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Abstract

An ordered hypergraph is a hypergraph G whose vertex set V (G) is linearly ordered. We find the

Turán numbers for the r-uniform s-vertex tight path P
→(r)

s (with vertices in the natural order) exactly

when r ≤ s < 2r and n is even; our results imply ex
→
(n,P

→(r)
s ) = (1− 1

2s−r + o(1))
(

n

r

)

when r ≤ s < 2r.

When r ≥ 2s, the asymptotics of ex
→
(n,P

→(r)
s ) remain open. For r = 3, we give a construction of an

r-uniform n-vertex hypergraph not containing P
→(r)

s which we conjecture to be asymptotically extremal.

1 Introduction

The Turán number of an r-uniform hypergraph H , denoted ex(n,H), is the maximum number of edges in an
r-uniform n-vertex graph G that does not contain H as a subgraph. Bounding Turán numbers is a classical
problem in extremal graph theory. The best known general bounds on the Turán numbers of the r-uniform

s-vertex complete hypergraph K
(r)
s are (1 − ( r−1

s−1 )
r−1 − o(1))

(

n
r

)

≤ ex(n,K
(r)
s ) ≤ (1 −

(

s−1
r−1

)−1
+ o(1))

(

n
r

)

,
with lower bound due to Sidorenko [9] and upper bound due to de Caen [1].

An ordered hypergraph is a hypergraph G whose vertices are linearly ordered. For an ordered hypergraph
G, the underlying hypergraph is the ordinary hypergraph obtained from G by discarding the order on V (G).
For vertices u and v in an ordered hypergraph G, we write u <G v, or u < v when G is clear from context, if
u appears before v in the ordering of V (G). If G and H are ordered hypergraphs, then G is a subgraph of H ,
denoted G ⊆ H , if there is an injection f : V (G) → V (H) such that u <G v if and only if f(u) <H f(v) and
e ∈ E(G) implies f(e) ∈ E(H), where f(e) = {f(v) : v ∈ e}. When H is an r-uniform ordered hypergraph,
we use ex

→
(n,H) to denote the analogous ordered Turán number, so that ex

→
(n,H) is the maximum number

of edges in an r-uniform n-vertex ordered hypergraph not containing H as a subgraph.
For graphs, ordered Turán numbers behave somewhat analogously to ordinary Turán numbers. The

interval chromatic number of an ordered graph G, denoted χi(G), is the minimum k such that V (G) can be
partitioned into k intervals, each of which is an independent set. Although computing the chromatic number
of an ordinary graph is NP-hard, an easy greedy algorithm computes χi(G) for an ordered graph G. Pach
and Tardos [8] obtained an ordered analogue of the Erdős–Stone Theorem, showing that for each ordered
graph H , we have ex

→
(n,H) = (1 − 1

χi(H)−1 + o(1))
(

n
2

)

. Like the Erdős–Stone Theorem, this establishes the

Turán numbers asymptotically for each ordered graph G with χi(G) > 2. It is therefore natural to focus on
ordered graphs G with χi(G) = 2 and ordered hypergraphs.

A graph G is a forest if G has no cycles. Using classical Turán Theory, it is straightforward to show that
ex
→
(n,G) ≥ Ω(n1+ε) for some positive ε unless G is an ordered forest with χi(G) = 2. Pach and Tardos [8]

conjectured that if G is an ordered forest with χi(G) = 2, then ex
→
(n,G) ≤ n(logn)O(1). Korándi, Tardos,

Tomon, and Weidert [7] made progress on the conjecture by proving that ex
→
(n,G) ≤ n1+o(1) when G is an

ordered forest with χi(G) = 2. For a family of ordered graphs G, we define ex
→
(n,G) to be the maximum

number of edges in an n-vertex ordered graph that contains no member of G as a subgraph. A bordered cycle

is an ordered graph G whose underlying graph is a cycle, whose ordering has intervals X and Y with X < Y
such that each edge in G has an endpoint in X and an endpoint in Y (implying χi(G) ≤ 2), and contains the
edge joining minX and maxY and the edge joining maxX and minY . Győri, Korándi, Methuku, Tomon,
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Tompkins, and Vizer [6] proved that ex
→
(n,Gk) = Θ(n1+1/k), where Gk is the family of bordered cycles on at

most 2k vertices.
The r-uniform s-vertex natural path, denoted P

→
(r)
s , has vertex set {v1, . . . , vs} in the natural order v1 <

· · · < vs with E(P
→
(r)
s ) consisting of all intervals of size r. The underlying hypergraph of P

→
(r)
s is the well-

known tight path P
(r)
s . The length of a path is the number of edges in the path, and so both P

→
(r)
s and P

(r)
s

have length s − r + 1. A special case of a conjecture by Kalai [2] states that for n ≥ r ≥ 2 and s ≥ r, we

have ex(n, P
(r)
s ) ≤ s−r

r

(

n
r−1

)

, which remains open. Füredi, Jiang, Kostochka, Mubayi, and Verstraëte [3]

proved that ex(n, P
(3)
6 ) =

(

n
2

)

for n ≥ 5. In a later paper [4], the same authors proved that if s ≥ r, then

ex(n, P
(r)
s ) ≤ s−r

2

(

n
r−1

)

when r is even and ex(n, P
(r)
s ) ≤ 1

2 (s− r + 1 +
⌊

s−r
r

⌋

)
(

n
r−1

)

when r is odd.
Few results on Turán numbers of ordered hypergraphs are known. In classical Turán theory, an r-uniform

hypergraph G satisfies ex(n,G) = o(nr) if and only if G is r-partite, meaning that there is a partition of
V (G) into r parts such that each edge in G has one vertex in each part. The analogous statement holds
for ordered hypergraphs: an r-uniform ordered hypergraph G satisfies ex

→
(n,G) = o(nr) if and only if G is

r-interval-partite, meaning that V (G) can be partitioned into r intervals such that each edge in G has one
vertex in each interval.

