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Ordered Hypergraphs

▶ An ordered hypergraph is a hypergraph G whose vertex set
V (G ) is linearly ordered.

P
→ (2)
3 K

→ (2)
1,2 K

→ (2)
2,1

K
→ (2)
3,3

▶ P
→ (2)
3 , K

→ (2)
1,2, and K

→ (2)
2,1 are distinct as ordered (hyper)graphs.

▶ If G and H are ordered hypergraphs, then H ⊆ G means there
is an order-respecting injection f : V (H) → V (G ) such that
e ∈ E (H) implies f (e) ∈ E (G ).

▶ Note: K
→ (2)
1,2,K

→ (2)
2,1 ⊆ K

→ (2)
3,3 but P

→ (2)
3 ̸⊆ K

→ (2)
3,3.
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Key Definitions

▶ For an ordered hypergraph H, the Turán number, denoted
ex→ (n,H), is max{|E (G )| : |V (G )| = n and H ̸⊆ G}.

▶ An ordered hypergraph H is r -interval-partite if V (H) has an
interval partition X1 < · · · < Xr such that each edge in H has
one vertex in each part.

▶ The interval chromatic number of an ordered hypergraph H,
denoted χi (H), is the minimum k so that V (H) can be
partitioned into k independent intervals.

▶ Natural tight paths P
→ (r)
s :

P
→ (3)
7

X1 X2 X3 X4

▶ Fact: χi (P
→ (r)
s ) = ⌈s/(r − 1)⌉
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Prior work: graphs

▶ Thm (Janos–Pach 2006): if H is an ordered graph, then

ex→ (n,H) =
(
1− 1

χi (H)−1 + o(1)
) (n

2

)
.

▶ This ordered analogue of Erdős–Stone gives ex→ (n,H)
asymptotically for each ordered graph H with χi (H) > 2.

▶ Conj (Janos–Pach 2006): if F is an ordered forest graph and
χi (F ) = 2, then ex→ (n,F ) = O(n · polylog(n)).

▶ Thm (Korándi–Tardos–Tomon–Weidert 2019): if F is an
ordered forest graph and χi (F ) = 2, then ex(n,F ) = n1+o(1).

▶ Thm (Győri–Korándi–Methuku–Tomon–Tompkins–Vizer
2018): ex(n,Hk) = Θ(n1+1/k), where Hk is the family of
ordered cycles H on at most 2k vertices such that χi (H) = 2
and E (H) contains two particular edges.
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Prior work: hypergraphs
▶ Putting the vertices of a tight path in a different order gives

an r -interval-partite hypergraph Q
→ (r)
s .

▶ Ex: Q
→ (3)
12 :

X1

X2

X3

X1 X2 X3

▶ Thm (Füredi–Jiang–Kostochka–Mubayi–Verstraëte 2021):

ex→ (n,Q
→ (r)
s ) =

{(n
r

)
−
(n−(s−r)

r

)
if r ≤ s ≤ 2r

Θ(nr−1 log n) if s > 2r

▶ Conj (FJKMV 2021): If H is an r -interval-partite ordered
forest, then ex→ (n,H) = O(nr−1 · polylog(n)).
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▶ Thm (Füredi–Jiang–Kostochka–Mubayi–Verstraëte 2021):
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Transversals and Packings

▶ Complementary transversal numbers for r -uniform H:

τ
→
(n,H) = min{|E (G )| : G ⊆ K

→ (r)
n and every copy of

H in K
→ (r)
n has an edge in G}

▶ Always ex→ (n,H) + τ
→
(n,H) =

(n
r

)
.

▶ Dual packing numbers for r -uniform hypergraph H:

ν
→
(n,H) = max{|H| : H is an edge-disjoint family

of copies of H in K
→ (r)
n }

▶ Always ν
→
(n,H) ≤ τ

→
(n,H).
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Main Result

▶ For even n, let h(n, t,m) =
∑n/2

k=m

(k−1
m−1

)(n−2k
t−m

)
.

▶ We have h(n, t,m) =
(

1
2m + o(1)

) (n
t

)
if t ≥ m and

h(n, t,m) = 0 otherwise.

Theorem
Let n be even, let r ≤ s ≤ 2r − 1, let m = s − r + 1, and let LP

→ (r)
s

be the loose path obtained from P
→ (r)
s by removing all except the

first and last edges. Let α = 2h(n, r ,m) + h(n, r − 1,m). We have

Therefore

ex→ (n, LP
→ (r)

s ) = ex→ (n,P
→ (r)
s ) =

(n
r

)
− α =

(
1− 1

2s−r + o(1)
) (n

r

)
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Details

▶ Take V (K
→ (r)
n ) = [n] = {1, . . . , n}.

▶ The reflection of u ∈ V (K
→ (r)
n ) is (n + 1)− u.

▶ A set of vertices S is m-left-biased if there is an interval
partition X < Y < Z with |X | = |Z | such that |S ∩ X | = m
and |S ∩ Z | = 0.

▶ Ex: S

is 3-left-biased... but not 4-left-biased.

▶ Fact: the number of t-sets that are m-left-biased is h(n, t,m),

where h(n, t,m) =
∑n/2

k=m

(k−1
m−1

)(n−2k
t−m

)
= ( 1

2m + o(1))
(n
t

)
.

▶ Define m-right-biased in the natural way. A set is m-biased if
it is m-left-biased or m-right-biased.
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Loose path transversals

(r , s,m) = (4, 6, 3)

Theorem
Let r ≤ s ≤ 2r − 1, let m = s − r + 1, and let n be even. We have
τ
→
(n, LP

→ (r)
s ) ≤ 2h(n, r ,m) + h(n, r − 1,m).

Proof.

▶ Note r ≤ s ≤ 2r − 1 implies 1 ≤ m ≤ r . Take V (K
→ (r)
n ) = [n].

▶ E1: the family of m-biased r -sets. Note |E1| = 2h(n, r ,m).

▶ E2: the family of r -sets whose mth point and last point are
reflections of each other.

▶ Removing the last vertex from e ∈ E2 gives a bijection to the
m-left-biased (r − 1)-sets, and so |E2| = h(n, r − 1,m).

▶ Let G ⊆ K
→ (r)
n such that E (G ) = E1 ∪ E2.
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Proof.

▶ Let Q be a copy of LP
→ (r)

s in K
→ (r)
s , and let S = V (Q).

▶ Choose X < Y < Z to min. |X | subj. to |X | = |Z | and
max{|X ∩ S |, |Z ∩ S |} = m.

▶ Such a partition exists as otherwise s ≤ 2(m − 1) = 2(s − r)
and so s ≥ 2r .
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Tight path packings

Theorem
Let r ≤ s ≤ 2r − 1, let m = s − r + 1, and let n be even. We have
ν
→
(n,P

→ (r)
s ) ≥ 2h(n, r ,m) + h(n, r − 1,m).

▶ Start with the transversal graph G ⊆ K
→ (r)
n .

▶ For each e ∈ E (G ), construct a copy Qe of P
→ (r)
s .

▶ Show that {Qe : e ∈ E (G )} is edge-disjoint.
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Fractional Variants
Frac. H packing ν

→∗(n,H):

Frac. H transversal τ
→∗(n,H):

max:
∑

H⊆K
→ (r)
n

yH

subj to: ∀e
∑

H : e∈E(H)

yH ≤ 1

min:
∑

e∈E(K
→ (r)
n )

xe

subj to: ∀H
∑

e∈E(H)

xe ≥ 1

▶ ν
→
(n,H) ≤ ν

→∗(n,H) = τ
→∗(n,H) ≤ τ

→
(n,H)

▶ If r | s, then ν
→
(n,P

→ (r)
s ) ∼ τ

→∗(n,P
→ (r)
s ) =

((
r
s

)r
+ o(1)

) (n
r

)
.

▶ de Caen:

τ
→
(n,P

→ (r)
s ) ≥ τ

→
(n,K

→ (r)
s ) = τ(n,K

(r)
s ) ≥

(
1

(s−1
r−1)

+ o(1)

)(n
r

)
.

▶ If r | s and s is large, then lim
n→∞

τ
→
(n,P

→ (r)
s )

τ
→∗(n,P

→ (r)
s )

> 1.

▶ We need a new approach for large s, probably even s = 2r .
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s ) ∼ τ

→∗(n,P
→ (r)
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▶ If r | s and s is large, then lim
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→
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→ (r)
s )

τ
→∗(n,P

→ (r)
s )
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▶ We need a new approach for large s, probably even s = 2r .
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The case r = 3

▶ Thm: τ
→
(n,P

→ (3)
s ) ≤

(
1⌊

(s−1)2

4

⌋ + o(1)

)(n
3

)

▶ de Caen bound: τ
→
(n,P

→ (3)
s ) ≥

(
2

(s−1)(s−2) + o(1)
) (n

3

)
.

▶ Conj: upper bound is correct.

▶ The case r = 3 is equivalent to a graph optimization problem.

▶ Given a maximal H ⊆ K
→ (3)
n with P

→ (3)
s ̸⊆ H:

▶ Make an edge-labeling G of K
→ (2)
n such that ℓ(uv) equals the

max. size of a tight path in H ending with u and v .

▶ P
→ (3)
s ̸⊆ H implies G is a {2, . . . , s − 1}-edge-labeling of K

→ (2)
n .

▶ |E (H)| is the num. of triples u < v < w with ℓ(uv) < ℓ(vw)

▶ Let fk(n) be the max., over all [k]-edge-labelings of K
→ (2)
n , of

the number of triples u < v < w with ℓ(uv) < ℓ(vw).

▶ Prop: ex→ (n,P
→ (3)
s ) = fs−2(n)
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Increasing Triple Optimization
▶ Let fk(n) be the max., over all [k]-edge-labelings of K

→ (2)
n , of

the number of triples u < v < w with ℓ(uv) < ℓ(vw).

▶ Prop: ex→ (n,P
→ (3)
s ) = fs−2(n).

▶ First open case is P
→ (3)
6 , with 4 edge labels.

▶ Conjecture: f4(n) = ex→ (n,P
→ (3)
6 ) =

(
5
6 + o(1)

) (n
3

)
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