Ordered Turán Numbers

John Bright
Jackson Porter
Kevin G. Milans (milans@math. wvu.edu)

West Virginia University
2023 Spring Central Sectional Meeting University of Cincinnati, Cincinnati, OH April 15, 2023

Ordered Hypergraphs

- An ordered hypergraph is a hypergraph G whose vertex set $V(G)$ is linearly ordered.

Ordered Hypergraphs

- An ordered hypergraph is a hypergraph G whose vertex set $V(G)$ is linearly ordered.

Ordered Hypergraphs

- An ordered hypergraph is a hypergraph G whose vertex set $V(G)$ is linearly ordered.

- $\vec{P}_{3}^{(2)}, \vec{K}_{1,2}^{(2)}$, and $\vec{K}_{2,1}^{(2)}$ are distinct as ordered (hyper)graphs.

Ordered Hypergraphs

- An ordered hypergraph is a hypergraph G whose vertex set $V(G)$ is linearly ordered.

- $\vec{P}_{3}^{(2)}, \vec{K}_{1,2}^{(2)}$, and $\vec{K}_{2,1}^{(2)}$ are distinct as ordered (hyper)graphs.
- If G and H are ordered hypergraphs, then $H \subseteq G$ means there is an order-respecting injection $f: V(H) \rightarrow V(G)$ such that $e \in E(H)$ implies $f(e) \in E(G)$.

Ordered Hypergraphs

- An ordered hypergraph is a hypergraph G whose vertex set $V(G)$ is linearly ordered.

$\vec{K}_{3,3}^{(2)}$
- $\vec{P}_{3}^{(2)}, \vec{K}_{1,2}^{(2)}$, and $\vec{K}_{2,1}^{(2)}$ are distinct as ordered (hyper)graphs.
- If G and H are ordered hypergraphs, then $H \subseteq G$ means there is an order-respecting injection $f: V(H) \rightarrow V(G)$ such that $e \in E(H)$ implies $f(e) \in E(G)$.
- Note: $\vec{K}_{1,2}^{(2)}, \vec{K}_{2,1}^{(2)} \subseteq \vec{K}_{3,3}^{(2)}$ but $\vec{P}_{3}^{(2)} \nsubseteq \vec{K}_{3,3}^{(2)}$.

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

- Fact: $\chi_{i}\left(\vec{P}_{s}^{(r)}\right)=\lceil s /(r-1)\rceil$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

- Fact: $\chi_{i}\left(\vec{P}_{s}^{(r)}\right)=\lceil s /(r-1)\rceil$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

- Fact: $\chi_{i}\left(\vec{P}_{s}^{(r)}\right)=\lceil s /(r-1)\rceil$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\vec{P}_{7}^{(3)}
$$

- Fact: $\chi_{i}\left(\vec{P}_{s}^{(r)}\right)=\lceil s /(r-1)\rceil$

Key Definitions

- For an ordered hypergraph H, the Turán number, denoted $\overrightarrow{\mathrm{ex}}(n, H)$, is $\max \{|E(G)|:|V(G)|=n$ and $H \nsubseteq G\}$.
- An ordered hypergraph H is r-interval-partite if $V(H)$ has an interval partition $X_{1}<\cdots<X_{r}$ such that each edge in H has one vertex in each part.
- The interval chromatic number of an ordered hypergraph H, denoted $\chi_{i}(H)$, is the minimum k so that $V(H)$ can be partitioned into k independent intervals.
- Natural tight paths $\vec{P}_{s}^{(r)}$:

$$
\begin{array}{llll}
X_{1} & X_{2} & X_{3} & X_{4}
\end{array}
$$

$$
\vec{P}_{7}^{(3)}
$$

- Fact: $\chi_{i}\left(\vec{P}_{s}^{(r)}\right)=\lceil s /(r-1)\rceil$

Prior work: graphs

- Thm (Janos-Pach 2006): if H is an ordered graph, then $\overrightarrow{\mathrm{ex}}(n, H)=\left(1-\frac{1}{\chi_{i}(H)-1}+o(1)\right)\binom{n}{2}$.

Prior work: graphs

- Thm (Janos-Pach 2006): if H is an ordered graph, then $\overrightarrow{\mathrm{ex}}(n, H)=\left(1-\frac{1}{\chi_{i}(H)-1}+o(1)\right)\binom{n}{2}$.
- This ordered analogue of Erdős-Stone gives $\overrightarrow{\mathrm{ex}}(n, H)$ asymptotically for each ordered graph H with $\chi_{i}(H)>2$.

