Abstract

We show that connected graphs admit sublinear longest path transversals. This improves an earlier result of Rautenbach and Sereni and is related to the fifty-year-old question of whether connected graphs admit longest path transversals of constant size. The same technique allows us to show that 2-connected graphs admit sublinear longest cycle transversals.

1 Introduction

A classical exercise in graph theory is to show that if \(P \) and \(Q \) are longest paths in a connected graph, then the vertex sets of \(P \) and \(Q \) have non-empty intersection (see [8], exercise 1.2.40). In 1966, Gallai [2] asked whether this result could be strengthened to assert that the family of all longest paths in a connected graph \(G \) has non-empty intersection. It turns out the answer is no, as shown by Walther [6] with a 25-vertex counterexample. A 12-vertex counterexample, due to Walther and Voss [7] and independently Zamfirescu [10], is obtained from the Petersen graph by replacing one vertex \(v \) with an independent set \(\{v_1, v_2, v_3\} \) such that each \(v_i \) becomes an endpoint of an edge incident to \(v \) (see Figure 1).

Since Gallai’s question has a negative answer, a single vertex is generally insufficient to meet every longest path in a connected graph \(G \). A longest path transversal in \(G \) is a set of vertices that intersects every longest path. Such a set is a transversal in the hypergraph on \(V(G) \) whose edges are the vertex sets of longest paths in \(G \). Let \(\text{lpt}(G) \) be the minimum size of a longest path transversal in \(G \). The graph \(G_0 \) in Figure 1 is a connected 12-vertex graph with \(\text{lpt}(G_0) = 2 \). Grünbaum [3] constructed a connected 324-vertex graph \(G \) with \(\text{lpt}(G) = 3 \). Soon afterward, Zamfirescu [10] found such a graph with 270 vertices. Walther [6] and Zamfirescu [9] asked if \(\text{lpt}(G) \) is bounded for connected graphs \(G \), and this remains
Figure 1: The graph G_0: a 12-vertex graph with $\lpt(G_0) = 2$.

open. In fact, it is not known whether there is a connected graph G with $\lpt(G) \geq 4$. Let G be a connected graph. Since a connected graph does not contain vertex-disjoint longest paths, every partition of $V(G)$ into two sets has a part that contains no longest path in G, forcing the other part to be a longest path transversal. Applying this to a partition of $V(G)$ into two parts of nearly equal size gives $\lpt(G) \leq \lceil n/2 \rceil$ when G is an n-vertex connected graph. It is not too difficult to improve this argument to obtain $\lpt(G) \leq \lceil n/4 \rceil$. Rautenbach and Sereni [4] showed that $\lpt(G) \leq \lceil n/4 - n^{2/3} / 90 \rceil$ for every connected n-vertex graph G. We show that $\lpt(G) \leq 8n^{3/4}$ when G is an n-vertex connected graph, implying that connected graphs have sublinear longest path transversals.

Let $\lct(G)$ be the minimum size of a set of vertices S such that S intersects every longest cycle in G. Analogously to the case of longest paths in 1-connected graphs, every pair of longest cycles in a 2-connected graph intersect. The Petersen graph G is 2-connected and $\lct(G) = 2$. With no connectivity assumptions, Thomassen [5] showed that $\lct(G) \leq \lceil n/3 \rceil$ for each n-vertex graph G. The bound is sharp when G is a disjoint union of triangles and nearly sharp in the 1-connected case when G is obtained from a star with $(n-1)/3$ leaves by replacing each leaf with a triangle. On the other hand, Rautenbach and Sereni [4] proved that if G is 2-connected, then $\lct(G) \leq \lceil n/3 - n^{2/3} / 36 \rceil$. We show that $\lct(G) \leq 20n^{3/4}$ when G is 2-connected (Corollary 2).

The problems of finding small longest path transversals and small longest cycle transversals are special cases of a general problem that we aim to address. Given a multigraph F and an edge $e \in E(F)$ with endpoints u and v, the subdivision operation produces a new multigraph F' in which e is replaced by a path uvw through a new vertex w in F'. A subdivision of F is a graph obtained from F via a sequence of zero or more subdivision operations. For a multigraph R and a graph G, an R-subdivision in G is a subgraph of G isomorphic to a subdivision of R. We ask for a small set of vertices in G that intersects every R-subdivision in G of maximum size. The cases of longest path transversals and longest cycle transversals arise as $R = P_2$ and $R = C_2$ (the multigraph 2-vertex cycle), respectively. We prove that for each connected multigraph R, if the family \mathcal{F} of maximum R-subdivisions in G is pairwise intersecting, then \mathcal{F} admits a transversal of size at most $Cn^{3/4}$, where C is a constant depending on R.

