CSTBC Exam 1 Solutions
Due: June 25, 2007

June 26, 2007

This exam is open notes/open lecture and covers material from lectures 1-6. You are welcome to use any
of the course material linked from the CSTBC website. You should not use other reference materials. If you
have any questions, please ask me.

1

How Many?

Let A={1,2,...,m}and B=1{1,2,...,n}.

1. What is |[AU BJ?

2. What is |[AN B|?

3. What is |A — B|? (Warning: consider carefully the cases m > n and m < n.)

4. What is [{f|f : A — B is a function from A to B}|? (Hint: first try to solve the problem for some
small values of m and n. For example, how many functions are there if m = n = 17 What about
m =3 and n = 27 Try some more examples. Do you see a general pattern? Does your guess work for
all the examples you have tried? Can you prove that your guess is correct?)

5. What is |{G |G is a graph with V(G) = A}|? (Hint: the same strategies as in part (4) apply. Try to
solve the problem with m =1, m =2, and m = 3.)

Solution

1. |AU B| = max {m,n}.

2. |AN B| = min{m,n}.

3. |A— B| = max{0,m —n}.

4. For each element a € A, we have n choices for f(a) € B. Hence there is a natural bijection from the
set of all functions f : A — B to the set {(b1,ba,...,by,) |each b; € B} = [n]™. Therefore the number
of functions f : A — Bis n™.

5. A graph G consists of a set of vertices V(G) and a set of edges E(G). Let X = {{u,v} |u,v € V(G)}

be the set of (unordered) pairs of vertices of G. By definition, E(G) is a subset of X. Therefore there

are |P(X)| = 21Xl = 2(%) possible ways to choose E(G) and hence 2(%) graphs with vertex set A.



2 Practice Problem from Lecture 2

In lecture 2, we prove that if 0 < k < n, (}) = (,",). Do the practice problem associated with this theorem;
that is, for n = 5 and k = 2, explicitly write down A = {ACU| |A| =k}, B={B CU| |B|=n—k}, and

the bijection f : A — B.

Solution We describe A, B, and f in the following table. The left column lists the elements of A, the right
column lists the elements of 5.

LA [ /)
{12} | {3,4,5}
{1,3} | {2,4,5}
(1,4} | {2,3,5}
{1,5} | {2,3,4}
2,3} | {1,4,5}
{2,4} | {1,3,5}
{2,5) | {1,3,4}
(3,4} | {1,2,5}
(3.5 | {1,2.4
(4,5 | {1,2,3}

3 Injective, Surjective, Bijective

Let A,B,C besetsandlet f : A— B, g : B — C be functions. Define the function h : A — C by setting
h(a) = g(f(a)) for all a € A; in words, the function h maps a € A to an element in C by first applying f to
a to obtain an element b = f(a) in B, and then applying ¢ to b to obtain an element ¢ = g(b) in C. We call
h the composition of f and g, and we write h = go f.

Decide whether each of the following statements are necessarily true, or not necessarily true (false).

1. If g is an injection, then A is an injection.
2. If g is a surjection, then h is a surjection.

If f is an injection and g is a surjection, then h is a bijection.

LS

If f is an injection and g is an injection, then A is an injection.
5. If h is a bijection, then f and g are bijections.
6. If h is an injection, then f and g are injections.

7. If h is a surjection, then f and g are surjections.

Solution
1. false
2. false. Here’s a counterexample: A = {1}, B =C ={1,2,3}, f(a) = a, and g(b) = b.

false

LS

true

5. false



6. false; this one is a little tricky: if h is an injection, then f must be an injection; however; g might not
be an injection. For example, take A = {1,2,3}, B = {1,2,3,4}, C = {1,2,3}, define f : A — B by
f(a) = a, and define g : B — C by

b b<4
9(0) {1 b=4

Notice h : A — C' is the identity function and hence h is injective. However, g is not an injection,
because g(1) = g(4) = 1.

7. false

4 An Equality

Give two different proofs of the following equality: for all n >0, Y77 2/ = 2"+ — 1.
1. Let U ={1,2,3,...,n,n+ 1}, let A={ACU|AF#D}, and for 0 < j < n, let
A; = {A C U |the largest element in A is j + 1}.
Use these sets to establish the equality.