Prior work: graphs

- Thm (Janos-Pach 2006): if H is an ordered graph, then $\overrightarrow{\mathrm{ex}}(n, H)=\left(1-\frac{1}{\chi_{i}(H)-1}+o(1)\right)\binom{n}{2}$.
- This ordered analogue of Erdős-Stone gives ex (n, H) asymptotically for each ordered graph H with $\chi_{i}(H)>2$.
- Conj (Janos-Pach 2006): if F is an ordered forest graph and $\chi_{i}(F)=2$, then $\overrightarrow{\mathrm{ex}}(n, F)=O(n \cdot \operatorname{polylog}(n))$.

Prior work: graphs

- Thm (Janos-Pach 2006): if H is an ordered graph, then $\overrightarrow{\mathrm{ex}}(n, H)=\left(1-\frac{1}{\chi_{i}(H)-1}+o(1)\right)\binom{n}{2}$.
- This ordered analogue of Erdős-Stone gives ex (n, H) asymptotically for each ordered graph H with $\chi_{i}(H)>2$.
- Conj (Janos-Pach 2006): if F is an ordered forest graph and $\chi_{i}(F)=2$, then $\overrightarrow{\mathrm{ex}}(n, F)=O(n \cdot \operatorname{polylog}(n))$.
- Thm (Korándi-Tardos-Tomon-Weidert 2019): if F is an ordered forest graph and $\chi_{i}(F)=2$, then $\operatorname{ex}(n, F)=n^{1+o(1)}$.

Prior work: graphs

- Thm (Janos-Pach 2006): if H is an ordered graph, then $\overrightarrow{\mathrm{ex}}(n, H)=\left(1-\frac{1}{\chi_{i}(H)-1}+o(1)\right)\binom{n}{2}$.
- This ordered analogue of Erdős-Stone gives $\overrightarrow{\mathrm{ex}}(n, H)$ asymptotically for each ordered graph H with $\chi_{i}(H)>2$.
- Conj (Janos-Pach 2006): if F is an ordered forest graph and $\chi_{i}(F)=2$, then $\overrightarrow{\mathrm{ex}}(n, F)=O(n \cdot \operatorname{polylog}(n))$.
- Thm (Korándi-Tardos-Tomon-Weidert 2019): if F is an ordered forest graph and $\chi_{i}(F)=2$, then $\operatorname{ex}(n, F)=n^{1+o(1)}$.
- Thm (Győri-Korándi-Methuku-Tomon-Tompkins-Vizer 2018): ex $\left(n, \mathcal{H}_{k}\right)=\Theta\left(n^{1+1 / k}\right)$, where \mathcal{H}_{k} is the family of ordered cycles H on at most $2 k$ vertices such that $\chi_{i}(H)=2$ and $E(H)$ contains two particular edges.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$.

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$:

- Thm (Füredi-Jiang-Kostochka-Mubayi-Verstraëte 2021):

$$
\overrightarrow{\mathrm{ex}}\left(n, \vec{Q}_{s}^{(r)}\right)= \begin{cases}\binom{n}{r}-\binom{n-(s-r)}{r} & \text { if } r \leq s \leq 2 r \\ \Theta\left(n^{r-1} \log n\right) & \text { if } s>2 r\end{cases}
$$

Prior work: hypergraphs

- Putting the vertices of a tight path in a different order gives an r-interval-partite hypergraph $\vec{Q}_{s}^{(r)}$.
- Ex: $\vec{Q}_{12}^{(3)}$:

- Thm (Füredi-Jiang-Kostochka-Mubayi-Verstraëte 2021):

$$
\overrightarrow{\mathrm{ex}}\left(n, \vec{Q}_{s}^{(r)}\right)= \begin{cases}\binom{n}{r}-\binom{n-(s-r)}{r} & \text { if } r \leq s \leq 2 r \\ \Theta\left(n^{r-1} \log n\right) & \text { if } s>2 r\end{cases}
$$

- Conj (FJKMV 2021): If H is an r-interval-partite ordered forest, then $\overrightarrow{\mathrm{ex}}(n, H)=O\left(n^{r-1} \cdot \operatorname{polylog}(n)\right)$.