For s > r, the natural paths P
→
(r)
s are not r-interval-partite, and so ex

→
(n, P

→
(r)
s ) ≥ Ω(nr). The vertices

of a tight path can be arranged in a different order to give an ordered r-interval-partite hypergraph. The
r-uniform s-vertex crossing path, denoted Q

→ (r)
s , is a tight path whose vertices are ordered as follows. Arrange

the s vertices in an a grid with r rows R1, . . . , Rr and ⌈s/r⌉ columns such that any empty cells form a
suffix of the last column. Let t = ⌈s/r⌉, and let C1, . . . , Ct be the columns of the grid. The ordering

on the vertices of Q
→ (r)
s satisfies R1 < . . . < Rr, where the vertices in each Ri are ordered from C1 to Ct

(or Ct−1 if Ri has no vertex in row Ct). The edges of Q
→
(r)
s are the intervals of size r in the alternative

vertex ordering such that C1 < · · · < Ct, where the vertices in each Cj are ordered from R1 to Rr (or, in

the case of Ct, from R1 to the last occupied row). Since each edge in Q
→
(r)
s has one vertex in each row and

R1 < . . . < Rr, it follows that Q
→ (r)
s is r-interval-partite. Füredi, Jiang, Kostochka, Mubayi, and Verstraëte [5]

proved that ex
→
(n,Q

(r)
s ) equals

(

n
r

)

−
(

n−(s−r)
r

)

when r ≤ s ≤ 2r and is Θ(nr−1 logn) when s > 2r. Since
(

n
r

)

−
(

n−(s−r)
r

)

= (1 + o(1))r(s− r)nr−1, it follows that always ex
→
(n,Q

(r)
s ) = O(nr−1 log(n)). A hypergraph

F is a forest if the edges of F can be ordered as e1, . . . , em such that for each i, the edge ei is the union of
a subset of an earlier edge ej with j < i and vertices that are not contained in any edge in {e1, . . . , ei−1}.
In classical Turán theory, we have ex(n, F ) ≤ O(nr−1) for each r-uniform forest F . Generalizing the Pach-
Tardos conjecture, Füredi et al [5] conjectured that ex

→
(n, F ) = O(nr−1 · polylog(n)) when F is an r-uniform

r-interval-partite forest.
We are interested in ex

→
(n, P

→
(r)
s ). In Section 2, we obtain ex

→
(n, P

→
(r)
s ) exactly when s ≤ 2r − 1 and n is

even, implying that ex
→
(n, P

→
(r)
s ) = (1 − 1

2s−r + o(1))
(

n
r

)

when r ≤ s ≤ 2r − 1. When s ≥ 2r, determining

the asymptotics of ex
→
(n, P

→
(r)
s ) remains open. When r divides s, our fractional results in Section 3 imply

ex
→
(n, P

→
(r)
s ) ≤ (1 − ( rs )

r + o(1))
(

n
r

)

. When r − 1 divides s − 1, partitioning an interval of n vertices into

(s−1)/(r−1) parts of equal size and removing edges with all vertices in a single part shows that ex
→
(n, P

→
(r)
s ) ≥

(1 − ( r−1
s−1 )

r−1 − o(1))
(

n
r

)

, matching the Sidorenko lower bound on ex(n,K
→

(r)
s ) even though ex

→
(n, P

→
(r)
s ) ≤

ex
→
(n,K

→ (r)
s ) = ex(n,K

(r)
s ). When r and s do not have convenient divisibility relationships, obtaining bounds

on ex
→
(n, P

→
(r)
s ) may involve additional subtleties. Sidorenko’s lower bound on ex(n,K

→
(r)
s ) holds for general r

and s; in fact, the argument shows that ex
→
(n, C

→
(r)
s ) ≥ (1− ( r−1

s−1 )
r−1 − o(1))

(

n
r

)

, where C
→
(r)
s is the r-uniform

s-vertex ordered tight cycle, with vertex set {v0, . . . , vs−1} in the natural order and edge set {e0, . . . , es−1},
where ej = {vj , . . . , vj+r−1} (subscript arithmetic modulo s).

We study the case r = 3 in Section 4. When s is odd, we have that r − 1 divides s − 1 and the same
construction as above gives ex

→
(n, P

→
(r)
s ) ≥ (1 − 4

(s−1)2 − o(1))
(

n
3

)

. When s is even, we give a construction

that improves the lower bound to ex
→
(n, P

→
(r)
s ) ≥ (1 − 4

s(s−2) − o(1))
(

n
3

)

. We conjecture that these bounds

are asymptotically sharp. An ordered hypergraph G is monotone if, for each edge {u, v, w} ∈ E(G) with
u < v < w, we have ℓ(uv) ≤ ℓ(vw), where ℓ(xy) is the length of a longest ordered tight path whose last two
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vertices are x followed by y (see Section 4 for an equivalent, but perhaps more natural, formulation). As
some partial evidence for this conjecture, we show that if s is odd and G is a monotone n-vertex ordered
hypergraph not containing P

→
(r)
s , then |E(G)| ≤ (1 − 4

(s−1)2 + o(1))
(

n
3

)

. The first unresolved case is that of

P
(3)
6 , with best known bounds (56 − o(1))

(

n
3

)

≤ ex
→
(n, P

(3)
6 ) ≤ (78 + o(1))

(

n
3

)

.

2 Exact Results for Short Paths

In this section, our aim is to establish ex
→
(n, P

→
(r)
s ) exactly when r ≤ s ≤ 2r − 1 and n is even. If G ⊆ K

→
(r)
n

and G does not contain H , then each copy of H in K
→ (r)

n has some edge in G. An H-transversal in K
→ (r)

n is a

graph G′ ⊆ K
→

(r)
n such that every copy of H in K

→
(r)
n has at least one edge in G′. The transversal number of

H , denoted τ
→
(n,H), is the minimum number of edges in an H-transversal. Note that ex

→
(n,H) + τ

→
(n,H) =

|E(K
→

(r)
n )| =

(

n
r

)

.

We use [n] for the vertex set of K
→

(r)
n . For vertex sets A and B in an ordered graph G, we write A < B

if a < b for all a ∈ A and b ∈ B. The reflection of a vertex u in K
→

(r)
n is the vertex n + 1 − u. An interval

partition of K
→

(r)
n is a list of disjoint vertex subsets (X1, . . . , Xk) whose union is [n] such that each Xi is

an interval in [n] and Xi < Xj when i < j. A set of vertices S is m-left-biased if K
→

(r)
n has an interval

partition (X,Y, Z) such that |X | = |Z|, |X ∩ S| = m, and |Z ∩ S| = 0. Similarly, S is m-right-biased if K
→

(r)
n

has an interval partition (X,Y, Z) such that |X | = |Z|, |X ∩ S| = 0, and |Z ∩ S| = m. We say that S is
m-biased if S is m-left-biased or m-right-biased. Let h(n, t,m) be the number of t-sets that are m-left-biased

in K
→

(r)
n . Note that for even n, summing the m-left-biased t-sets whose mth vertex is at index k shows that

h(n, t,m) =
∑n/2

k=m

(

k−1
m−1

)(

n−2k
t−m

)

when 1 ≤ m ≤ t.

Our next theorem gives a lower bound on ex
→
(n, P

→
(r)
s ) by constructing an P

→
(r)
s -transversal when r ≤ s ≤

2r − 1. In fact, we construct a LP
→

(r)
s -transversal, where LP

→
(r)
s is the loose path obtained from P

→
(r)
s by

removing all but the first and last edges. Note that the two edges in LP
→

(r)
s intersect when r < s ≤ 2r − 1.

