The exam covers Ch3.8, 4.1-4.6, and 5.1-5.3. My personal advice: be sure you can define the definite integral and state both parts of the fundamental theorem of calculus; these are very likely to be on the exam. See also Prof. Mortensen's course review sheet on the course website.

## Ch3.8: Related Rates

1. (\# 8) Suppose a forest fire spreads in a circle with radius changing at a rate of 5 feet per minute. When the radius reaches 200 feet, at what rate is the area of the burning region increasing?
2. (\# 9) A 10 -foot ladder leans against the side of a building. If the bottom of the ladder is pulled away from the wall at the rate of $3 \mathrm{ft} / \mathrm{s}$ and the ladder remains in contact with the wall, find the rate at which the top of the ladder is dropping when the bottom is 6 feet from the wall.

## Ch4.1: Antiderivatives

1. Find the general antiderivative:
(a) $\int \frac{x+2 x^{3 / 4}}{x^{5 / 4}} d x$
(b) $\int \frac{4}{\sqrt{1-x^{2}}} d x$
(c) $\int \frac{e^{x}}{e^{x}+3} d x$
2. Find the function satisfying $f^{\prime \prime}(x)=2 x, f^{\prime}(0)=-3, f(0)=2$.
3. Find all functions satisfying $f^{\prime \prime \prime}(x)=\sin (x)-e^{x}$.

## Ch4.2: Sums and Sigma Notation

On the exam, you will be given these formulas from p. 356.
If $n$ is any positive integer and $c$ is any constant, then

1. $\sum_{i=1}^{n} c=c n$ (sum of constants),
2. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ (sum of the first $n$ positive integers), and
3. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ (sum of the squares of the first $n$ positive integers).
4. Compute $\sum_{i=1}^{250}\left(i^{2}+8\right)$.
5. Compute the sum and the limit of the sum as $n \rightarrow \infty: \sum_{i=1}^{n} \frac{1}{n}\left[4\left(\frac{2 i}{n}\right)^{2}-\left(\frac{2 i}{n}\right)\right]$.

## Ch4.3: Area

1. Use Riemann sums and a limit to compute the exact area under the curve: $y=x^{2}+3 x$ on $[0,1]$. You may not use the fundamental theorem of calculus. In other words, evaluate the definite integral $\int_{0}^{1} x^{2}+3 x d x$ from the definition.
2. True or false: if $f(x)$ is increasing on $[a, b]$, then a Riemann sum with right-endpoint evaluation will give you a value that is at least as large as the signed area under the curve $f(x)$ on $[a, b]$.

## Ch4.4: The Definite Integral

1. State the integral mean value theorem.
2. Give upper and lower bounds on $\int_{-1}^{1} \frac{3}{x^{3}+2} d x$.

## Ch4.5: The Fundamental Theorem of Calculus

1. State:
(a) Part I of the fundamental theorem of calculus
(b) Part II of the fundamental theorem of calculus
2. Compute the following.
(a) $\int_{0}^{2}(\sqrt{x}+1)^{2} d x$
(b) $\int_{0}^{\pi / 3} \frac{3}{\cos ^{2}(x)} d x$
(c) $\int_{1}^{2} \frac{x^{2}-3 x+4}{x^{2}} d x$
3. Find $f^{\prime}(x): f(x)=\int_{x^{3}}^{x^{2}} \sin (\sqrt{t}) d t$.

## Ch4.6: Integration by Substitution

1. Evaluate the indefinite integrals:
(a) $\int \sin ^{3} x \cos x d x$
(b) $\int \frac{x}{x^{2}+4} d x$
(c) $\int \frac{2 x+3}{x+7} d x$
(d) $\int \frac{4}{x(\ln x+1)^{2}} d x$
2. Evaluate the definite integrals:
(a) $\int_{1}^{e} \frac{\ln x}{x} d x$
(b) $\int_{0}^{2} x \sqrt{x^{2}+1} d x$
(c) $\int_{0}^{2} x \sqrt{x+1} d x$

## Ch5.1: Area Between Curves

Sketch and find the area of the region bounded by the given curves. Choose the variable of integration so that the area is written as a single integral.

1. $x=y, x=-y, x=1$
2. $y=3 x, y=2+x^{2}$

## Ch5.2-5.3: Volumes

Compute the volume:

1. The region bounded by $y=x^{2}$ and $y=2-x^{2}$, revolved about $x=2$.
2. The region bounded by $x=y^{2}$ and $x=2+y$, revolved about $x=-1$.

## General Review

1. (a) Define the indefinite integral.
(b) Define the definite integral.
(c) How are these the two concepts related?