Transversals and Packings

- Complementary transversal numbers for r-uniform H :

$$
\begin{aligned}
\vec{\tau}(n, H)=\min \{|E(G)|: & G \subseteq \vec{K}_{n}^{(r)} \text { and every copy of } \\
& \left.H \text { in } \vec{K}_{n}^{(r)} \text { has an edge in } G\right\}
\end{aligned}
$$

Transversals and Packings

- Complementary transversal numbers for r-uniform H :

$$
\begin{aligned}
\vec{\tau}(n, H)=\min \{|E(G)|: & G \subseteq \vec{K}_{n}^{(r)} \text { and every copy of } \\
& \left.H \text { in } \vec{K}_{n}^{(r)} \text { has an edge in } G\right\}
\end{aligned}
$$

- Always $\overrightarrow{\mathrm{ex}}(n, H)+\vec{\tau}(n, H)=\binom{n}{r}$.

Transversals and Packings

- Complementary transversal numbers for r-uniform H :

$$
\begin{aligned}
\vec{\tau}(n, H)=\min \{|E(G)|: & G \subseteq \vec{K}_{n}^{(r)} \text { and every copy of } \\
& \left.H \text { in } \vec{K}_{n}^{(r)} \text { has an edge in } G\right\}
\end{aligned}
$$

- Always $\overrightarrow{\mathrm{ex}}(n, H)+\vec{\tau}(n, H)=\binom{n}{r}$.
- Dual packing numbers for r-uniform hypergraph H :
$\vec{\nu}(n, H)=\max \{|\mathcal{H}|: \mathcal{H}$ is an edge-disjoint family of copies of H in $\left.\vec{K}_{n}^{(r)}\right\}$

Transversals and Packings

- Complementary transversal numbers for r-uniform H :

$$
\begin{aligned}
\vec{\tau}(n, H)=\min \{|E(G)|: & G \subseteq \vec{K}_{n}^{(r)} \text { and every copy of } \\
& \left.H \text { in } \vec{K}_{n}^{(r)} \text { has an edge in } G\right\}
\end{aligned}
$$

- Always $\overrightarrow{\mathrm{ex}}(n, H)+\vec{\tau}(n, H)=\binom{n}{r}$.
- Dual packing numbers for r-uniform hypergraph H :

$$
\begin{aligned}
\vec{\nu}(n, H)=\max \{|\mathcal{H}|: & \mathcal{H} \text { is an edge-disjoint family } \\
& \text { of copies of } \left.H \text { in } \vec{K}_{n}^{(r)}\right\}
\end{aligned}
$$

- Always $\vec{\nu}(n, H) \leq \vec{\tau}(n, H)$.

Main Result

- For even n, let $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}$.

Main Result

- For even n, let $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}$.
- We have $h(n, t, m)=\left(\frac{1}{2^{m}}+o(1)\right)\binom{n}{t}$ if $t \geq m$ and $h(n, t, m)=0$ otherwise.

Main Result

- For even n, let $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}$.
- We have $h(n, t, m)=\left(\frac{1}{2^{m}}+o(1)\right)\binom{n}{t}$ if $t \geq m$ and $h(n, t, m)=0$ otherwise.

Theorem

Let n be even, let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let $\overrightarrow{L P}_{s}^{(r)}$ be the loose path obtained from $\vec{P}_{s}^{(r)}$ by removing all except the first and last edges. Let $\alpha=2 h(n, r, m)+h(n, r-1, m)$. We have

Main Result

- For even n, let $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}$.
- We have $h(n, t, m)=\left(\frac{1}{2^{m}}+o(1)\right)\binom{n}{t}$ if $t \geq m$ and $h(n, t, m)=0$ otherwise.

Theorem

Let n be even, let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let $\overrightarrow{L P}_{s}^{(r)}$ be the loose path obtained from $\vec{P}_{s}^{(r)}$ by removing all except the first and last edges. Let $\alpha=2 h(n, r, m)+h(n, r-1, m)$. We have

$$
\alpha \leq \vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \leq \vec{\nu}\left(n, \overrightarrow{L P}_{s}^{(r)}\right), \vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right) \leq \vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq \alpha .
$$

Main Result

- For even n, let $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}$.
- We have $h(n, t, m)=\left(\frac{1}{2^{m}}+o(1)\right)\binom{n}{t}$ if $t \geq m$ and $h(n, t, m)=0$ otherwise.

Theorem

Let n be even, let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let $\overrightarrow{L P}_{s}^{(r)}$ be the loose path obtained from $\vec{P}_{s}^{(r)}$ by removing all except the first and last edges. Let $\alpha=2 h(n, r, m)+h(n, r-1, m)$. We have

$$
\alpha \leq \vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \leq \vec{\nu}\left(n, \overrightarrow{L P}_{s}^{(r)}\right), \vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right) \leq \vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq \alpha
$$

Therefore

$$
\overrightarrow{\mathrm{ex}}\left(n, \overrightarrow{L P}(r)=\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{s}^{(r)}\right)=\binom{n}{r}-\alpha=\left(1-\frac{1}{2^{s-r}}+o(1)\right)\binom{n}{r} .\right.
$$

Main Result

- For even n, let $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}$.
- We have $h(n, t, m)=\left(\frac{1}{2^{m}}+o(1)\right)\binom{n}{t}$ if $t \geq m$ and $h(n, t, m)=0$ otherwise.