Theorem 1. Let n be even, let r ≤ s ≤ 2r − 1, and let m = |E(P
→
(r)
s )| = s − r + 1. We have τ

→
(n, P

→
(r)
s ) ≤

τ
→
(n,LP

→
(r)
s ) ≤ 2h(n, r,m) + h(n, r − 1,m).

Proof. The condition r ≤ s ≤ 2r − 1 translates to 1 ≤ m ≤ r. Let G be the subgraph of K
→

(r)
n such that

E(G) = E1 ∪ E2, where E1 is the family of r-sets that are m-biased and E2 is the family of r-sets whose
mth and last vertices are reflections of one another. Since m > 0, the m-biased r-sets are the disjoint
union of the m-left-biased r-sets and the m-right-biased r-sets, both of which have size h(n, r,m), and so
|E1| = 2h(n, r,m). Also, when m < r, removing the last vertex from an r-set whose mth and last points are
reflections of one another gives an (r−1)-set that is m-left-biased and conversely, and so |E2| = h(n, r−1,m).
(Note that when r = m, we have h(n, r − 1,m) = 0.)

It remains to show that every copy of LP
→ (r)

s in K
→ (r)

n has an edge in G. Let Q be such a copy, and let

(X,Y, Z) be the interval partition of K
→

(r)
n that minimizes |X | subject to |X | = |Z| and max{|X∩V (Q)|, |Z∩

V (Q)|} ≥ m. Such a partition exists, or else Q has at most m− 1 vertices in both the left and right halves

of K
→

(r)
n , which would imply s = |V (Q)| ≤ 2(m− 1) = 2(s− r), contradicting s ≤ 2r − 1. Let u = |X |.

Suppose first that |X ∩ V (Q)| = |Z ∩ V (Q)| = m. In this case, it must be that both u and its reflection
n+ 1− u are vertices in Q. Note that s = r + (m− 1). Deleting the last m− 1 vertices in Q gives the first
edge e ∈ E(Q) whose mth vertex is u and whose last vertex is n+ 1− u, implying that e ∈ E2 ⊆ E(G).

Otherwise, one of {|X∩V (Q)|, |Z∩V (Q)|} equals m and the other is at most m−1. We show that Q has
an edge in E1. Suppose that |X ∩ V (Q)| = m and |Z ∩ V (Q)| ≤ m− 1. Let e be the first edge in Q (which
is obtained by deleting the last m − 1 vertices of Q). Since s ≥ m + (m − 1), none of the deleted vertices
are in X . It follows that |X ∩ e| = m and |Z ∩ e| = 0. So e is m-left-biased, and therefore e ∈ E1 ⊆ E(G).
If instead |X ∩ V (Q)| ≤ m− 1 and |Z ∩ V (Q)| = m, then a similar argument shows that the last edge e in
Q is m-right-biased, also implying e ∈ E1 ⊆ E(G).
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Our next theorem obtains a large family of edge-disjoint copies of P
→
(r)
s . For an r-uniform ordered

hypergraph H , the H-packing number, denoted ν
→
(n,H) is the maximum size of an edge-disjoint family of

copies of H in K
→

(r)
n . Clearly, ν

→
(n,H) ≤ τ

→
(n,H).

Theorem 2. Let n be even, let r ≤ s ≤ 2r − 1, and let m = |E(P
→
(r)
s )| = s − r + 1. We have ν

→
(n, P

→
(r)
s ) ≥

2h(n, r,m) + h(n, r − 1,m).

Proof. As in Theorem 1, let G be the subgraph of K
→ (r)

n with E(G) = E1 ∪ E2, where E1 is the family of
r-sets that are m-biased and E2 is the family of r-sets whose mth vertex and last vertex are reflections of one
another. For each e ∈ E(G), we construct a copy Qe of P

→
(r)
s such that the family of paths {Qe : e ∈ E(G)}

is edge-disjoint.
Let e ∈ E(G). We construct Qe as follows. Note that every edge in G is (m− 1)-biased. The canonical

interval partition of e is the interval partition (X,Y, Z) of K
→

(r)
n that maximizes |X | subject to |X | = |Z|,

max{|X ∩ e|, |Z ∩ e|} = m − 1, and min{|X ∩ e|, |Z ∩ e|} = 0. Note that by maximality of |X |, it follows
that either minY or maxY is a vertex in e, and so the canonical interval partition of e is also the interval
partition (X,Y, Z) of K

→
(r)
n that minimizes |Y | subject to |X | = |Z| and |Y ∩ e| = r − (m− 1) = 2r− s. The

translation of a set of vertices S ⊆ V (K
→

(r)
n ) by a constant c, denoted S + c, is the set {u + c : u ∈ S}. If

|X ∩ e| = m− 1, then we take V (Qe) to be the union of e and the translation (X ∩ e)+ (n− |Z|). Otherwise
if |Z ∩ e| = m − 1, then we take V (Qe) to be the union of e and the translation (Z ∩ e) − (n − |X |). In

both cases, |V (Q)| = r + m − 1 = s, and so Qe is a copy of P
→
(r)
s . The core of Qe is the set of 2r − s

vertices in V (Qe) that belong to every edge in Qe. Since 2r− s ≥ 1, the core of Qe is non-empty. Also, since
2r−s = s−2(m−1) and |X∩V (Qe)| = |Z∩V (Qe)| = m−1, it follows that the core of Qe equals Y ∩V (Qe).

Because the core of Qe consists of the 2r − s vertices in Q that are closest to the center of V (K
→

(r)
n ), given

any edge in Qe we can identify the core of Qe. Moreover, since the canonical interval partition of e is the
partition (X,Y, Z) given by minimizing |Y | subject to |X | = |Z| and |Y ∩ e| = 2r − s, each edge in Qe also
determines the canonical interval partition of e.

We show that given an edge f in some path Qe in the family {Qe : e ∈ E(G)}, we can determine the
edge e ∈ E(G) that generates Qe. It follows that the family is edge-disjoint. Let f be an edge in one of
the paths in our collection, and recall that f determines the canonical interval partition (X,Y, Z) of the
generating edge e. It follows that V (Qe) is the union of f and the translations (X ∩ f) + (n − |Z|) and
(Z ∩ f)− (n− |X |). Note that the edge e ∈ E(G) that generates Qe must be the first or last edge in Qe. We
identify e as follows. If min Y and maxY are in V (Qe), then e ∈ E2 and e is the first edge in Qe. If minY
is in V (Qe) but maxY is not, then e ∈ E1 and e is also the first edge in Qe. Otherwise, maxY is in V (Qe)
and min Y is not, in which case e ∈ E1 and e is the last edge in Qe.

The theorems give exact results on ν
→
(n, P

→
(r)
s ), τ

→
(n, P

→
(r)
s ), and ex(n, P

→
(r)
s ) when r ≤ s ≤ 2r − 1.