2. Prove the equality by induction on n.

Solution

1. First, note that A consists of all the nonempty subsets of U. Therefore, A = P (U) — {0} and so
|A| = 27t1 — 1. We can also count |A| differently, by grouping each set A € A according to the
largest element in A. That is, A is the disjoint union A = Ag U A; U---U A, where each set A € A
is a member of the group A; if and only if the largest element in A is j + 1. Thus, Ay = {{1}},
A ={{2},{1,2}}, As = {{3},{1,3},{2,3},{1,2,3}}, etc. Observe that A; is formed by taking the
collection of all subsets of {1,2,...,j} and adding the element j 4+ 1 to each one of them. Therefore
|A;]| =[P ({1,2,...,5})| = 27. Therefore, we have

1= A = Y4l
=0

n
- 3
§=0
and the statement is proved.
0

J

2. Proof: by induction on n. Base case: if n = 0, then 2071 —1 =1 =3
Inductive step: let n > 1. We compute

n n—1
o= | > 2] o
=0 =0
By the inductive hypothesis, Z;’:—Ol 27 = 2(n=D+1 _ 1 — 97 _ 1. Therefore

n n—1
> = (X2
7=0 7=0

2m 142"
ontl 1

_027, so the result holds.

and the proof is complete.



5 Graphs

A graph G is connected if for each pair of vertices u and v in G, there is a uv-walk in G. Prove that G
is connected if and only if for each S C V(G) with S # 0 and S # V(G), there is an edge in G with one
endpoint inside S and one endpoint outside S.

Notes This question asks us to prove an “if and only if” statement. That means we must prove two
mathematical statements. First, we must prove that if G is connected, then for each S C V(G) with S # 0
and S # V(G), there is an edge in G with one endpoint inside S and one endpoint outside S. Because of the
order that the statement is written, this is called the forward direction and is marked ( =) in our solution
below. Second, we must prove that if G has the property that for each S C V(G) with S # 0 and S # V(G),
there is an edge in G with one endpoint inside S and one endpoint outside S, then G is connected. This is
called the backward direction, or converse, and is marked (<=) in our solution below.

Solution (== ). Let G be a connected graph and suppose for a contradiction that there exists S C V(G)
with S # 0 and S # V(G) so that there are no edges with one endpoint inside S and one endpoint outside
S. Because S # 0, there is a vertex v € S. Because S # V(G), there is a vertex v € S. Because G is
connected, there is a uv-walk W = wow; - - -wg, in G (note that wg = v and wg, = v). Because W starts at a
vertex wg = u inside S and ends at a vertex wy = v outside S, there must be some 0 < j < k — 1 such that
w; is in S but wj4 is outside S. Because W is a walk, {w;, w;11} is an edge in G with one endpoint inside
S and one endpoint outside S, and this is a contradiction.

(<). Let G be a graph with the property that for each S C V(G) with S # 0 and S # V(G), there is
an edge in G with one endpoint in S and one endpoint outside S. We show that G is connected. Consider
a pair of vertices u,v in G. We must show that there is a uv-walk in G. Define the set

S ={w € V(Q) | there exists a uw-walk in G}

of all vertices w in G to which it is possible to walk, starting from u. Note that the walk W = u is a uu-walk
in G, and so u € S. We claim that v € S also. Suppose for a contradiction that v ¢ S. Because u € S,
S # 0. Because v € S, S # V(G). By assumption, there is an edge {w,z} in G with one endpoint (call it
w) inside S and one endpoint (call it x) outside S. Because w € S, there exists a uw-walk W in G. Because
{w,z} € E(G), we can walk from u to z in G by first following W from u to w and then traversing the edge
{w, z} from w to x. Therefore G contains a uz-walk, and so z € S. But this contradicts that x is a vertex
outside S. The contradiction implies that v € S as required.

6 A Proof with an Error

The following inductive “proof” contains an error. What is the number of the first line in the proof that is
incorrect? Why is it incorrect?

Theorem: If n > 1 balls are placed into a box B and each ball is colored blue or yellow, then either all
balls in B are blue or all balls in B are yellow.

Proof:

1. By induction on n.
2. Base case: If n = 1, then |B| = 1, so the theorem is clearly true in this case.

Inductive Step: suppose n > 2.

-

Let xz,y € B be two distinct balls in B.
5. Let By = B—{z} and By = B — {y}. Note that |By| =|Bz| =n—1<n.



Therefore, the inductive hypothesis implies that all balls in B; are blue or all balls in By are yellow.
Similarly, the inductive hypothesis implies that all balls in By are blue or all balls in By are yellow.

Note that the common color of all balls in B; must be the same as the common color of all balls in Bs.

© »® 3N @

Because B = B; U By and the common color in Bj is the same as the common color in By, all balls in
B are blue or all balls in B are yellow.