Theorem

Let n be even, let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let $\overrightarrow{L P}_{s}^{(r)}$ be the loose path obtained from $\vec{P}_{s}^{(r)}$ by removing all except the first and last edges. Let $\alpha=2 h(n, r, m)+h(n, r-1, m)$. We have

$$
\alpha \leq \vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \leq \vec{\nu}\left(n, \overrightarrow{L P}_{s}^{(r)}\right), \vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right) \leq \vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq \alpha
$$

Therefore

$$
\overrightarrow{\mathrm{ex}}\left(n, \overrightarrow{L P}(r)=\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{s}^{(r)}\right)=\binom{n}{r}-\alpha=\left(1-\frac{1}{2^{s-r}}+o(1)\right)\binom{n}{r} .\right.
$$

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.
- The reflection of $u \in V\left(\vec{K}_{n}^{(r)}\right)$ is $(n+1)-u$.

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.
- The reflection of $u \in V\left(\vec{K}_{n}^{(r)}\right)$ is $(n+1)-u$.
- A set of vertices S is m-left-biased if there is an interval partition $X<Y<Z$ with $|X|=|Z|$ such that $|S \cap X|=m$ and $|S \cap Z|=0$.

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.
- The reflection of $u \in V\left(\vec{K}_{n}^{(r)}\right)$ is $(n+1)-u$.
- A set of vertices S is m-left-biased if there is an interval partition $X<Y<Z$ with $|X|=|Z|$ such that $|S \cap X|=m$ and $|S \cap Z|=0$.
- Ex: S

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.
- The reflection of $u \in V\left(\vec{K}_{n}^{(r)}\right)$ is $(n+1)-u$.
- A set of vertices S is m-left-biased if there is an interval partition $X<Y<Z$ with $|X|=|Z|$ such that $|S \cap X|=m$ and $|S \cap Z|=0$.
- Ex: S is 3-left-biased...

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.
- The reflection of $u \in V\left(\vec{K}_{n}^{(r)}\right)$ is $(n+1)-u$.
- A set of vertices S is m-left-biased if there is an interval partition $X<Y<Z$ with $|X|=|Z|$ such that $|S \cap X|=m$ and $|S \cap Z|=0$.
- Ex: S is 3-left-biased... but not 4-left-biased.

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.
- The reflection of $u \in V\left(\vec{K}_{n}^{(r)}\right)$ is $(n+1)-u$.
- A set of vertices S is m-left-biased if there is an interval partition $X<Y<Z$ with $|X|=|Z|$ such that $|S \cap X|=m$ and $|S \cap Z|=0$.
- Ex: S is 3 -left-biased... but not 4-left-biased.

- Fact: the number of t-sets that are m-left-biased is $h(n, t, m)$, where $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}=\left(\frac{1}{2^{m}}+o(1)\right)\binom{n}{t}$.

Details

- Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]=\{1, \ldots, n\}$.
- The reflection of $u \in V\left(\vec{K}_{n}^{(r)}\right)$ is $(n+1)-u$.
- A set of vertices S is m-left-biased if there is an interval partition $X<Y<Z$ with $|X|=|Z|$ such that $|S \cap X|=m$ and $|S \cap Z|=0$.
- Ex: S is 3-left-biased... but not 4-left-biased.

- Fact: the number of t-sets that are m-left-biased is $h(n, t, m)$, where $h(n, t, m)=\sum_{k=m}^{n / 2}\binom{k-1}{m-1}\binom{n-2 k}{t-m}=\left(\frac{1}{2^{m}}+o(1)\right)\binom{n}{t}$.
- Define m-right-biased in the natural way. A set is m-biased if it is m-left-biased or m-right-biased.

Loose path transversals

$$
\text { -•••••••••••••• }(r, s, m)=(4,6,3)
$$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Loose path transversals

$$
\cdots \cdots \cdots \cdots(r, s, m)=(4,6,3)
$$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $r \leq s \leq 2 r-1$ implies $1 \leq m \leq r$. Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]$.

Loose path transversals

$$
(r, s, m)=(4,6,3)
$$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, L \vec{P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $r \leq s \leq 2 r-1$ implies $1 \leq m \leq r$. Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]$.
- E_{1} : the family of m-biased r-sets. Note $\left|E_{1}\right|=2 h(n, r, m)$.