Corollary 3. Let n be even, let r ≤ s ≤ 2r − 1, and let m = |E(P
→
(r)
s )| = s − r + 1. We have that

each parameter in {ν
→
(n, P

→
(r)
s ), ν

→
(n, LP

→
(r)
s ), τ

→
(n, P

→
(r)
s ), τ

→
(n,LP

→
(r)
s )} equals 2h(n, r,m) + h(n, r − 1,m), and

2h(n, r,m)+h(n, r− 1,m) = 1
2m−1

(

n
r

)

+O(nr−1). Therefore ex
→
(n, LP

→
(r)
s ) = ex

→
(n, P

→
(r)
s ) =

(

n
r

)

− 2h(n, r,m)−

h(n, r − 1,m) =
(

1− 1
2m−1

) (

n
r

)

+O(nr−1).

Proof. Clearly ν
→
(n, P

→
(r)
s ) ≤ ν

→
(n, LP

→
(r)
s ), τ

→
(n, P

→
(r)
s ) ≤ τ

→
(n, LP

→
(r)
s ). By Theorem 2 and Theorem 1 respectively,

we have ν
→
(n, P

→
(r)
s ) ≥ 2h(n, r,m)+h(n, r− 1,m) and τ

→
(n, LP

→
(r)
s ) ≤ 2h(n, r,m)+h(n, r− 1,m) and the exact

results on ν
→
, τ

→
, and ex

→
follow.

For the asymptotic results, it suffices to show that h(n, r,m) = (1/2m)
(

n
r

)

+ O(nr−1). Recall that
h(n, r,m) is the number of m-left-biased r-sets. An r-set R is degenerate if R contains a vertex u and its
reflection n + 1 − u, and R is typical if it is not degenerate. Let A be the family of degenerate r-sets,
and let B be the family of typical r-sets. Note that |A| ≤ (r − 1)

(

n
r−1

)

= O(nr−1), since choosing r − 1

vertices and a vertex to reflect determines a degenerate r-set. Note that |B| = 2r
(

n/2
r

)

, since each r-set
in B is generated by choosing r of the reflection pairs, and then selecting a vertex from each chosen pair.
The m-left-biased sets in B are obtained by choosing the left vertex from the m outermost reflection pairs,
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and so 2r−m
(

n/2
r

)

sets in B are m-left-biased. Let C be the family of m-left-biased r-sets. We compute

h(n, r,m) = |C| = |C ∩A|+ |C ∩B| = O(nr−1) + 2r−m
(

n/2
r

)

= O(nr−1) + 1
2m

(

n
r

)

.

3 Fractional Variants

The transversal and packing numbers from Section 2 have fractional variants. For an ordered hypergraph
H , a fractional transversal of the copies of H in K

→
(r)
n is a function w that assigns non-negative weights to

each edge in K
→ (r)

n such that
∑

e∈E(H′) w(e) ≥ 1 for each copy H ′ of H in K
→ (r)

n . The fractional transversal

number of H , denoted τ
→∗(n,H), is the infimum, over all fractional transversals w, of the sum of w(e) over

all edges e ∈ E(K
→

(r)
n ). Standard compactness arguments show that the infimum is always achieved, and so

we may replace infimum by minimum in the definition. Also, if G′ ⊆ K
→

(r)
n and G′ is an H-transversal, then

the weight function w with w(e) = 1 for e ∈ E(G′) and w(e) = 0 for e 6∈ E(G′) is a fractional transversal,
and therefore τ

→∗(n,H) ≤ τ
→
(n,H).

Each fractional transversal of copies ofH inK
→

(r)
n is a feasible solution to the linear program with variables

{w(e) : e ∈ E(K
→

(r)
n )} with objective to minimize

∑

ew(e) subject to
∑

e∈E(H′) w(e) ≥ 1 for each copy H ′

of H in K
→ (r)

n . The dual linear program has variables {w(H ′) : H ′ is a copy of H in K
→ (r)

n } with objective to

maximize
∑

H′ w(H ′) subject to the constraints that, for each edge e in K
→

(r)
n , the sum of w(H ′) over all

copies H ′ of H in K
→

(r)
n that contain e is at most 1. A feasible solution w to the dual linear program is called

a fractional H-packing, and the fractional H-packing number, denoted ν
→∗(n,H) is the value of this linear

program. Since both the LP and its dual are clearly feasible, it follows from theory of linear programming
that τ

→∗(n,H) = ν
→∗(n,H). As before, standard compactness arguments show that a fractional H-packing

with total weight ν
→∗(n,H) exists, and it is clear that ν

→
(n,H) ≤ ν

→∗(n,H). Hence

ν
→
(n,H) ≤ ν

→∗(n,H) = τ
→∗(n,H) ≤ τ

→
(n,H).

In this section, we show that ν
→
(n, P

→
(r)
s ), ν

→∗(n, P
→
(r)
s ), and τ

→∗(n, P
→
(r)
s ) are all asymptotically

((

r
s

)r
+ o(1)

) (

n
r

)

when r divides s.

Proposition 4. If r divides s, then ν
→
(n, P

→
(r)
s ) ≥

((

r
s

)r
+ o(1)

) (

n
r

)

.

Proof. We give a P
→
(r)
s -packing of the required size. Let k = s/r, and without loss of generality assume

that k divides n. Let (X1, . . . , Xk) be an interval partition of K
→

(r)
n into parts of equal size. For each edge

e ∈ E(K
→

(r)
n ) with e ⊆ X1, let Pe be the s-vertex path with vertex set

⋃k−1
j=0 (e+ j|X1|). Note that given any

edge e′ ∈ E(Pe), it is easy to recover e, and it follows that {Pe : e ⊆ X1} is an edge-disjoint collection of

copies of P
→ (r)
s . Therefore ν

→
(n, P

→ (r)
s ) ≥

(

|X1|
r

)

=
(

n/k
r

)

=
(

1
kr + o(1)

) (

n
r

)

.

Proposition 5. If r divides s, then τ
→∗(n, P

→
(r)
s ) ≤

((

r
s

)r
+ o(1)

) (

n
r

)

.

Proof. We give a fractional P
→ (r)
s -transversal. Let k = s/r. We may assume without loss of generality that

k divides n. Let (X1, . . . , Xk) be an interval partition of K
→ (r)

n into parts of equal size. Let w be the weight
function with w(e) = r/s if e is contained in a part in (X1, . . . , Xk) and w(e) = 0 otherwise. Let P be a

copy of P
→
(r)
s in K

→
(r)
n . Note that at most r − 1 vertices in V (P ) ∩Xi begin an edge with weight zero, and P

has at most k(r − 1) such vertices. Therefore at least s− k(r − 1) vertices in P begin an edge with positive
weight. So the edges of P have total weight at least (r/s)(s− k(r− 1)), and this equals 1. It follows that w

is a fractional P
→
(r)
s -transversal, and so τ

→∗(n, P
→
(r)
s ) ≤ r

s · k ·
(

|X1|
r

)

=
(

n/k
r

)

=
(

1
kr + o(1)

) (

n
r

)

.

