Math221: Chapter 2.5 Selected Exercises

September 13, 2007

$1 \quad 2.5 \# 8$

Find the derivative of $h(x)=\left(x^{3}+2\right) \sqrt{x^{5}}$.
Solution:

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}\left(\left[x^{3}+2\right]\left[\sqrt{x^{5}}\right]\right) \\
& =\left(\frac{d}{d x}\left(x^{3}+2\right)\right) \sqrt{x^{5}}+\left(x^{3}+2\right)\left(\frac{d}{d x} \sqrt{x^{5}}\right) \\
& =\left(3 x^{2}\right) \sqrt{x^{5}}+\left(x^{3}+2\right)\left(\frac{d}{d x} x^{5 / 2}\right) \\
& =3 x^{2} \cdot x^{5 / 2}+\left(x^{3}+2\right)\left(\frac{5}{2} x^{3 / 2}\right) \\
& =3 x^{9 / 4}+\left(x^{3}+2\right)\left(\frac{5}{2} x^{3 / 2}\right)
\end{aligned}
$$

$2 \quad 2.5 \# 20$

Find the derivative of $h(x)=\sqrt{\left(x^{2}+1\right)(\sqrt{x}+1)^{3}}$.
Solution: first, let us note that $h(x)$ is the composition $h(x)=f(g(x))$ of two simpler functions: the outer function $f(u)=\sqrt{u}=u^{1 / 2}$ and the inner function $g(x)=\left(x^{2}+1\right)(\sqrt{x}+1)^{3}$. Therefore, we will want to apply the chain rule. To do so, we first need to compute the derivatives of $f(u)$ and $g(x)$. We note that $f^{\prime}(u)=\frac{1}{2} u^{-1 / 2}=\frac{1}{2 \sqrt{u}}$. We compute $g^{\prime}(x)$ as follows, applying the product rule first:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left(\left(x^{2}+1\right)(\sqrt{x}+1)^{3}\right) \\
& =\left(\frac{d}{d x}\left(x^{2}+1\right)\right)(\sqrt{x}+1)^{3}+\left(x^{2}+1\right) \frac{d}{d x}\left((\sqrt{x}+1)^{3}\right) \\
& =(2 x)(\sqrt{x}+1)^{3}+\left(x^{2}+1\right)\left(3(\sqrt{x}+1)^{2} \cdot \frac{d}{d x}(\sqrt{x}+1)\right) \\
& =2 x(\sqrt{x}+1)^{3}+\left(x^{2}+1\right)\left(3(\sqrt{x}+1)^{2} \cdot \frac{1}{2} x^{-1 / 2}\right) \\
& =2 x(\sqrt{x}+1)^{3}+\frac{3}{2 \sqrt{x}}\left(x^{2}+1\right)(\sqrt{x}+1)^{2} .
\end{aligned}
$$

(To evaluate $\frac{d}{d x}\left((\sqrt{x}+1)^{3}\right)$, we need the chain rule again; this time, the outer function is u^{3} and the inner
function is $\sqrt{x}+1$.) Finally, we are ready to compute $h^{\prime}(x)$:

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}(f(g(x))) \\
& =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =\frac{1}{2 \sqrt{g(x)}}\left(2 x(\sqrt{x}+1)^{3}+\frac{3}{2 \sqrt{x}}\left(x^{2}+1\right)(\sqrt{x}+1)^{2}\right) \\
& =\frac{1}{2 \sqrt{\left(x^{2}+1\right)(\sqrt{x}+1)^{3}}}\left(2 x(\sqrt{x}+1)^{3}+\frac{3}{2 \sqrt{x}}\left(x^{2}+1\right)(\sqrt{x}+1)^{2}\right) \\
& =\frac{2 x(\sqrt{x}+1)^{3}+\frac{3}{2 \sqrt{x}}\left(x^{2}+1\right)(\sqrt{x}+1)^{2}}{2 \sqrt{\left(x^{2}+1\right)(\sqrt{x}+1)^{3}}} .
\end{aligned}
$$

$3 \quad 2.5$ \# 24

Find an equation of the tangent line to $y=h(x)$ at $x=a$, with $h(x)=\frac{6}{x^{2}+4}$ and $a=-2$.
Solution: we know the tangent line at $x=a$ has the equation $y=h^{\prime}(a)(x-a)+h(a)$, so we must solve for $h^{\prime}(a)$ and $h(a)$. We compute $h(a)$ by substitution: $h(a)=h(-2)=\frac{6}{(-2)^{2}+4}=\frac{6}{8}=\frac{3}{4}$. We compute $h^{\prime}(x)$ by first writing $h(x)$ in a different form

$$
h(x)=\frac{6}{x^{2}+4}=6\left(x^{2}+4\right)^{-1}
$$

and recognizing that $h(x)$ is the composition $h(x)=f(g(x))$ of an outer function $f(u)=6 u^{-1}$ and an inner function $g(x)=x^{2}+4$. We compute $f^{\prime}(u)=-6 u^{-2}$ using the power rule and $g^{\prime}(x)=2 x$ using the sum rule and the power rule. Now, we are able to compute

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}(f(g(x))) \\
& =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =-6(g(x))^{-2} \cdot(2 x) \\
& =\frac{-6}{\left(x^{2}+4\right)^{2}} \cdot 2 x \\
& =\frac{-12 x}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

so that

$$
\begin{aligned}
h^{\prime}(a)=h^{\prime}(-2) & =\frac{-12 \cdot(-2)}{\left((-2)^{2}+4\right)^{2}} \\
& =\frac{24}{(4+4)^{2}} \\
& =\frac{24}{64} \\
& =\frac{3}{8} .
\end{aligned}
$$