Loose path transversals

$$
(r, s, m)=(4,6,3)
$$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $r \leq s \leq 2 r-1$ implies $1 \leq m \leq r$. Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]$.
- E_{1} : the family of m-biased r-sets. Note $\left|E_{1}\right|=2 h(n, r, m)$.
- E_{2} : the family of r-sets whose m th point and last point are reflections of each other.

Loose path transversals

$$
(r, s, m)=(4,6,3)
$$

Theorem

Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $r \leq s \leq 2 r-1$ implies $1 \leq m \leq r$. Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]$.
- E_{1} : the family of m-biased r-sets. Note $\left|E_{1}\right|=2 h(n, r, m)$.
- E_{2} : the family of r-sets whose m th point and last point are reflections of each other.
- Removing the last vertex from $e \in E_{2}$ gives a bijection to the m-left-biased ($r-1$)-sets, and so $\left|E_{2}\right|=h(n, r-1, m)$.

Loose path transversals

$$
\text { -••••••••••••••• }(r, s, m)=(4,6,3)
$$

Theorem

Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $r \leq s \leq 2 r-1$ implies $1 \leq m \leq r$. Take $V\left(\vec{K}_{n}^{(r)}\right)=[n]$.
- E_{1} : the family of m-biased r-sets. Note $\left|E_{1}\right|=2 h(n, r, m)$.
- E_{2} : the family of r-sets whose m th point and last point are reflections of each other.
- Removing the last vertex from $e \in E_{2}$ gives a bijection to the m-left-biased ($r-1$)-sets, and so $\left|E_{2}\right|=h(n, r-1, m)$.
- Let $G \subseteq \vec{K}_{n}^{(r)}$ such that $E(G)=E_{1} \cup E_{2}$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.

Loose path transversals

$$
\mid \cdots \cdot 0 \cdot 0 \cdot \cdots 00 \cdot \infty \quad(r, s, m)=(4,6,3)
$$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.

Loose path transversals

$\cdots \cdots 0 \cdot 0 \cdot 1 \cdot 0 \quad(r, s, m)=(4,6,3)$
Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\overrightarrow{L P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, L \vec{P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Let Q be a copy of $\vec{P}_{s}^{(r)}$ in $\vec{K}_{s}^{(r)}$, and let $S=V(Q)$.
- Choose $X<Y<Z$ to min. $|X|$ subj. to $|X|=|Z|$ and $\max \{|X \cap S|,|Z \cap S|\}=m$.
- Such a partition exists as otherwise $s \leq 2(m-1)=2(s-r)$ and so $s \geq 2 r$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

$$
(r, s, m)=(4,6,3)
$$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{P P}_{s}^{(r)}\right)$.

Loose path transversals

$\cdots 0 \cdots 0 \cdots(r, s, m)=(4,6,3)$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{P P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

$\cdots \bigcirc \cdots \cdots \cdots(r, s, m)=(4,6,3)$
Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{P P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{P P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{P P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

$\cdots 0 \bullet$ ••••••• $(r, s, m)=(4,6,3)$
Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Loose path transversals

-

$$
(r, s, m)=(4,6,3)
$$

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\tau}\left(n, \overrightarrow{L P}_{s}^{(r)}\right) \leq 2 h(n, r, m)+h(n, r-1, m)$.

Proof.

- Note $s=r+(m-1)$.
- If $|X \cap S| \leq m-1$, then discarding the first $m-1$ vertices in S leaves an m-right-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- If $|Z \cap S| \leq m-1$, then discarding the last $m-1$ vertices in S leaves an m-left-biased r-set $e \in E_{1} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.
- Otherwise $|X \cap S|=|Z \cap S|=m$ and discarding the last $m-1$ vertices in S leaves an r-set $e \in E_{2} \cap E\left(\overrightarrow{L P}_{s}^{(r)}\right)$.

Tight path packings

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \geq 2 h(n, r, m)+h(n, r-1, m)$.

Tight path packings

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \geq 2 h(n, r, m)+h(n, r-1, m)$.

- Start with the transversal graph $G \subseteq \vec{K}_{n}^{(r)}$.

Tight path packings

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \geq 2 h(n, r, m)+h(n, r-1, m)$.

- Start with the transversal graph $G \subseteq \vec{K}_{n}^{(r)}$.
- For each $e \in E(G)$, construct a copy Q_{e} of $\vec{P}_{s}^{(r)}$.