If r divides s and the integer s/r also divides n, then Proposition 4 and Proposition 5 imply ν
→
(n, P

→
(r)
s ) =

τ
→∗(n, P

→
(r)
s ) = ν

→∗(n, P
→
(r)
s ) =

(

n/k
r

)

, where k = s/r.

Theorem 6. If r divides s, then ν
→
(n, P

→
(r)
s ), ν

→∗(n, P
→
(r)
s ), and τ

→∗(n, P
→
(r)
s ) are all asymptotically equal to

((

r
s

)r
+ o(1)

) (

n
r

)

.
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The smallest path to which our argument in Section 2 does not apply is P
(r)
2r , when s = 2r. In this

case, our fractional results imply τ
→∗(n, P

(r)
2r ) =

(

1
2r + o(1)

) (

n
r

)

, but, at least in the case r = 3, we believe

that τ
→
(n, P

(r)
2r ) ≫ τ

→∗(n, P
(r)
2r ). In particular, τ

→∗(n, P
(3)
6 ) =

(

1
8 + o(1)

) (

n
r

)

but we conjecture τ
→
(n, P

(3)
6 ) =

(

1
6 + o(1)

) (

n
r

)

.

4 The case r = 3

When r = 3, the ordered Turán numbers are equivalent to an edge-labeling problem on the ordered complete
graph K

→
(2)
n . A k-edge-labeling of K

→
(2)
n assigns to each pair uv a label in a linearly ordered set S with |S| = k.

Let φ be a k-edge-labeling of K
→

(2)
n . A triple of vertices {u, v, w} with u < v < w is good if φ(uv) < φ(vw).

For convenience, we write uvw for the triple {u, v, w}. A triple is bad if it is not good. Let f(n, k) be the

maximum, over all k-edge-labelings φ of K
→

(2)
n , of the number of good triples. A k-edge-labeling φ of K

→
(2)
n is

optimal if it has f(n, k) good triples.

Proposition 7. For s ≥ 3, we have ex
→
(n, P

(3)
s ) = f(n, s− 2).

Proof. First, we show ex
→
(n, P

(3)
s ) ≥ f(n, s − 2). Let φ be an (s − 2)-edge-labeling of K

→
(2)
n with f(n, s− 2)

good triples. Let G be the ordered 3-uniform hypergraph with vertex set V (K
→

(2)
n ) such that for u < v < w,

we have uvw ∈ E(G) if and only if φ(uv) < φ(vw). We claim that G does not contain P
(3)
s . Indeed, if

v1 · · · vs is a copy of P
(3)
s in G, then φ(vi−1vi) < φ(vivi+1) for 1 < i < s by definition of G. It follows that φ

uses s− 1 distinct labels on the consecutive pairs of v1 · · · vs, contradicting that φ is a (s− 2)-edge-labeling.

It follows that ex
→
(n, P

(3)
s ) ≥ |E(G)| = f(n, s− 2).

Next, we show ex
→
(n, P

(3)
s ) ≤ f(n, s− 2). Let G be a 3-uniform ordered hypergraph not containing P

(3)
s ,

and let φ be the edge-labeling on V (G) by setting φ(uv), where u < v, equal to the length of a longest tight
ordered path in G that ends in uv. Clearly, if u < v < w and uvw ∈ E(G), then we have φ(uv) < φ(vw)
since the edge uvw can be used to extend a longest ordered path ending in uv to a longest path of larger
length ending in vw. Therefore φ has at least |E(G)| good triples. Note that φ assigns each pair uv a value
in the set {0, . . . , s − 3}, since every ordered tight path in G has at most s − 1 vertices and at most s − 3
edges. Since φ assigns each edge a value in {0, . . . , s− 3}, it follows that φ is an (s− 2)-edge-labeling, and

therefore f(n, s− 2) ≥ |E(G)| = ex
→
(n, P

(3)
s ).

Next, we give lower bound constructions for f(n, k) which we conjecture to be asymptotically optimal.
The construction is easiest to describe when k is odd. A labeling φ is monotone if, for all u < v < w, we
have φ(uv) ≤ φ(vw).

Proposition 8. If k is odd, then f(n, k) ≥
(

1− 4
(k+1)2 + o(1)

)

(

n
3

)

.

Proof. Let t = (k + 1)/2. Let (X1, . . . , Xt) be an interval partition of K
→

(2)
n into t parts whose sizes differ by

at most 1. For u < v with u ∈ Xi and v ∈ Xj , we set φ(uv) = i + j. Clearly, the range of φ is contained in
{2, . . . , 2t}, and so φ is a (2t− 1)-edge-labeling. Note that 2t− 1 = k.

Since φ is a monotone labeling, the only triples uvw with u < v < w that are not good are those with
φ(uv) = φ(vw). Each such triple is contained in a part Xi for some i. It follows that the number of triples

that are not good is asymptotically equal to t
(

n/t
3

)

, which is asymptotically equal to 1
t2

(

n
3

)

. The proposition
follows.

Corollary 9. If s ≥ 3 and s is odd, then ex
→
(n, P

(3)
s ) ≥

(

1− 4
(s−1)2 + o(1)

)

(

n
3

)

.

Applying Proposition 7 to the construction in Proposition 8 gives a graph G whose complement is the
union of t complete graphs on t disjoint intervals of nearly equal size. The construction for even k is more
subtle.
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We first give our construction in terms of a general interval partition (X1, . . . , Xk) of [n] into k parts.
Later, we specify the sizes of the parts. For a pair uv with u < v, u ∈ Xi, and v ∈ Xj , we define φ(uv) as
follows. If i = j, then φ(uv) = i. If j − i ≥ 2, then we set φ(uv) so that i < φ(uv) < j. Otherwise, j = i+1.
The fractional index of u in Xi is (u+1−minXi)/|Xi|. Note that the fractional index of u is a real number
in (0, 1]. Let λu and λv be the fractional indices of u in Xi and v in Xi+1, respectively. We set φ(uv) = i if
λu + λv ≤ 1 and φ(uv) = i+ 1 if λu + λv > 1.

Lemma 10. Let a, b, c be constants. If |Xi−1| = (a + o(1))n, |Xi| = (b+ o(1))n, and |Xi+1| = (c + o(1))n,
then the number of bad triples uvw with v ∈ Xi is [(a+ b) b (b+ c) + o(1)]

(

n
3

)

.