Putting all the pieces together, the equation of the tangent line at $x=-2$ is

$$
\begin{aligned}
y & =h^{\prime}(a)(x-a)+h(a) \\
& =\frac{3}{8}(x-(-2))+\frac{3}{4} \\
& =\frac{3}{8}(x+2)+\frac{3}{4} .
\end{aligned}
$$

$4 \quad 2.5$ \#35

Assume $f(x)=x^{3}+4 x-1$ has an inverse $g(x)$. Find $g^{\prime}(-1)$.
Solution: because $g(x)$ is an inverse for $f(x)$, we know that

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

(like our other rules for differentiation, you should memorize this formula). To use the formula, we must compute $f^{\prime}(x)=3 x^{2}+4$. By substitution,

$$
\begin{aligned}
g^{\prime}(-1) & =\frac{1}{f^{\prime}(g(-1))} \\
& =\frac{1}{3(g(-1))^{2}+4}
\end{aligned}
$$

To finish solving the problem, we need to know $g(-1)$. Suppose that we are able to find a number z such that $f(z)=-1$. Well, because g is an inverse for f, we have

$$
g(f(z))=z
$$

or

$$
g(-1)=z .
$$

Therefore, to determine the value of $g(-1)$, we must search for a number z with the property that $f(z)=-1$. This can be a tricky thing to do, but the task won't be too difficult for the problems that we might ask. For example, notice that $z=0$ works because $f(0)=-1$. Therefore $g(-1)=0$.

Finally, we are able to complete the problem:

$$
\begin{aligned}
g^{\prime}(-1) & =\frac{1}{3(g(-1))^{2}+4} \\
& =\frac{1}{3(0)^{2}+4} \\
& =\frac{1}{4}
\end{aligned}
$$

$5 \quad 2.5 \# 36$

Assume $f(x)=x^{3}+2 x+1$ has an inverse $g(x)$. Find $g^{\prime}(-2)$.
Solution: first, we compute $f^{\prime}(x)=3 x^{2}+2$. Next, using our formula, we have

$$
\begin{aligned}
g^{\prime}(-2) & =\frac{1}{f^{\prime}(g(-2))} \\
& =\frac{1}{3(g(-2))^{2}+2} .
\end{aligned}
$$

What is $g(-2)$? Again, we must search for a number z with the property that $f(z)=-2$. Notice that for any positive number $z, f(z)$ will be positive because none of the terms in $f(x)$ involve subtraction. So, we should try values of z which are negative. In fact, $z=-1$ does the trick because

$$
f(-1)=(-1)^{3}+2(-1)+1=-1-2+1=-2
$$

Therefore $g(-2)=-1$ and we are ready to complete the problem:

$$
\begin{aligned}
g^{\prime}(-2) & =\frac{1}{3(g(-2))^{2}+2} \\
& =\frac{1}{3(-1)^{2}+2} \\
& =\frac{1}{3+2} \\
& =\frac{1}{5}
\end{aligned}
$$

$6 \quad 2.5$ \#40

Assume $f(x)=\sqrt{x^{5}+4 x^{3}+3 x+1}$ has an inverse $g(x)$. Find $g^{\prime}(3)$.
Solution: first, we must compute $f^{\prime}(x)$. To do so, we rewrite $f(x)=\left(x^{5}+4 x^{3}+3 x+1\right)^{1 / 2}$ and then use the chain rule to compute

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(x^{5}+4 x^{3}+3 x+1\right)^{-1 / 2} \cdot \frac{d}{d x}\left(x^{5}+4 x^{3}+3 x+1\right) \\
& =\frac{1}{2}\left(x^{5}+4 x^{3}+3 x+1\right)^{-1 / 2} \cdot\left(5 x^{4}+12 x^{2}+3\right) \\
& =\frac{1}{2 \sqrt{x^{5}+4 x^{3}+3 x+1}} \cdot\left(5 x^{4}+12 x^{2}+3\right) \\
& =\frac{5 x^{4}+12 x^{2}+3}{2 \sqrt{x^{5}+4 x^{3}+3 x+1}} .
\end{aligned}
$$

Next, we use our formula for the derivative of an inverse function:

$$
g^{\prime}(3)=\frac{1}{f^{\prime}(g(3))}
$$

But what is $g(3)$? Once again, we must find a number z so that $f(z)=3$. After some experimentation, we might try $z=1$ and discover

$$
\begin{aligned}
f(1) & =\sqrt{1^{5}+4 \cdot 1^{3}+3 \cdot 1+1} \\
& =\sqrt{1+4+3+1} \\
& =\sqrt{9} \\
& =3
\end{aligned}
$$

Therefore $g(3)=1$. Now, we are ready to finish the problem:

$$
\begin{aligned}
g^{\prime}(3) & =\frac{1}{f^{\prime}(g(3))} \\
& =\frac{1}{f^{\prime}(1)} \\
& =\frac{2 \sqrt{1^{5}+4 \cdot 1^{3}+3 \cdot 1+1}}{5 \cdot 1^{4}+12 \cdot 1^{2}+3} \\
& =\frac{2 \sqrt{9}}{20} \\
& =\frac{6}{20} \\
& =\frac{3}{10} .
\end{aligned}
$$