Tight path packings

Theorem
Let $r \leq s \leq 2 r-1$, let $m=s-r+1$, and let n be even. We have $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \geq 2 h(n, r, m)+h(n, r-1, m)$.

- Start with the transversal graph $G \subseteq \vec{K}_{n}^{(r)}$.
- For each $e \in E(G)$, construct a copy Q_{e} of $\vec{P}_{s}^{(r)}$.
- Show that $\left\{Q_{e}: e \in E(G)\right\}$ is edge-disjoint.

Fractional Variants

Frac. H packing $\vec{\nu}^{*}(n, H)$:
max:

$$
\begin{gathered}
\sum_{H \subseteq \vec{K}_{n}^{(r)}} y_{H} \\
\sum_{H: e \in E(H)} y_{H} \leq 1
\end{gathered}
$$

subj to: $\forall e$

Fractional Variants

Frac. H packing $\vec{\nu}^{*}(n, H)$: max:
subj to: $\forall e$

$$
\begin{gathered}
\sum_{H \subseteq \vec{K}_{n}^{(r)}} y_{H} \\
\sum_{H: e \in E(H)} y_{H} \leq 1
\end{gathered}
$$

Frac. H transversal $\vec{\tau}^{*}(n, H)$:
min:

Fractional Variants

Frac. H packing $\vec{\nu}^{*}(n, H)$:
max:

$$
\begin{gathered}
\sum_{H \subseteq \vec{K}_{n}^{(r)}} y_{H} \\
\sum_{H: e \in E(H)} y_{H} \leq 1
\end{gathered}
$$

subj to: $\forall e$

Frac. H transversal $\vec{\tau}^{*}(n, H)$:

$$
\begin{aligned}
& \min : \\
& \text { subj to: } \forall H
\end{aligned}
$$

- $\vec{\nu}(n, H) \leq \vec{\nu}^{*}(n, H)=\vec{\tau}^{*}(n, H) \leq \vec{\tau}(n, H)$

Fractional Variants

Frac. H packing $\vec{\nu}^{*}(n, H)$:
max:

$$
\begin{gathered}
\sum_{H \subseteq \vec{K}_{n}^{(r)}} y_{H} \\
\sum_{H: e \in E(H)} y_{H} \leq 1
\end{gathered}
$$

Frac. H transversal $\vec{\tau}^{*}(n, H)$:
$\begin{array}{lc}\text { min: } & \sum_{e \in E\left(\vec{K}_{n}^{(r)}\right)} x_{e} \\ \text { subj to: } \forall H & \sum_{e \in E(H)} x_{e} \geq 1\end{array}$
$e \in E\left(\vec{K}_{n}^{(r)}\right)$
$\sum_{e \in E(H)} x_{e} \geq 1$

- $\vec{\nu}(n, H) \leq \vec{\nu}^{*}(n, H)=\vec{\tau}^{*}(n, H) \leq \vec{\tau}(n, H)$
- If $r \mid s$, then $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \sim \vec{\tau}^{*}\left(n, \vec{P}_{s}^{(r)}\right)=\left(\left(\frac{r}{s}\right)^{r}+o(1)\right)\binom{n}{r}$.

Fractional Variants

Frac. H packing $\vec{\nu}^{*}(n, H)$:
max:

$$
\begin{gathered}
\sum_{H \subseteq \vec{K}_{n}^{(r)}} y_{H} \\
\sum_{H: e \in E(H)} y_{H} \leq 1
\end{gathered}
$$

Frac. H transversal $\vec{\tau}^{*}(n, H)$:
\min :

- $\vec{\nu}(n, H) \leq \vec{\nu}^{*}(n, H)=\vec{\tau}^{*}(n, H) \leq \vec{\tau}(n, H)$
- If $r \mid s$, then $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \sim \vec{\tau}^{*}\left(n, \vec{P}_{s}^{(r)}\right)=\left(\left(\frac{r}{s}\right)^{r}+o(1)\right)\binom{n}{r}$.
- de Caen:

$$
\vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right) \geq \vec{\tau}\left(n, \vec{K}_{s}^{(r)}\right)=\tau\left(n, K_{s}^{(r)}\right) \geq\left(\frac{1}{\binom{s-1}{r-1}}+o(1)\right)\binom{n}{r} .
$$

Fractional Variants

Frac. H packing $\vec{\nu}^{*}(n, H)$:
max:

$$
\begin{gathered}
\sum_{H \subseteq \vec{K}_{n}^{(r)}} y_{H} \\
\sum_{H: e \in E(H)} y_{H} \leq 1
\end{gathered}
$$