2
2 Maximum subdivision transversals

Let R be a multigraph. Recall that an R-subdivision in G is a subgraph of G isomorphic to a subdivision of R, and a maximum R-subdivision is an R-subdivision F in G that maximizes $|V(F)|$. An R-transversal of G is a set of vertices intersecting each maximum R-subdivision. Let $\tau_R(G)$ be the minimum size of an R-transversal in G.

Given sets of vertices X and Y of G, an (X,Y)-separator is a set of vertices S such that no path in $G - S$ has one endpoint in X and the other endpoint in Y. We allow an (X,Y)-separator to contain vertices in X and Y. An (X,Y)-connector is a collection of vertex-disjoint paths $\{P_1, \ldots, P_k\}$ such that each P_i has one endpoint in X, the other endpoint in Y, and the interior vertices of P_i are outside $X \cup Y$. A variant of Menger’s Theorem asserts that the minimum size of an (X,Y)-separator equals the maximum size of an (X,Y)-connector (see, e.g., Theorem 3.3.1 in [1]).

Our next result shows that when the maximum R-subdivisions in a graph G pairwise intersect, G has sublinear R-transversals. We make no attempt to optimize the multiplicative constant 8 or the dependence on n.

Theorem 1. Let R be a connected m-edge multigraph with $m \geq 1$ and let G be an n-vertex graph. If the maximum R-subdivisions in G pairwise intersect, then $\tau_R(G) \leq 8m^{5/4}n^{3/4}$.

Proof. Let $m = |E(R)|$ and let $\varepsilon = 2(m/n)^{1/4}$. We may assume that $m \leq n$, since otherwise we may take $V(G)$ as our R-transversal. Let \mathcal{F} be the family of maximum R-subdivisions in G. An ε-partial transversal is a triple (H, X, Y) such that H is a subgraph of G, $X = V(G) - V(H)$, $Y \subseteq X$ with $|Y| \leq \varepsilon |X|$, and each $F \in \mathcal{F}$ is a subgraph of H or contains a vertex in Y. Given an ε-partial transversal (H, X, Y), we either obtain an ε-partial transversal (H', X', Y') with $|V(H')| < |V(H)|$ or we produce an R-transversal with at most $8m^{5/4}n^{3/4}$ vertices. Starting with $(H, X, Y) = (G, \emptyset, \emptyset)$ and iterating gives the result.

Let (H, X, Y) be an ε-partial transversal, and let \mathcal{F}_0 be the set of $F \in \mathcal{F}$ such that F is a subgraph of H. We may assume that H contains vertex-disjoint paths P_1 and P_2 each of size $\lceil \varepsilon n \rceil$. Otherwise, every path in H has size less than $2 \lceil \varepsilon n \rceil$, and so each $F \in \mathcal{F}_0$ has at most $2m \lceil \varepsilon n \rceil$ vertices. Since \mathcal{F}_0 is pairwise intersecting, we have that $V(F) \cup Y$ is an R-transversal for each $F \in \mathcal{F}_0$. It follows that $\tau_R(G) \leq |Y| + 2m \lceil \varepsilon n \rceil \leq \varepsilon n + 2m \lceil \varepsilon n \rceil \leq (2m + 1)\varepsilon n + 2m \leq (2m + 2)\varepsilon n \leq 4m \varepsilon n = 8m^{5/4}n^{3/4}$.

Suppose that H has a $(V(P_1), V(P_2))$-separator S of size at most $\varepsilon^2 n$. Since graphs in \mathcal{F}_0 are connected, each $F \in \mathcal{F}_0$ has a vertex in S or is contained in some component of $H - S$. Also, since \mathcal{F}_0 is pairwise intersecting, at most one component H' of $H - S$ contains graphs in \mathcal{F}_0. Since S is a separator, H' is disjoint from at least one of $\{P_1, P_2\}$. With $X' = V(G) - V(H')$ and $Y' = Y \cup S$, we have $|X'| - |X| \geq \varepsilon n$ and $|Y'| = |Y| + |S| \leq \varepsilon |X| + \varepsilon^2 n \leq \varepsilon |X| + \varepsilon (|X'| - |X|) \leq \varepsilon |X'|$. It follows that (H', X', Y') is an ε-partial transversal. Also $|V(H')| < |V(H)|$ since $|X'| > |X|$.

