
CSTBC Exam 1 Solutions

Due: June 25, 2007

June 26, 2007

This exam is open notes/open lecture and covers material from lectures 1-6. You are welcome to use any
of the course material linked from the CSTBC website. You should not use other reference materials. If you
have any questions, please ask me.

1 How Many?

Let A = {1, 2, . . . ,m} and B = {1, 2, . . . , n}.

1. What is |A ∪B|?

2. What is |A ∩B|?

3. What is |A−B|? (Warning: consider carefully the cases m ≥ n and m < n.)

4. What is |{f | f : A → B is a function from A to B}|? (Hint: �rst try to solve the problem for some
small values of m and n. For example, how many functions are there if m = n = 1? What about
m = 3 and n = 2? Try some more examples. Do you see a general pattern? Does your guess work for
all the examples you have tried? Can you prove that your guess is correct?)

5. What is |{G |G is a graph with V (G) = A}|? (Hint: the same strategies as in part (4) apply. Try to
solve the problem with m = 1, m = 2, and m = 3.)

Solution

1. |A ∪B| = max {m,n}.

2. |A ∩B| = min {m,n}.

3. |A−B| = max {0,m− n}.

4. For each element a ∈ A, we have n choices for f(a) ∈ B. Hence there is a natural bijection from the
set of all functions f : A → B to the set {(b1, b2, . . . , bm) | each bj ∈ B} = [n]m. Therefore the number
of functions f : A → B is nm.

5. A graph G consists of a set of vertices V (G) and a set of edges E(G). Let X = {{u, v} |u, v ∈ V (G)}
be the set of (unordered) pairs of vertices of G. By de�nition, E(G) is a subset of X. Therefore there

are |P(X)| = 2|X| = 2(m
2 ) possible ways to choose E(G) and hence 2(m

2 ) graphs with vertex set A.
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2 Practice Problem from Lecture 2

In lecture 2, we prove that if 0 ≤ k ≤ n,
(
n
k

)
=

(
n

n−k

)
. Do the practice problem associated with this theorem;

that is, for n = 5 and k = 2, explicitly write down A = {A ⊆ U | |A| = k}, B = {B ⊆ U | |B| = n− k}, and
the bijection f : A → B.

Solution We describe A, B, and f in the following table. The left column lists the elements of A, the right
column lists the elements of B.

A f(A)
{1, 2} {3, 4, 5}
{1, 3} {2, 4, 5}
{1, 4} {2, 3, 5}
{1, 5} {2, 3, 4}
{2, 3} {1, 4, 5}
{2, 4} {1, 3, 5}
{2, 5} {1, 3, 4}
{3, 4} {1, 2, 5}
{3, 5} {1, 2, 4}
{4, 5} {1, 2, 3}

3 Injective, Surjective, Bijective

Let A,B, C be sets and let f : A → B, g : B → C be functions. De�ne the function h : A → C by setting
h(a) = g(f(a)) for all a ∈ A; in words, the function h maps a ∈ A to an element in C by �rst applying f to
a to obtain an element b = f(a) in B, and then applying g to b to obtain an element c = g(b) in C. We call
h the composition of f and g, and we write h = g ◦ f .

Decide whether each of the following statements are necessarily true, or not necessarily true (false).

1. If g is an injection, then h is an injection.

2. If g is a surjection, then h is a surjection.

3. If f is an injection and g is a surjection, then h is a bijection.

4. If f is an injection and g is an injection, then h is an injection.

5. If h is a bijection, then f and g are bijections.

6. If h is an injection, then f and g are injections.

7. If h is a surjection, then f and g are surjections.

Solution

1. false

2. false. Here's a counterexample: A = {1}, B = C = {1, 2, 3}, f(a) = a, and g(b) = b.

3. false

4. true

5. false



6. false; this one is a little tricky: if h is an injection, then f must be an injection; however, g might not
be an injection. For example, take A = {1, 2, 3}, B = {1, 2, 3, 4}, C = {1, 2, 3}, de�ne f : A → B by
f(a) = a, and de�ne g : B → C by

g(b) =
{

b b < 4
1 b = 4 .

Notice h : A → C is the identity function and hence h is injective. However, g is not an injection,
because g(1) = g(4) = 1.

7. false

4 An Equality

Give two di�erent proofs of the following equality: for all n ≥ 0,
∑n

j=0 2j = 2n+1 − 1.

1. Let U = {1, 2, 3, . . . , n, n + 1}, let A = {A ⊆ U |A 6= ∅}, and for 0 ≤ j ≤ n, let

Aj = {A ⊆ U | the largest element in A is j + 1} .

Use these sets to establish the equality.

2. Prove the equality by induction on n.

Solution

1. First, note that A consists of all the nonempty subsets of U . Therefore, A = P (U) − {∅} and so
|A| = 2n+1 − 1. We can also count |A| di�erently, by grouping each set A ∈ A according to the
largest element in A. That is, A is the disjoint union A = A0 ∪ A1 ∪ · · · ∪ An where each set A ∈ A
is a member of the group Aj if and only if the largest element in A is j + 1. Thus, A0 = {{1}},
A1 = {{2} , {1, 2}}, A3 = {{3} , {1, 3} , {2, 3} , {1, 2, 3}}, etc. Observe that Aj is formed by taking the
collection of all subsets of {1, 2, . . . , j} and adding the element j + 1 to each one of them. Therefore
|Aj | = |P ({1, 2, . . . , j})| = 2j . Therefore, we have

2n+1 − 1 = |A| =
n∑

j=0

|Aj |

=
n∑

j=0

2j

and the statement is proved.