Frac. H transversal $\vec{\tau}^{*}(n, H)$:
\min :
$\sum_{e \in E\left(\vec{K}_{n}^{(r)}\right)} x_{e}$
$\sum_{e \in E(H)} x_{e} \geq 1$

- $\vec{\nu}(n, H) \leq \vec{\nu}^{*}(n, H)=\vec{\tau}^{*}(n, H) \leq \vec{\tau}(n, H)$
- If $r \mid s$, then $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \sim \vec{\tau}^{*}\left(n, \vec{P}_{s}^{(r)}\right)=\left(\left(\frac{r}{s}\right)^{r}+o(1)\right)\binom{n}{r}$.
- de Caen:

$$
\vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right) \geq \vec{\tau}\left(n, \vec{K}_{s}^{(r)}\right)=\tau\left(n, K_{s}^{(r)}\right) \geq\left(\frac{1}{\binom{s-1}{r-1}}+o(1)\right)\binom{n}{r} .
$$

- If $r \mid s$ and s is large, then $\lim _{n \rightarrow \infty} \frac{\vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right)}{\vec{\tau}^{*}\left(n, \vec{P}_{s}^{(r)}\right)}>1$.

Fractional Variants

Frac. H packing $\vec{\nu}^{*}(n, H)$:
max:

$$
\begin{gathered}
\sum_{H \subseteq \vec{K}_{n}^{(r)}} y_{H} \\
\sum_{H:} y_{H} \leq 1
\end{gathered}
$$

Frac. H transversal $\vec{\tau}^{*}(n, H)$:
\min :

- $\vec{\nu}(n, H) \leq \vec{\nu}^{*}(n, H)=\vec{\tau}^{*}(n, H) \leq \vec{\tau}(n, H)$
- If $r \mid s$, then $\vec{\nu}\left(n, \vec{P}_{s}^{(r)}\right) \sim \vec{\tau}^{*}\left(n, \vec{P}_{s}^{(r)}\right)=\left(\left(\frac{r}{s}\right)^{r}+o(1)\right)\binom{n}{r}$.
- de Caen:

$$
\vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right) \geq \vec{\tau}\left(n, \vec{K}_{s}^{(r)}\right)=\tau\left(n, K_{s}^{(r)}\right) \geq\left(\frac{1}{\binom{s-1}{r-1}}+o(1)\right)\binom{n}{r} .
$$

- If $r \mid s$ and s is large, then $\lim _{n \rightarrow \infty} \frac{\vec{\tau}\left(n, \vec{P}_{s}^{(r)}\right)}{\vec{\tau}^{*}\left(n, \vec{P}_{s}^{(r)}\right)}>1$.
- We need a new approach for large s, probably even $s=2 r$.

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.
- The case $r=3$ is equivalent to a graph optimization problem.

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.
- The case $r=3$ is equivalent to a graph optimization problem.
- Given a maximal $H \subseteq \vec{K}_{n}^{(3)}$ with $\vec{P}_{s}^{(3)} \nsubseteq H$:

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.
- The case $r=3$ is equivalent to a graph optimization problem.
- Given a maximal $H \subseteq \vec{K}_{n}^{(3)}$ with $\vec{P}_{s}^{(3)} \nsubseteq H$:
- Make an edge-labeling G of $\vec{K}_{n}^{(2)}$ such that $\ell(u v)$ equals the max. size of a tight path in H ending with u and v.

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.
- The case $r=3$ is equivalent to a graph optimization problem.
- Given a maximal $H \subseteq \vec{K}_{n}^{(3)}$ with $\vec{P}_{s}^{(3)} \nsubseteq H$:
- Make an edge-labeling G of $\vec{K}_{n}^{(2)}$ such that $\ell(u v)$ equals the max. size of a tight path in H ending with u and v.
- $\vec{P}_{s}^{(3)} \nsubseteq H$ implies G is a $\{2, \ldots, s-1\}$-edge-labeling of $\vec{K}_{n}^{(2)}$.

