
Sublinear Longest Path Transversals

James A. Long Jr.∗1, Kevin G. Milans†1, and Andrea Munaro‡2

1Department of Mathematics, West Virginia University, USA
2School of Mathematics and Physics, Queen’s University Belfast, UK

February 15, 2023

Abstract

We show that connected graphs admit sublinear longest path transversals. This
improves an earlier result of Rautenbach and Sereni and is related to the fifty-year-old
question of whether connected graphs admit longest path transversals of constant size.
The same technique allows us to show that 2-connected graphs admit sublinear longest
cycle transversals.

1 Introduction

A classical exercise in graph theory is to show that if P and Q are longest paths in a
connected graph, then the vertex sets of P and Q have non-empty intersection (see [8],
exercise 1.2.40). In 1966, Gallai [2] asked whether this result could be strengthened to assert
that the family of all longest paths in a connected graph G has non-empty intersection. It
turns out the answer is no, as shown by Walther [6] with a 25-vertex counterexample. A
12-vertex counterexample, due to Walther and Voss [7] and independently Zamfirescu [10],
is obtained from the Petersen graph by replacing one vertex v with an independent set
{v1, v2, v3} such that each vi becomes an endpoint of an edge incident to v (see Figure 1).

Since Gallai’s question has a negative answer, a single vertex is generally insufficient to
meet every longest path in a connected graph G. A longest path transversal in G is a set
of vertices that intersects every longest path. Such a set is a transversal in the hypergraph
on V (G) whose edges are the vertex sets of longest paths in G. Let lpt(G) be the minimum
size of a longest path transversal in G. The graph G0 in Figure 1 is a connected 12-vertex
graph with lpt(G0) = 2. Grünbaum [3] constructed a connected 324-vertex graph G with
lpt(G) = 3. Soon afterward, Zamfirescu [10] found such a graph with 270 vertices. Walther
[6] and Zamfirescu [9] asked if lpt(G) is bounded for connected graphs G, and this remains
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Figure 1: The graph G0: a 12-vertex graph with lpt(G0) = 2.

open. In fact, it is not known whether there is a connected graph G with lpt(G) ≥ 4. Let
G be a connected graph. Since a connected graph does not contain vertex-disjoint longest
paths, every partition of V (G) into two sets has a part that contains no longest path in G,
forcing the other part to be a longest path transversal. Applying this to a partition of V (G)
into two parts of nearly equal size gives lpt(G) ≤ dn/2e when G is an n-vertex connected
graph. It is not too difficult to improve this argument to obtain lpt(G) ≤ dn/4e. Rautenbach

and Sereni [4] showed that lpt(G) ≤ dn
4
− n2/3

90
e for every connected n-vertex graph G. We

show that lpt(G) ≤ 8n3/4 when G is an n-vertex connected graph, implying that connected
graphs have sublinear longest path transversals.

Let lct(G) be the minimum size of a set of vertices S such that S intersects every longest
cycle in G. Analogously to the case of longest paths in 1-connected graphs, every pair of
longest cycles in a 2-connected graph intersect. The Petersen graph G is 2-connected and
lct(G) = 2. With no connectivity assumptions, Thomassen [5] showed that lct(G) ≤ dn/3e
for each n-vertex graph G. The bound is sharp when G is a disjoint union of triangles and
nearly sharp in the 1-connected case when G is obtained from a star with (n − 1)/3 leaves
by replacing each leaf with a triangle. On the other hand, Rautenbach and Sereni [4] proved

that if G is 2-connected, then lct(G) ≤ dn
3
− n2/3

36
e. We show that lct(G) ≤ 20n3/4 when G is

2-connected (Corollary 2).
The problems of finding small longest path transversals and small longest cycle transver-

sals are special cases of a general problem that we aim to address. Given a multigraph F and
an edge e ∈ E(F ) with endpoints u and v, the subdivision operation produces a new multi-
graph F ′ in which e is replaced by a path uwv through a new vertex w in F ′. A subdivision
of F is a graph obtained from F via a sequence of zero or more subdivision operations. For
a multigraph R and a graph G, an R-subdivision in G is a subgraph of G isomorphic to a
subdivision of R. We ask for a small set of vertices in G that intersects every R-subdivision
in G of maximum size. The cases of longest path transversals and longest cycle transversals
arise as R = P2 and R = C2 (the multigraph 2-vertex cycle), respectively. We prove that
for each connected multigraph R, if the family F of maximum R-subdivisions in G is pair-
wise intersecting, then F admits a transversal of size at most Cn3/4, where C is a constant
depending on R.
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2 Maximum subdivision transversals