2. Proof: by induction on n. Base case: if n = 0, then 20+1 − 1 = 1 =
∑0

j=0 2j , so the result holds.
Inductive step: let n ≥ 1. We compute

n∑
j=0

2j =

n−1∑
j=0

2j

 + 2n.

By the inductive hypothesis,
∑n−1

j=0 2j = 2(n−1)+1 − 1 = 2n − 1. Therefore

n∑
j=0

2j =

n−1∑
j=0

2j

 + 2n

= 2n − 1 + 2n

= 2n+1 − 1

and the proof is complete.



5 Graphs

A graph G is connected if for each pair of vertices u and v in G, there is a uv-walk in G. Prove that G
is connected if and only if for each S ⊆ V (G) with S 6= ∅ and S 6= V (G), there is an edge in G with one
endpoint inside S and one endpoint outside S.

Notes This question asks us to prove an �if and only if� statement. That means we must prove two
mathematical statements. First, we must prove that if G is connected, then for each S ⊆ V (G) with S 6= ∅
and S 6= V (G), there is an edge in G with one endpoint inside S and one endpoint outside S. Because of the
order that the statement is written, this is called the forward direction and is marked ( =⇒ ) in our solution
below. Second, we must prove that if G has the property that for each S ⊆ V (G) with S 6= ∅ and S 6= V (G),
there is an edge in G with one endpoint inside S and one endpoint outside S, then G is connected. This is
called the backward direction, or converse, and is marked (⇐=) in our solution below.

Solution ( =⇒ ). Let G be a connected graph and suppose for a contradiction that there exists S ⊆ V (G)
with S 6= ∅ and S 6= V (G) so that there are no edges with one endpoint inside S and one endpoint outside
S. Because S 6= ∅, there is a vertex u ∈ S. Because S 6= V (G), there is a vertex v 6∈ S. Because G is
connected, there is a uv-walk W = w0w1 · · ·wk in G (note that w0 = u and wk = v). Because W starts at a
vertex w0 = u inside S and ends at a vertex wk = v outside S, there must be some 0 ≤ j ≤ k − 1 such that
wj is in S but wj+1 is outside S. Because W is a walk, {wj , wj+1} is an edge in G with one endpoint inside
S and one endpoint outside S, and this is a contradiction.

(⇐=). Let G be a graph with the property that for each S ⊆ V (G) with S 6= ∅ and S 6= V (G), there is
an edge in G with one endpoint in S and one endpoint outside S. We show that G is connected. Consider
a pair of vertices u, v in G. We must show that there is a uv-walk in G. De�ne the set

S = {w ∈ V (G) | there exists a uw-walk in G}

of all vertices w in G to which it is possible to walk, starting from u. Note that the walk W = u is a uu-walk
in G, and so u ∈ S. We claim that v ∈ S also. Suppose for a contradiction that v 6∈ S. Because u ∈ S,
S 6= ∅. Because v 6∈ S, S 6= V (G). By assumption, there is an edge {w, x} in G with one endpoint (call it
w) inside S and one endpoint (call it x) outside S. Because w ∈ S, there exists a uw-walk W in G. Because
{w, x} ∈ E(G), we can walk from u to x in G by �rst following W from u to w and then traversing the edge
{w, x} from w to x. Therefore G contains a ux-walk, and so x ∈ S. But this contradicts that x is a vertex
outside S. The contradiction implies that v ∈ S as required.

6 A Proof with an Error

The following inductive �proof� contains an error. What is the number of the �rst line in the proof that is
incorrect? Why is it incorrect?

Theorem: If n ≥ 1 balls are placed into a box B and each ball is colored blue or yellow, then either all
balls in B are blue or all balls in B are yellow.

Proof:

1. By induction on n.

2. Base case: If n = 1, then |B| = 1, so the theorem is clearly true in this case.

3. Inductive Step: suppose n ≥ 2.

4. Let x, y ∈ B be two distinct balls in B.

5. Let B1 = B − {x} and B2 = B − {y}. Note that |B1| = |B2| = n− 1 < n.



6. Therefore, the inductive hypothesis implies that all balls in B1 are blue or all balls in B1 are yellow.

7. Similarly, the inductive hypothesis implies that all balls in B2 are blue or all balls in B2 are yellow.

8. Note that the common color of all balls in B1 must be the same as the common color of all balls in B2.

9. Because B = B1 ∪B2 and the common color in B1 is the same as the common color in B2, all balls in
B are blue or all balls in B are yellow.