Proof. Let v ∈ Xi and let λv be the fractional index of v in Xi. If uvw is a bad triple with u < v < w,
then u ∈ Xi−1 ∪Xi, w ∈ Xi ∪ Xi+1, and φ(uv) = φ(vw) = i. For u ∈ Xi, we require only that u precede
v, and there are λv|Xi| − 1 such vertices in Xi. For u ∈ Xi−1, the condition φ(uv) = i is equivalent to
λu + λv > 1, where λu is the fractional index of u ∈ Xi−1. The number of u ∈ Xi−1 with λu + λv > 1 is
|Xi−1|− ⌊(1 − λv)|Xi−1|⌋ or ⌈λv|Xi−1|⌉. It follows that the number of choices for u in a bad triple uvw with
u < v < w equals λv(|Xi−1|+ |Xi|) +O(1).

Similarly, the number of w ∈ Xi that follow v is (1−λv)|Xi| and the number of w ∈ Xi+1 with λv+λw ≤ 1
is ⌊(1− λv)|Xi+1|⌋. It follows that the number of choices for w in a bad triple uvw with u < v < w equals
(1− λv)(|Xi|+ |Xi+1|) +O(1).

Multiplying the number of choices for u and the number of choices for w gives a total of λv(1−λv)(|Xi−1|+
|Xi|)(|Xi| + |Xi+1|) + O(n) bad triples uvw with u < v < w. Suppose that Xi = {v1, . . . , vt}. Summing
over all v ∈ Xi, the total number of bad triples is O(n2) + (|Xi−1| + |Xi|)(|Xi| + |Xi+1|)

1
t2

∑t
j=1 j(t − j),

or O(n2) + (|Xi−1| + |Xi|)(|Xi|+ |Xi+1|)
1
t2

(

t+1
3

)

. Recalling that t = |Xi| = (b + o(1))n, the number of bad
triples uvw with u < v < w simplifies to O(n2) + (a+ b)(b+ c)b(16 + o(1))n3 and the lemma follows.

Lemma 11. If k is even, then f(n, k) ≥
(

1− 4
k(k+2) − o(1)

)

(

n
3

)

.

Proof. Suppose k is even, and let t = k/2. Let (Y1, . . . , Yt) and (Z1, . . . , Zt+1) be interval partitions of

V (K
→

(2)
n ) into parts of nearly equal size, and let (X1, . . . , Xk) be their common refinement. (Note that

(Y1, . . . , Yt) is the partition used in our construction with k − 1 labels, and (Z1, . . . , Zt+1) is the partition
used in our construction with k+ 1 labels.) For 1 ≤ j ≤ k, we set aj equal to the limit of |Xj |/n as n → ∞.
It is convenient to introduce X0 = Xk+1 = ∅ and a0 = ak+1 = 0. When divided by n to normalize, the
boundaries of (Y1, . . . , Yt) are

0
t ,

1
t , . . . ,

t
t , and the boundaries of (Z1, . . . , Zt+1) are

0
t+1 ,

1
t+1 , . . . ,

t+1
t+1 . In the

common refinement, the these boundaries interleave and are thus 0
t ,

1
t+1 ,

1
t ,

2
t+1 ,

2
t , . . . ,

t
t+1 ,

t
t . It follows that

for 0 ≤ j ≤ t, we have a2j =
(

j
t −

j
t+1

)

= j
t(t+1) , and for 0 ≤ j ≤ t, we have a2j+1 =

(

j+1
t+1 − j

t

)

= t−j
t(t+1) .

Let φ be the labeling described above. Since k is constant, by Lemma 10, the number of bad triples is
asymptotically

∑k
i=1 (ai−1 + ai) ai (ai + ai+1)

(

n
3

)

. Let A be this sum taken over even indices i, and let B
be the sum taken over odd indices i. We compute

A =
t

∑

j=1

(a2j−1 + a2j) a2j (a2j + a2j+1) ·

(

n

3

)

=

(

n

3

) t
∑

j=1

(t− (j − 1)) + j

t(t+ 1)
·

j

t(t+ 1)
·
j + (t− j)

t(t+ 1)

=

(

n

3

)

1

(t(t+ 1))
2

t
∑

j=1

j

=
1

2t(t+ 1)

(

n

3

)

The computation for B is symmetric and also gives B = 1
2t(t+1)

(

n
3

)

. Since the total number of bad triples is

asymptotic to A+B, we have f(n, k) ≥
(

1− 1
t(t+1) − o(1)

)

(

n
3

)

.
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Corollary 12. If s ≥ 2 and s is even, then ex
→
(n, P

(3)
s ) ≥

(

1− 4
(s−2)s + o(1)

)

(

n
3

)

.

We conjecture that these constructions are asymptotically optimal.

Conjecture 13. If a =
⌊

(k + 1)2/4
⌋

, then f(n, k) =
(

1− 1
a + o(1)

) (

n
3

)

. Equivalently, if b =
⌊

(s− 1)2/4
⌋

,

then ex
→
(n, P

(3)
s ) =

(

1− 1
b + o(1)

) (

n
3

)

.

Our goal in the remainder of this section is to show that if k is odd and φ is monotone, then φ has at

least
(

4
(k+1)2 − o(1)

)

(

n
3

)

bad triples. This shows that the construction in Proposition 8 is asymptotically

optimal within the class of monotone labelings. For an edge-labeling φ, let cost(φ) be the number of bad
triples.

We believe that there exists an optimal monotone labeling of K
→

(2)
n . It is at least true that when k ≥ 2, an

optimal [k]-edge-labeling φ of K
→

(2)
n does not contain a triple uvw with u < v < w, φ(uv) = k and φ(vw) = 1.

Indeed, if there is such a triple, then we may fix v and assume that u is the minimum vertex such that
φ(uv) = k and w is the maximum vertex such that φ(vw) = 1. Modify φ to obtain φ′ by setting φ′(uv) = 1
and φ′(vw) = k. We have cost(φ′) = cost(φ) + a− b, where a is the number of triples that are good in φ but
bad in φ′, and b is the number of triples that are bad in φ but good in φ′. We show that b > a, contradicting
that φ is optimal. By maximality of w, for each w′ with w′ > w, the triple uvw′ contributes to b. Similarly
by minimality of u, every triple u′vw with u′ < u also contributes to b. Also, the triple uvw itself contributes
to b. Therefore b ≥ (n − w) + (u − 1) + 1. Every triple contributing to a contains uv (and therefore has
the form u′uv for some u′ < u), or vw (and therefore has the form vww′ for some w′ > w). It follows that
a ≤ (u− 1) + (n− w) < (n− w) + (u − 1) + 1 ≤ b.

For a monotone [k]-edge-labeling φ of K
→ (2)

n define ΦL and ΦR as follows. We set ΦL(1) = 0 and ΦL(v) =
max{φ(uv) : u < v} for v > 1. We set ΦR(n) = k + 1 and ΦR(v) = min{φ(vw) : w > v} for v < n. Note
that by monotonicity of φ, if u < v, then ΦL(u) ≤ ΦR(u) ≤ φ(uv) ≤ ΦL(v) ≤ ΦR(v).