Let R be a multigraph. Recall that an R-subdivision in G is a subgraph of G isomorphic to a
subdivision of R, and a maximum R-subdivision is an R-subdivision F in G that maximizes
|V (F )|. An R-transversal of G is a set of vertices intersecting each maximum R-subdivision.
Let τR(G) be the minimum size of an R-transversal in G.

Given sets of vertices X and Y of G, an (X, Y )-separator is a set of vertices S such
that no path in G − S has one endpoint in X and the other endpoint in Y . We allow
an (X, Y )-separator to contain vertices in X and Y . An (X, Y )-connector is a collection
of vertex-disjoint paths {P1, . . . , Pk} such that each Pi has one endpoint in X, the other
endpoint in Y , and the interior vertices of Pi are outside X ∪ Y . A variant of Menger’s
Theorem asserts that the minimum size of an (X, Y )-separator equals the maximum size of
an (X, Y )-connector (see, e.g., Theorem 3.3.1 in [1]).

Our next result shows that when the maximum R-subdivisions in a graph G pairwise
intersect, G has sublinear R-transversals. We make no attempt to optimize the multiplicative
constant 8 or the dependence on m.

Theorem 1. Let R be a connected m-edge multigraph with m ≥ 1 and let G be an n-vertex
graph. If the maximum R-subdivisions in G pairwise intersect, then τR(G) ≤ 8m5/4n3/4.

Proof. Let m = |E(R)| and let ε = 2(m/n)1/4. We may assume that m ≤ n, since otherwise
we may take V (G) as our R-transversal. Let F be the family of maximum R-subdivisions in
G. An ε-partial transversal is a triple (H,X, Y ) such that H is a subgraph of G, X = V (G)−
V (H), Y ⊆ X with |Y | ≤ ε|X|, and each F ∈ F is a subgraph of H or contains a vertex
in Y . Given an ε-partial transversal (H,X, Y ), we either obtain an ε-partial transversal
(H ′, X ′, Y ′) with |V (H ′)| < |V (H)| or we produce an R-transversal with at most 8m5/4n3/4

vertices. Starting with (H,X, Y ) = (G,∅,∅) and iterating gives the result.
Let (H,X, Y ) be an ε-partial transversal, and let F0 be the set of F ∈ F such that F

is a subgraph of H. We may assume that H contains vertex-disjoint paths P1 and P2 each
of size dεne. Otherwise, every path in H has size less than 2 dεne, and so each F ∈ F0 has
at most 2m dεne vertices. Since F0 is pairwise intersecting, we have that V (F ) ∪ Y is an
R-transversal for each F ∈ F0. It follows that τR(G) ≤ |Y | + 2m dεne ≤ εn + 2m dεne ≤
(2m+ 1)εn+ 2m ≤ (2m+ 2)εn ≤ 4mεn = 8m5/4n3/4.

Suppose that H has a (V (P1), V (P2))-separator S of size at most ε2n. Since graphs in
F0 are connected, each F ∈ F0 has a vertex in S or is contained in some component of
H −S. Also, since F0 is pairwise intersecting, at most one component H ′ of H −S contains
graphs in F0. Since S is a separator, H ′ is disjoint from at least one of {P1, P2}. With
X ′ = V (G) − V (H ′) and Y ′ = Y ∪ S, we have |X ′| − |X| ≥ εn and |Y ′| = |Y | + |S| ≤
ε|X| + ε2n ≤ ε|X| + ε(|X ′| − |X|) ≤ ε|X ′|. It follows that (H ′, X ′, Y ′) is an ε-partial
transversal. Also |V (H ′)| < |V (H)| since |X ′| > |X|.

Otherwise, by Menger’s Theorem, H has a (V (P1), V (P2))-connector P with |P| ≥ ε2n.
Let P ′ be the set of paths in P of size at most 2/ε2. Note that |P ′| ≥ |P|/2, or else P has
at least (ε2n)/2 paths of size more than 2/ε2, contradicting that the paths in P are disjoint.
So we have |P ′| ≥ |P|/2 ≥ (ε2/2)n = 2m1/2n1/2 ≥ 2. Combining P1 with two paths in P ′
whose endpoints in V (P1) are as far apart as possible and a segment of P2 gives a cycle
C0 such that (ε2/2)n ≤ |V (C0)| ≤ 2 dεne + 4/ε2 − 4 ≤ 2εn + 4/ε2, where the lower bound
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Figure 2: (V (C), V (F ))-connector case. The subpath W of the cycle C is dashed, and the
cycle D is displayed in bold.

counts vertices in V (P1) ∩ V (C0) and the upper bound counts at most 2 dεne vertices in
(V (P1) ∪ V (P2)) ∩ V (C0), at most 4/ε2 vertices on the paths in P ′ linking P1 and P2, and
observing that the 4 endpoints of the linking paths are counted twice.

Let C be a longest cycle in H subject to |V (C)| ≤ 2εn + 4/ε2, let ` = |V (C)|, and note
that ` ≥ |V (C0)| ≥ (ε2/2)n. If V (C) intersects each subgraph in F0, then Y ∪V (C) witnesses
τR(G) ≤ |V (C)|+ |Y | ≤ (2εn+4/ε2)+εn = 3εn+(n/m)1/2 < 8m5/4n3/4. Otherwise, choose
F ∈ F0 that is disjoint from C. We may assume |V (F )| ≥ `, or else Y ∪ V (F ) witnesses
that τR(G) ≤ |V (F )|+ |Y | < (2εn+ 4/ε2) + εn < 8m5/4n3/4.

If H has a (V (C), V (F ))-separator T of size at most ε`, then we obtain an ε-partial
transversal as follows. At most one component H ′ of H − T contains graphs in F0. Let
X ′ = V (G)− V (H ′) and let Y ′ = Y ∪ T . Since H ′ is disjoint from one of {C,F}, it follows
that |X ′|−|X| ≥ `. We compute |Y ′| = |Y |+ |T | ≤ ε|X|+ε` ≤ ε|X|+ε(|X ′|−|X|) ≤ ε|X ′|.
Hence (H ′, X ′, Y ′) is an ε-partial transversal with |V (H ′)| < |V (H)|.

Otherwise, H has a (V (C), V (F ))-connector Q with |Q| ≥ ε`. We use Q to obtain a
contradiction. For e ∈ E(R), let Qe be the path in F corresponding to e, and let Qe be
the set of paths in Q which have an endpoint in Qe. Since |E(R)| = m, it follows that
|Qe| ≥ |Q|/m ≥ ε`/m for some edge e ∈ E(R). Let Q′ be the set of paths in Qe of
size at most 2mn

ε`
, and note that |Q′| ≥ |Qe|/2 ≥ ε`

2m
, or else Qe has at least ε`

2m
paths of

size more than 2mn
ε`

, a contradiction. The endpoints of paths in Q′ divide Qe into |Q′| − 1
edge-disjoint subpaths. Choose Q1, Q2 ∈ Q′ to minimize the length of such a subpath Q0

of Qe, and note that Q0 has length at most n−1
|Q′|−1 ; see Figure 2. Since m ≤ n, we have

2m ≤ 2m3/4n1/4 = ε3

4
n ≤ ε`

2
, and hence n−1

|Q′|−1 <
n

ε`
2m
−1 = 2mn

ε`−2m ≤
4mn
ε`

.

The endpoints of Q1 and Q2 on C partition C into two subpaths; let W be the longer
subpath. If |E(W )| ≥ |E(Q0)|, then we would obtain a larger R-subdivision by using Q1,
W , and Q2 to bypass Q0. Since F is a maximum R-subdivision, we have |E(W )| < |E(Q0)|.
Therefore using Q1, Q0, and Q2 to bypass W gives a cycle D with |E(D)| > |E(C)|. By the
extremal choice of C, it follows that |V (D)| > 2εn + 4/ε2. On the other hand, |V (D)| =
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|E(D)| ≤ `
2

+ |E(Q1)|+ |E(Q0)|+ |E(Q2)| ≤ `
2

+ 2mn
ε`

+ 4mn
ε`

+ 2mn
ε`

= `
2

+ 8mn
ε`

.
Therefore 2εn+ 4

ε2
< |V (D)| ≤ `

2
+ 8mn

ε`
≤ εn+ 2

ε2
+ 8mn

ε`
≤ εn+ 2

ε2
+ 16m

ε3
, where the last

inequality uses ` ≥ (ε2/2)n. Simplifying gives εn < 16m
ε3
− 2

ε2
< 16m

ε3
, and this inequality is

violated when ε ≥ (16m/n)1/4.

Applying Theorem 1, we obtain the following corollary.

Corollary 2. Let G be an n-vertex graph. If G is connected, then lpt(G) ≤ 8n3/4. If G is
2-connected, then lct(G) ≤ 20n3/4.

Proof. When R = P2, an R-transversal is a longest path transversal. It is well known
that if G is connected, then the longest paths pairwise intersect. By Theorem 1, we have
lpt(G) = τR(G) ≤ 8n3/4.

Similarly, when R = C2, an R-transversal is a longest cycle transversal. If G is 2-
connected, then the longest cycles pairwise intersect. By Theorem 1, we have lct(G) =
τR(G) ≤ 8 · 25/4 · n3/4 ≤ 20n3/4.

We do not know whether the assumption in Theorem 1 that R is connected is necessary
to obtain sublinear R-transversals. To obtain analogues of Corollary 2 for general R, we
show that the maximum R-subdivisions pairwise intersect when the connectivity of G is
sufficiently large. Recall that a graph G is k-connected if |V (G)| > k and G−S is connected
for each S ⊆ V (G) with |S| < k. Moreover, the connectivity of G, denoted κ(G), is the
maximum k such that G is k-connected.

Lemma 3. Let R be a connected m-edge multigraph with m ≥ 1. If κ(G) > m2, then the
maximum R-subdivisions in G are pairwise intersecting.

Proof. Suppose for a contradiction that G has disjoint maximum R-subdivisions F1 and F2,
and let k = |V (F1)| = |V (F2)|. By Menger’s Theorem, there is an (V (F1), V (F2))-connector
P with |P| = min{k,m2 + 1}. If |P| = k, then every vertex in F1 is an endpoint of a path
in P , and we obtain an R-subdivision of size more than k by replacing an edge uv ∈ E(F1)
with a path in P having u as an endpoint, a path in P having v as an endpoint, and an
appropriate path in the connected subgraph F2.

So we may assume |P| = m2 + 1. For each e ∈ E(R), let Fi(e) be the path in Fi

corresponding to e. Since R has no isolated vertices, we may associate each P ∈ P with an
ordered pair of edges (e1, e2) ∈ (E(R))2 such that P has its endpoint in F1 in F1(e1) and
its endpoint in F2 in F2(e2). Since |P| > m2, some pair (e1, e2) is associated with distinct
paths P,Q ∈ P . Let Wi be the subpath of Fi(ei) whose endpoints are in V (P ) ∪ V (Q). If
|E(W1)| ≥ |E(W2)|, then we modify F2 to obtain a larger R-subdivision by using P , W1,
and Q to bypass W2. Similarly, if |E(W2)| ≥ |E(W1)|, then we modify F1 to obtain a larger
R-subdivision by using P , W2, and Q to bypass W1.

Corollary 4. Let R be a connected m-edge multigraph. If G is an n-vertex graph with
κ(G) > m2, then τR(G) ≤ 8m5/4n3/4.

As it is not known whether there exists a connected graph G with lpt(G) > 3, reducing
the gap between our sublinear upper bound on lpt(G) and the constant lower bound remains
a major open problem in the area of longest path transversals.
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[2] T. Gallai. Problem 4. In P. Erdős and G. Katona, editors, Theory of Graphs, Proceedings
of the Colloquium Held at Tihany, Hungary, September 1966, page 362. Academic Press,
New York, 1968.
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[7] H. Walther and H.-J. Voss. Über Kreise in Graphen. Deutscher Verlag der Wis-
senschaften, 1974.

[8] D. B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.

[9] T. Zamfirescu. A two-connected planar graph without concurrent longest paths. Journal
of Combinatorial Theory, Series B, 13(2):116–121, 1972.

[10] T. Zamfirescu. On longest paths and circuits in graphs. Mathematica Scandinavica, 38:
211–239, 1976.

6


	1 Introduction
	2 Maximum subdivision transversals