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.
- The case $r=3$ is equivalent to a graph optimization problem.
- Given a maximal $H \subseteq \vec{K}_{n}^{(3)}$ with $\vec{P}_{s}^{(3)} \nsubseteq H$:
- Make an edge-labeling G of $\vec{K}_{n}^{(2)}$ such that $\ell(u v)$ equals the max. size of a tight path in H ending with u and v.
- $\vec{P}_{s}^{(3)} \nsubseteq H$ implies G is a $\{2, \ldots, s-1\}$-edge-labeling of $\vec{K}_{n}^{(2)}$.
- $|E(H)|$ is the num. of triples $u<v<w$ with $\ell(u v)<\ell(v w)$

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.
- The case $r=3$ is equivalent to a graph optimization problem.
- Given a maximal $H \subseteq \vec{K}_{n}^{(3)}$ with $\vec{P}_{s}^{(3)} \nsubseteq H$:
- Make an edge-labeling G of $\vec{K}_{n}^{(2)}$ such that $\ell(u v)$ equals the max. size of a tight path in H ending with u and v.
- $\vec{P}_{s}^{(3)} \nsubseteq H$ implies G is a $\{2, \ldots, s-1\}$-edge-labeling of $\vec{K}_{n}^{(2)}$.
- $|E(H)|$ is the num. of triples $u<v<w$ with $\ell(u v)<\ell(v w)$
- Let $f_{k}(n)$ be the max., over all [k]-edge-labelings of $\vec{K}_{n}^{(2)}$, of the number of triples $u<v<w$ with $\ell(u v)<\ell(v w)$.

The case $r=3$

- Thm: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \leq\left(\frac{1}{\left\lfloor\frac{(s-1)^{2}}{4}\right\rfloor}+o(1)\right)\binom{n}{3}$
- de Caen bound: $\vec{\tau}\left(n, \vec{P}_{s}^{(3)}\right) \geq\left(\frac{2}{(s-1)(s-2)}+o(1)\right)\binom{n}{3}$.
- Conj: upper bound is correct.
- The case $r=3$ is equivalent to a graph optimization problem.
- Given a maximal $H \subseteq \vec{K}_{n}^{(3)}$ with $\vec{P}_{s}^{(3)} \nsubseteq H$:
- Make an edge-labeling G of $\vec{K}_{n}^{(2)}$ such that $\ell(u v)$ equals the max. size of a tight path in H ending with u and v.
- $\vec{P}_{s}^{(3)} \nsubseteq H$ implies G is a $\{2, \ldots, s-1\}$-edge-labeling of $\vec{K}_{n}^{(2)}$.
- $|E(H)|$ is the num. of triples $u<v<w$ with $\ell(u v)<\ell(v w)$
- Let $f_{k}(n)$ be the max., over all [k]-edge-labelings of $\vec{K}_{n}^{(2)}$, of the number of triples $u<v<w$ with $\ell(u v)<\ell(v w)$.
- Prop: $\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{s}^{(3)}\right)=f_{s-2}(n)$

Increasing Triple Optimization

- Let $f_{k}(n)$ be the max., over all [k]-edge-labelings of $\vec{K}_{n}^{(2)}$, of the number of triples $u<v<w$ with $\ell(u v)<\ell(v w)$.

Increasing Triple Optimization

- Let $f_{k}(n)$ be the max., over all [k]-edge-labelings of $\vec{K}_{n}^{(2)}$, of the number of triples $u<v<w$ with $\ell(u v)<\ell(v w)$.
- Prop: $\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{s}^{(3)}\right)=f_{s-2}(n)$.

Increasing Triple Optimization

- Let $f_{k}(n)$ be the max., over all [k]-edge-labelings of $\vec{K}_{n}^{(2)}$, of the number of triples $u<v<w$ with $\ell(u v)<\ell(v w)$.
- Prop: $\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{s}^{(3)}\right)=f_{s-2}(n)$.
- First open case is $\vec{P}_{6}^{(3)}$, with 4 edge labels.

Increasing Triple Optimization

- Let $f_{k}(n)$ be the max., over all [k]-edge-labelings of $\vec{K}_{n}^{(2)}$, of the number of triples $u<v<w$ with $\ell(u v)<\ell(v w)$.
- Prop: $\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{s}^{(3)}\right)=f_{s-2}(n)$.
- First open case is $\vec{P}_{6}^{(3)}$, with 4 edge labels.
- Conjecture: $f_{4}(n)=\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{6}^{(3)}\right)=\left(\frac{5}{6}+o(1)\right)\binom{n}{3}$

Increasing Triple Optimization

- Let $f_{k}(n)$ be the max., over all [k]-edge-labelings of $\vec{K}_{n}^{(2)}$, of the number of triples $u<v<w$ with $\ell(u v)<\ell(v w)$.
- Prop: $\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{s}^{(3)}\right)=f_{s-2}(n)$.
- First open case is $\vec{P}_{6}^{(3)}$, with 4 edge labels.
- Conjecture: $f_{4}(n)=\overrightarrow{\mathrm{ex}}\left(n, \vec{P}_{6}^{(3)}\right)=\left(\frac{5}{6}+o(1)\right)\binom{n}{3}$

Thank You.