Using ΦL and ΦR, we construct two interval partitions of V (K
→ (2)

n ). For 0 ≤ i ≤ k + 1, let Xi = {v ∈

V (K
→

(2)
n ) : ΦL(v) = i} and let X̂i = {v ∈ V (K

→
(2)
n ) : ΦR(v) = i}. Note that X0 = {1}, X̂0 = ∅, Xk+1 = ∅,

and X̂k+1 = {n}. Since ΦL and ΦR inherit the monotonicity of φ, both (X0, . . . , Xk+1) and (X̂0, . . . , X̂k+1)

are interval partitions of V (K
→

(2)
n ). Our next lemma shows that these partitions are very similar.

Lemma 14. The symmetric difference of Xi and X̂i has size at most 2, and so ||Xi| − |X̂i|| ≤ 2.

Proof. Let u, v ∈ Xi with u < v. Since i = ΦL(u) ≤ ΦR(u) ≤ φ(uv) ≤ ΦL(v) = i it follows that ΦR(u) = i,
and so u ∈ X̂i. Therefore Xi − X̂i ⊆ {maxXi}. Similarly, X̂i −Xi ⊆ {min X̂i}.

A key step in our proof is the following bound on the sizes of the parts.

Lemma 15. Let φ be an monotone [k]-edge-labeling of K
→

(2)
n that minimizes the number of bad triples, and

define ΦL and (X0, . . . , Xk+1) as above. For 2 ≤ i ≤ k, we have |Xi|+ |Xi+1| ≤ |Xi−2|+ |Xi−1|+ 2.

Proof. First, suppose that Xi is nonempty. Let v = minXi and let u be the least vertex such that φ(uv) = i.
(Note that u exists since ΦL(v) = i > 0.) If it exists, let w be the least vertex in Xi+1 with φ(vw) = i + 1.
We say that an edge is long if its endpoints are in distinct non-consecutive parts in (X0, . . . , Xk+1).

Obtain φ′ from φ by reducing by 1 the labels on vw (if w exists), uv, all long edges u′u such that u′ < u
and φ(u′u) = i − 1, and all long edges v′v such that v′ < v and φ(v′v) = i. Note that φ′ is a monotone
labeling. We have cost(φ′) = cost(φ) + a− b, where a is the number of triples xyz with x < y < z which are
bad in φ′ and good in φ, and b is the number of triples xyz with x < y < z which are good in φ′ and bad in
φ. Note that if xyz is a triple with x < y < z and φ and φ′ agree on both xy and yz, then of course xyz
contributes to neither a nor b. Also, if φ and φ′ disagree on xy and yz, then also xyz does not contribute
to a or b since φ′(xy) = φ(xy) − 1 and φ′(yz) = φ(yz) − 1. So each triple xyz contributing to a or b has
one pair where φ and φ′ agree, and one pair where φ and φ′ disagree. Suppose that xyz contributes to a.
It follows that φ′(xy) = φ(xy) and φ′(yz) = φ(yz) − 1 = φ(xy). Note that yz is not a long edge u′u, since
φ(xu′) ≤ ΦL(u

′) ≤ ΦL(u) − 2 ≤ i − 3 and φ(u′u) = i − 1, implying that xu′u is still good in φ′. Similarly,
yz is not a long edge v′v. So yz ∈ {uv, vw}.
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If xyz = xuv, then φ(xu) = φ′(xu) = φ′(uv) = i− 1 and hence u ∈ Xi−1. It follows that x ∈ Xi−2∪Xi−1

since xu is not a long edge. So xyz = xuv implies that x < u and x ∈ Xi−2 ∪Xi−1.
If xyz = xvw, then φ(xv) = φ′(xv) = φ′(vw) = i. Since u is the minimum vertex with φ(uv) = i, we have

u ≤ x. Moreover, xyz 6= uvw since φ and φ′ both disagree on uv and vw. Hence u < x < v. Also, x ∈ Xi−1

since φ(xv) = φ′(xv), and so xv is not a long edge with label i. Combining both cases, the contributions
xyz to a arise from distinct x ∈ Xi−2 ∪Xi−1, and it follows that a ≤ |Xi−2|+ |Xi−1|.

It remains to show that b ≥ |Xi| + |Xi+1| − 2. Let z ∈ Xi ∪ Xi+1 such that z > v and z 6= w (if
w exists). Note that φ(vz) = φ′(vz), since vw is the only edge incident to the right of v where φ and φ′

disagree. If φ(vz) = i, then uvz contributes to b since φ(uv) = i but φ′(uv) = i − 1. If φ(vz) > i, then
i < φ(vz) ≤ ΦL(z) ≤ i+1 and so z ∈ Xi+1. Hence w exists and by minimality of w we have that w < z. Since
φ(vw) = i+1 and also i+1 = ΦL(w) ≤ φ(wz) ≤ ΦL(z) ≤ i+1, we have also φ(wz) = i+1. But φ′(vw) = i
and φ′(wz) = φ(wz) = i+ 1, and it follows that vwz contributes to b. Therefore b ≥ |Xi|+ |Xi+1| − 2.

Since φ minimizes the number of bad triples among monotone labelings, it follows that cost(φ′) ≥ cost(φ),
giving a ≥ b.

Finally, we consider the case that Xi = ∅. If Xi+1 = ∅ also, then the inequality holds trivially. Let
v = min{Xi+1}. Since ΦL(v) = i + 1, there is a vertex u such that u < v and φ(uv) = i + 1. Since
Xi = ∅, it follows that ΦL(u) ≤ i − 1, implying that uv is a long edge. Obtain φ′ from φ by reducing
φ(uv) by 1, and leaving all other labels the same. As before, we have cost(φ′) = cost(φ) + a − b, where
a is the number of triples xyz that are good in φ and bad in φ′, and b is the number of triples xyz that
are bad in φ and good in φ′. A contribution xyz to a requires that yz = uv and φ′(xu) = φ′(uv) = i, but
φ′(xu) = φ(xu) ≤ ΦL(xu) ≤ i − 1, and so a = 0. Also, if z > w and z ∈ Xi+1, then uvz contributes to b
since φ′(vz) = φ(vz) = i+ 1 and φ′(uv) = φ(uv)− 1 = i. It follows that b ≥ |Xi+1| − 1 and by optimality of
φ, we obtain 0 = a ≥ b ≥ |Xi+1| − 1, and the inequality follows.