Solution The first line that is in error is line (8). The error is subtle, however: line (8) implicitly assumes
that By and B, share common balls; that is, line (8) assumes By N By # (. Although this is true whenever
we start with n > 3 balls that By N By # (), this fails for the case that n = 2. In this case, we apply our
inductive step with B = {x,y}, and we set By = {y} and By = {z} in step (5). We correctly apply the
inductive hypothesis in steps (6) and (7), but step (8) fails because the common color of the balls in B
(namely, the color of y) does not have to be the same as the common color of the balls in By (namely, the
color of z).

7 Pirates

Recently, a pirate ship with 200 pirates onboard has captured 1000 gold coins from another vessel. The
pirates have developed an interesting way to distribute their gains among themselves. Here’s what happens:
the strongest pirate on the ship proposes a distribution of the coins to pirates. Next, all pirates vote on the
proposal (including the strongest pirate). If at least half of the pirates vote in support of the proposal, the
coins are distributed according to the proposal and the process is complete. However, if more than half of the
pirates vote to reject the proposal, they throw the strongest pirate overboard and the process repeats with
the strongest of the remaining pirates offering a new proposal. Each pirate is perfectly logical and wishes to
maximize the number of coins that he or she receives.

What does the strongest pirate propose? Prove your answer is correct. (Hint: first, try to answer the
question if there are only a small number of pirates onboard — one pirate, two pirates, etc. Next, based upon
your investigation of what happens with a small number of pirates, guess what is proposed if there are n
(1 < n <200) pirates onboard. Finally, prove by induction on n that your guess is correct.)

Notes This solution uses floor and ceiling notation. The floor of a real number x, written |z], is the largest
integer k such that k < x. Similarly, the ceiling of a real number z, written [z], is the smallest integer k
such that &k > z.

Solution Suppose there are n pirates p1, pa, ..., p, onboard, ordered from strongest pirate p; to weakest
pirate p,. We claim that p; proposes the following distribution: ps,p4,ps, ... each receive 0 gold coins,
P3, D5, D7, - - - each receive 1 gold coin, and p; gets the remaining 1000 — | 25| gold coins.

We prove the claim by induction on n. Base case: if n = 1, then p; proposes to receive all gold coins,
which is consistent with our claim. Inductive step: let n > 2. Because p; is perfectly logical and wishes to
maximize the number of gold coins p; receives, p; will reason as follows: “I need at least n/2 of my fellow
pirates to vote in favor of my proposed distribution. If my proposal is rejected and I am thrown off the
ship, po will offer a new distribution. By the inductive hypothesis, I know that py will offer zero gold coins
to ps,ps, D7, - -., one gold coin to p4,ps,Ps, - - -, and keep the rest. Furthermore, all my fellow pirates are
perfectly logical and know full well how the coins will be distributed if I'm thrown overboard. I can only be
sure that a pirate p; will vote for my proposal if I offer p; more than p; would get if p» were running the
show. Because I want to get as many coins as possible, I should start by offering gold coins to the pirates
that receive the fewest number of gold coins under ps’s distribution, and I should continue buying off votes
until T am sure that at least n/2 pirates will vote for me. So, I will offer one coin to each of ps, ps, p7, ... and

keep the rest. That way, I will get votes from p1,ps,ps,..., so I will get [2] > n/2 votes and my proposal




will be accepted. Unfortunately, I can’t do any better because I need at least [%W votes and I've bought

each for the cheapest possible price.” Therefore p; makes the claimed proposal, and our proof is complete.
In our case with n = 200, the strongest pirate p; offers zero gold coins to ps, p4,. - ., D200, one gold coin
to p3, ps, P7, - - -, P199 and keeps the remaining 901 coins.

8 Ramsey Theory

In lecture 6, we present a classic proof from Ramsey theory and define R(m,n) for each m,n > 1. Describe
how the proof can be modified to show that R(m,n) < (m;'") (Note: you are not asked to repeat the proof
in full, just describe how to modify the proof we saw in lecture 6.)

Solution We modify the proof as follows.

1. Modify the statement of the theorem so that it reads “Theorem: Vm,n > 1 R(m,n) < (m+") J

m

2. At the end of the base case, add “Therefore R(m,n) < 1. Because 1 < (mnt") for m,n > 1, the theorem
holds.”

3. Change “by the inductive hypothesis, there exists r; such that ...” to “by the inductive hypothesis,

there exists 11 = R(m —1,n) < (m_1+") such that ...”. Similarly, change “by the inductive hypothesis,

m—1
there exists r; such that ...” to “by the inductive hypothesis, there exists 7 = R(m,n —1) < (mtzfl)

such that ...”

4. At the end of the proof, append “Therefore

Rim,n) <7 =11 475 < <m+n—1) +(m—kn—l) _ (m+n)’

m—1 m m

where the last equality is an identity we know from lecture 2.”