Otherwise, by Menger’s Theorem, H has a $(V(P_1), V(P_2))$-connector \mathcal{P} with $|\mathcal{P}| \geq \varepsilon^2 n$. Let \mathcal{P}' be the set of paths in \mathcal{P} of size at most $2/e^2$. Note that $|\mathcal{P}'| \geq |\mathcal{P}|/2$, or else \mathcal{P} has at least $(\varepsilon^2 n)/2$ paths of size more than $2/e^2$, contradicting that the paths in \mathcal{P} are disjoint. So we have $|\mathcal{P}'| \geq |\mathcal{P}|/2 \geq (\varepsilon^2/2)n = 2m^{1/4}n^{1/2} \geq 2$. Combining P_1 with two paths in \mathcal{P}' whose endpoints in $V(P_1)$ are as far apart as possible and a segment of P_2 gives a cycle C_0 such that $(\varepsilon^2/2)n \leq |V(C_0)| \leq 2 \lceil \varepsilon n \rceil + 4/\varepsilon^2 - 4 \leq 2\varepsilon n + 4/\varepsilon^2$, where the lower bound
counts vertices in $V(P_1) \cap V(C_0)$ and the upper bound counts at most $2 \lceil \varepsilon n \rceil$ vertices in $(V(P_1) \cup V(P_2)) \cap V(C_0)$, at most $4/\varepsilon^2$ vertices on the paths in P' linking P_1 and P_2, and observing that the 4 endpoints of the linking paths are counted twice.

Let C be a longest cycle in H subject to $|V(C)| \leq 2\varepsilon n + 4/\varepsilon^2$, let $\ell = |V(C)|$, and note that $\ell \geq |V(C_0)| \geq (\varepsilon^2/2)n$. If $V(C)$ intersects each subgraph in F_0, then $Y \cup V(C)$ witnesses $\tau_R(G) \leq |V(C)| + |Y| \leq (2\varepsilon n + 4/\varepsilon^2) + \varepsilon n = 3\varepsilon n + (n/m)^{1/2} < 8m^{5/4}n^{3/4}$. Otherwise, choose $F \in F_0$ that is disjoint from C. We may assume $|V(F)| \geq \ell$, or else $Y \cup V(F)$ witnesses that $\tau_R(G) \leq |V(F)| + |Y| < (2\varepsilon n + 4/\varepsilon^2) + \varepsilon n < 8m^{5/4}n^{3/4}$.

If H has a $(V(C), V(F))$-separator T of size at most $\varepsilon \ell$, then we obtain an ε-partial transversal as follows. At most one component H' of $H - T$ contains graphs in F_0. Let $X' = V(G) - V(H')$ and let $Y' = Y \cup T$. Since H' is disjoint from one of $\{C, F\}$, it follows that $|X'| - |X| \geq \ell$. We compute $|Y'| = |Y| + |T| \leq \varepsilon |X| + \varepsilon \ell \leq \varepsilon |X| + \varepsilon (|X'| - |X|) \leq \varepsilon |X'|$. Hence (H', X', Y') is an ε-partial transversal with $|V(H')| < |V(H)|$.

Otherwise, H has a $(V(C), V(F))$-connector Q with $|Q| \geq \varepsilon \ell$. We use Q to obtain a contradiction. For $e \in E(R)$, let Q_e be the path in F corresponding to e, and let Q_e be the set of paths in Q which have an endpoint in Q_e. Since $|E(R)| = m$, it follows that $|Q_e| \geq |Q|/m \geq \varepsilon \ell/m$ for some edge $e \in E(R)$. Let Q' be the set of paths in Q_e of size at most $2mn \ell/e$, and note that $|Q'| \geq |Q_e|/2 \geq \ell/2m$, or else Q_e has at least $\ell/2m$ paths of size more than $2mn \ell/e$, a contradiction. The endpoints of paths in Q' divide Q_e into $|Q'| - 1$ edge-disjoint subpaths. Choose $Q_1, Q_2 \in Q'$ to minimize the length of such a subpath Q_0 of Q_e, and note that Q_0 has length at most $\frac{n-1}{|Q|-1}$; see Figure 2. Since $m \leq n$, we have $2m \leq 2m^{3/4}n^{1/4} = \frac{\varepsilon^3}{4} n \leq \frac{\varepsilon^3}{2}$, and hence $\frac{n-1}{|Q|-1} \leq \frac{4m}{\varepsilon \ell - 2m} \leq \frac{4mn}{\varepsilon ^2}$. The endpoints of Q_1 and Q_2 on C partition C into two subpaths; let W be the longer subpath. If $|E(W)| \geq |E(Q_0)|$, then we would obtain a larger R-subdivision by using Q_1, W, and Q_2 to bypass Q_0. Since F is a maximum R-subdivision, we have $|E(W)| < |E(Q_0)|$. Therefore using Q_1, Q_0, and Q_2 to bypass W gives a cycle D with $|E(D)| > |E(C)|$. By the extremal choice of C, it follows that $|V(D)| > 2\varepsilon n + 4/\varepsilon^2$. On the other hand, $|V(D)| = \ldots$
Let maximum \(k \) and let maximum \(S \) for each \(R \) to obtain sublinear \(\tau \).