Corollary 16. Let φ be a monotone [k]-edge-labeling of K
→

(2)
n that minimizes the number of bad triples, and

define ΦR and (X̂0, . . . , X̂k+1) as above. For 1 ≤ j ≤ k − 1, we have |X̂j−1|+ |X̂j | ≤ |X̂j+1|+ |X̂j+2|+ 2.

Proof. Obtain φ′ from φ by reversing the order of vertices in K
→

(2)
n and inverting the labels, so that φ′(uv) =

(k + 1) − φ(v∗u∗), where v∗ = (n + 1) − v and u∗ = (n + 1) − u. Note that φ′ is a monotone [k]-edge-
labeling with cost(φ′) = cost(φ). Moreover, defining Φ′

L with respect to φ′ and the corresponding partition

(X ′
0, . . . , X

′
k+1), we have that Φ′

L(u) = (k + 1) − ΦR(u
∗) where u∗ = (n + 1) − u and |X ′

i| = |X̂(k+1)−i|.
Applying Lemma 15 to φ′ with i = (k + 1)− j gives the result.

Theorem 17. Let φ be a monotone [k]-edge-labeling of K
→

(2)
n that minimizes the number of bad triples. If k

is odd, then cost(φ) ≥ (1− o(1)) 4
(k+1)2

(

n
3

)

.

Proof. Define ΦL, ΦR, (X0, . . . , Xk+1), and (X̂0, . . . , X̂k+1) as above, and let m = (k− 1)/2. For 0 ≤ ℓ ≤ m,
let aℓ = |X2ℓ| + |X2ℓ+1| and let âℓ = |X̂2ℓ| + |X̂2ℓ+1|. By Lemma 15 with i = 2ℓ, we have aℓ−1 ≥ aℓ − 2
for 1 ≤ ℓ ≤ m. It follows that a0 ≥ a1 − 2 ≥ · · · ≥ am − 2m = am − (k − 1). With two applications
of Lemma 14, we have a0 ≤ â0 + 4. By Corollary 16 with j = 2ℓ − 1, we have âℓ−1 ≤ âℓ + 2 for 1 ≤
ℓ ≤ m, and it follows that â0 ≤ â1 + 2 ≤ · · · ≤ âm + 2m = âm + (k − 1). Chaining the inequalities gives
−(k− 1)+am ≤ · · · ≤ a0 ≤ â0+4 ≤ · · · ≤ âm+k+3 ≤ am+k+7. It follows that −2ℓ+aℓ is in the interval
[am − (k − 1), am + (k + 7)], and so aℓ is in the interval [am − (k − 1), am + (k + 7) + 2ℓ]. Since 2ℓ ≤ k − 1,
we have |aℓ − am| ≤ 2k + 6 and so each pair in {a0, . . . , am} differs by at most 4k + 12. Since

∑m
ℓ=0 aℓ = n,

it follows that aℓ = n/(m+ 1) +O(k).

Similarly, for 0 ≤ ℓ ≤ m, let bℓ = |X2ℓ+1| + |X2ℓ+2| and b̂ℓ = |X̂2ℓ+1| + |X̂2ℓ+2|. By Lemma 15 with
i = 2ℓ+ 1, we have bℓ−1 ≥ bℓ − 2 for 1 ≤ ℓ ≤ m. It follows that b0 ≥ b1 − 2 ≥ · · · ≥ bm − (k − 1). Similarly,

b0 ≤ b̂0 + 4. Also, Corollary 16 with j = 2ℓ gives b̂ℓ−1 ≤ b̂ℓ +2 for 1 ≤ ℓ ≤ m. Therefore b̂0 ≤ b̂1 + 2 ≤ · · · ≤
b̂m+(k−1). Combining the inequalities gives −(k−1)+bm ≤ · · · ≤ b0 ≤ b̂0+4 ≤ b̂m+(k+3) ≤ bm+(k+7).
As above, bℓ and bℓ′ differ by at most 4k + 12. Again,

∑m
ℓ=0 bℓ = n, and so bℓ = n/(m+ 1) +O(k).

Let 0 ≤ ℓ ≤ m. We claim that X2ℓ and X2ℓ+2 differ in size by at most O(k). Indeed, both aℓ and bℓ equal
n/(m+ 1) + O(k), and so |aℓ − bℓ| ≤ O(k). Since aℓ = |X2ℓ|+ |X2ℓ+1| and bℓ = |X2ℓ+1|+ |X2ℓ+2|, we have
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that aℓ − bℓ = |X2ℓ| − |X2ℓ+2| and the claim follows. Therefore each pair of parts in {X0, X2, X4, . . . , Xk+1}
differs in size by at most O(k2). Since |Xk+1| = 0, it follows that each part with even index has size at
most O(k2). Since al = |X2ℓ| + |X2ℓ+1| = n/(m + 1) + O(k), it follows that each part with odd index
has size n/(m + 1) − O(k2). Since each triple uvw with u, v, w ∈ Xi satisfies φ(uv) = φ(vw) = i, the

number of bad triples in φ is at least
∑m

ℓ=0

(

|X2ℓ+1|
3

)

, and
∑m

ℓ=0

(

|X2ℓ+1|
3

)

≥ (m + 1)
(

(n/(m+1))−O(k2)
3

)

=

(1− o(1)) 1
(m+1)2

(

n
3

)

.

Let k be even, let φ be an optimal monotone [k]-edge-labeling ofK
→

(2)
n , and define the parts (X0, . . . , Xk+1)

as above. Similar arguments as in Theorem 17 can be used to obtain the sizes of the parts asymptotically,
and these match the sizes of the corresponding parts in our construction in Lemma 11. However, bounding
the number of bad triples in φ for even k is more complicated since consecutive parts Xi and Xi+1 are both
linear in n, making the triples with two vertices in one of {Xi, Xi+1} and one in the other significant.

References

[1] D. de Caen. Extension of a theorem of Moon and Moser on complete subgraphs. Ars Combin., 16:5–10,
1983. ISSN 0381-7032.
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[8] János Pach and Gábor Tardos. Forbidden paths and cycles in ordered graphs and matri-
ces. Israel J. Math., 155:359–380, 2006. ISSN 0021-2172. doi: 10.1007/BF02773960. URL
https://doi.org/10.1007/BF02773960.

[9] A. F. Sidorenko. Systems of sets that have the T -property. Vestnik Moskov. Univ. Ser. I Mat. Mekh.,
(5):19–22, 1981. ISSN 0201-7385.

10

https://doi.org/10.1016/0097-3165(87)90016-1
https://doi.org/10.1137/17M1160926
https://doi.org/10.19086/aic.12044
https://doi.org/10.4153/S0008414X20000632
https://doi.org/10.1016/j.ejc.2018.05.008
https://doi.org/10.1016/j.jcta.2019.01.006
https://doi.org/10.1007/BF02773960

	1 Introduction
	2 Exact Results for Short Paths
	3 Fractional Variants
	4 The case r=3

