)+1}$		

2. [4 parts, 4 points each] Differentiate the following functions.

(a)
$$f(x) = (x^2 + 5x)^7$$

(b)
$$f(x) = \ln(e^{\sqrt{x}} + 1)$$

(c)
$$f(x) = \frac{x^2}{e^x + \ln x}$$

(d)
$$f(x) = \left(\frac{1+x}{1+x^2}\right)^5$$

3. [4 points] When a toy company produces 19 toys, the total cost is \$4221 and the marginal cost is \$15 per toy. Estimate the total cost of producing 17 toys.

4. [10 points] Find and classify the critical points of $f(x) = (2x+1)^2 e^x$ as local minima, local maxima, or neither.

= Begin Section: Test 3 Material

- 1. [2 parts, 9 points each] Find the points of inflection of the following functions.
 - (a) $f(x) = \frac{1}{12}x^4 x^3 + \frac{9}{2}x^2$

(b) $g(x) = \frac{1}{12}x^4 - \frac{1}{2}x^2$

2. [8 parts, 2 points each] Evaluate the following indefinite integrals.

(a)
$$\int 5 dx$$

(b) $\int z - 3z^2 dz$
(c) $\int e^{0.5t} dt$
(d) $\int x^3(x-1) dx$
(e) $\int \frac{2}{x} dx$
(f) $\int r^{2.4} dr$
(g) $\int \ln(3) dx$
(h) $\int x^{e-1} dx$

3. [4 parts, 4 points each] Solve the following definite integrals exactly. Your answers may involve logarithmic and/or exponential functions. Show your work.

(a)
$$\int_{1}^{2} x^{2} dx$$

(b) $\int_{1}^{8} \frac{1}{\sqrt{3t+1}} dt$
(c) $\int_{0}^{1} (x+1)(x^{2}+2x)^{3} dx$
(d) $\int_{1}^{e^{2}} \frac{(\ln x)^{3}}{x} dx$

= Begin Section: Average Value

1. [5 points] Find the average value of the function $f(x) = 1/x^2$ over the interval [1,3].

- 2. At time t = 0 hours, Sue begins to study for her final. After t hours, she reads at a rate of $30 (t-2)^2$ pages per hour. Suppose that Sue studies for 5 hours.
 - (a) [4 points] In total, how many pages does Sue read?

(b) [1 point] On average, how many pages per hour does Sue read?