Therefore \(2\varepsilon n + \frac{4}{\varepsilon^2} < |V(D)| \leq \frac{\ell}{2} + \frac{2mn}{\ell} \varepsilon^2 + \frac{4mn}{\ell^2} \varepsilon^2 + \frac{2mn}{\ell} \leq \frac{\ell}{2} + \frac{8mn}{\ell} \varepsilon^2 \), where the last inequality uses \(\ell \geq (\varepsilon^2/2)n \). Simplifying gives \(\varepsilon n < \frac{16m}{\varepsilon^2} - \frac{2}{\varepsilon^2} \leq \frac{16m}{\varepsilon^2} \), and this inequality is violated when \(\varepsilon \geq (16m/n)^{1/4} \).

Applying Theorem 1, we obtain the following corollary.

Corollary 2. Let \(G \) be an \(n \)-vertex graph. If \(G \) is connected, then \(\text{lpt}(G) \leq 8n^{3/4} \). If \(G \) is 2-connected, then \(\text{lct}(G) \leq 20n^{3/4} \).

Proof. When \(R = P_2 \), an \(R \)-transversal is a longest path transversal. It is well known that if \(G \) is connected, then the longest paths pairwise intersect. By Theorem 1, we have \(\text{lpt}(G) = \tau_R(G) \leq 8n^{3/4} \).

Similarly, when \(R = C_2 \), an \(R \)-transversal is a longest cycle transversal. If \(G \) is 2-connected, then the longest cycles pairwise intersect. By Theorem 1, we have \(\text{lct}(G) = \tau_R(G) \leq 8 \cdot 2^{5/4} \cdot n^{3/4} \leq 20n^{3/4} \).

We do not know whether the assumption in Theorem 1 that \(R \) is connected is necessary to obtain sublinear \(R \)-transversals. To obtain analogues of Corollary 2 for general \(R \), we show that the maximum \(R \)-subdivisions pairwise intersect when the connectivity of \(G \) is sufficiently large. Recall that a graph \(G \) is \(k \)-connected if \(|V(G)| > k \) and \(G - S \) is connected for each \(S \subseteq V(G) \) with \(|S| < k \). Moreover, the connectivity of \(G \), denoted \(\kappa(G) \), is the maximum \(k \) such that \(G \) is \(k \)-connected.

Lemma 3. Let \(R \) be a connected \(m \)-edge multigraph with \(m \geq 1 \). If \(\kappa(G) > m^2 \), then the maximum \(R \)-subdivisions in \(G \) are pairwise intersecting.

Proof. Suppose for a contradiction that \(G \) has disjoint maximum \(R \)-subdivisions \(F_1 \) and \(F_2 \), and let \(k = |V(F_1)| = |V(F_2)| \). By Menger’s Theorem, there is an \((V(F_1), V(F_2)) \)-connector \(P \) with \(|P| = \min\{k, m^2 + 1\} \). If \(|P| = k \), then every vertex in \(F_1 \) is an endpoint of a path in \(P \), and we obtain an \(R \)-subdivision of size more than \(k \) by replacing an edge \(uv \in E(F_1) \) with a path in \(P \) having \(u \) as an endpoint, a path in \(P \) having \(v \) as an endpoint, and an appropriate path in the connected subgraph \(F_2 \).

So we may assume \(|P| = m^2 + 1 \). For each \(e \in E(R) \), let \(F_i(e) \) be the path in \(F_i \) corresponding to \(e \). Since \(R \) has no isolated vertices, we may associate each \(P \in P \) with an ordered pair of edges \((e_1, e_2) \in (E(R))^2 \) such that \(P \) has its endpoint in \(F_1 \) in \(F_1(e_1) \) and its endpoint in \(F_2 \) in \(F_2(e_2) \). Since \(|P| > m^2 \), some pair \((e_1, e_2) \) is associated with distinct paths \(P, Q \in P \). Let \(W_i \) be the subpath of \(F_i(e_i) \) whose endpoints are in \(V(P) \cup V(Q) \). If \(|E(W_1)| \geq |E(W_2)| \), then we modify \(F_2 \) to obtain a larger \(R \)-subdivision by using \(P, W_1 \), and \(Q \) to bypass \(W_2 \). Similarly, if \(|E(W_2)| \geq |E(W_1)| \), then we modify \(F_1 \) to obtain a larger \(R \)-subdivision by using \(P, W_2 \), and \(Q \) to bypass \(W_1 \).

Corollary 4. Let \(R \) be a connected \(m \)-edge multigraph. If \(G \) is an \(n \)-vertex graph with \(\kappa(G) > m^2 \), then \(\tau_R(G) \leq 8n^{5/4} \cdot n^{3/4} \).

As it is not known whether there exists a connected graph \(G \) with \(\text{lpt}(G) > 3 \), reducing the gap between our sublinear upper bound on \(\text{lpt}(G) \) and the constant lower bound remains a major open problem in the area of longest path transversals.
Acknowledgement

The authors greatly appreciate the careful comments of an anonymous referee.

References