Solution The �rst line that is in error is line (8). The error is subtle, however: line (8) implicitly assumes
that B1 and B2 share common balls; that is, line (8) assumes B1 ∩B2 6= ∅. Although this is true whenever
we start with n ≥ 3 balls that B1 ∩ B2 6= ∅, this fails for the case that n = 2. In this case, we apply our
inductive step with B = {x, y}, and we set B1 = {y} and B2 = {x} in step (5). We correctly apply the
inductive hypothesis in steps (6) and (7), but step (8) fails because the common color of the balls in B1

(namely, the color of y) does not have to be the same as the common color of the balls in B2 (namely, the
color of x).

7 Pirates

Recently, a pirate ship with 200 pirates onboard has captured 1000 gold coins from another vessel. The
pirates have developed an interesting way to distribute their gains among themselves. Here's what happens:
the strongest pirate on the ship proposes a distribution of the coins to pirates. Next, all pirates vote on the
proposal (including the strongest pirate). If at least half of the pirates vote in support of the proposal, the
coins are distributed according to the proposal and the process is complete. However, if more than half of the
pirates vote to reject the proposal, they throw the strongest pirate overboard and the process repeats with
the strongest of the remaining pirates o�ering a new proposal. Each pirate is perfectly logical and wishes to
maximize the number of coins that he or she receives.

What does the strongest pirate propose? Prove your answer is correct. (Hint: �rst, try to answer the
question if there are only a small number of pirates onboard � one pirate, two pirates, etc. Next, based upon
your investigation of what happens with a small number of pirates, guess what is proposed if there are n
(1 ≤ n ≤ 200) pirates onboard. Finally, prove by induction on n that your guess is correct.)

Notes This solution uses �oor and ceiling notation. The �oor of a real number x, written bxc, is the largest
integer k such that k ≤ x. Similarly, the ceiling of a real number x, written dxe, is the smallest integer k
such that k ≥ x.

Solution Suppose there are n pirates p1, p2, . . . , pn onboard, ordered from strongest pirate p1 to weakest
pirate pn. We claim that p1 proposes the following distribution: p2, p4, p6, . . . each receive 0 gold coins,
p3, p5, p7, . . . each receive 1 gold coin, and p1 gets the remaining 1000−

⌊
n−1

2

⌋
gold coins.

We prove the claim by induction on n. Base case: if n = 1, then p1 proposes to receive all gold coins,
which is consistent with our claim. Inductive step: let n ≥ 2. Because p1 is perfectly logical and wishes to
maximize the number of gold coins p1 receives, p1 will reason as follows: �I need at least n/2 of my fellow
pirates to vote in favor of my proposed distribution. If my proposal is rejected and I am thrown o� the
ship, p2 will o�er a new distribution. By the inductive hypothesis, I know that p2 will o�er zero gold coins
to p3, p5, p7, . . ., one gold coin to p4, p6, p8, . . ., and keep the rest. Furthermore, all my fellow pirates are
perfectly logical and know full well how the coins will be distributed if I'm thrown overboard. I can only be
sure that a pirate pj will vote for my proposal if I o�er pj more than pj would get if p2 were running the
show. Because I want to get as many coins as possible, I should start by o�ering gold coins to the pirates
that receive the fewest number of gold coins under p2's distribution, and I should continue buying o� votes
until I am sure that at least n/2 pirates will vote for me. So, I will o�er one coin to each of p3, p5, p7, . . . and
keep the rest. That way, I will get votes from p1, p3, p5, . . ., so I will get

⌈
n
2

⌉
≥ n/2 votes and my proposal



will be accepted. Unfortunately, I can't do any better because I need at least
⌈

n
2

⌉
votes and I've bought

each for the cheapest possible price.� Therefore p1 makes the claimed proposal, and our proof is complete.
In our case with n = 200, the strongest pirate p1 o�ers zero gold coins to p2, p4, . . . , p200, one gold coin

to p3, p5, p7, . . . , p199 and keeps the remaining 901 coins.

8 Ramsey Theory

In lecture 6, we present a classic proof from Ramsey theory and de�ne R(m,n) for each m,n ≥ 1. Describe
how the proof can be modi�ed to show that R(m,n) ≤

(
m+n

m

)
. (Note: you are not asked to repeat the proof

in full, just describe how to modify the proof we saw in lecture 6.)

Solution We modify the proof as follows.

1. Modify the statement of the theorem so that it reads �Theorem: ∀m,n ≥ 1 R(m,n) ≤
(
m+n

m

)
.�

2. At the end of the base case, add �Therefore R(m,n) ≤ 1. Because 1 ≤
(
m+n

m

)
for m,n ≥ 1, the theorem

holds.�

3. Change �by the inductive hypothesis, there exists r1 such that ...� to �by the inductive hypothesis,
there exists r1 = R(m− 1, n) ≤

(
m−1+n

m−1

)
such that ...�. Similarly, change �by the inductive hypothesis,

there exists r1 such that ...� to �by the inductive hypothesis, there exists r2 = R(m,n− 1) ≤
(
m+n−1

m

)
such that ...�

4. At the end of the proof, append �Therefore

R(m,n) ≤ r = r1 + r2 ≤
(

m + n− 1
m− 1

)
+

(
m + n− 1

m

)
=

(
m + n

m

)
,

where the last equality is an identity we know from lecture 2.�


