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> Easy exercise: if P and @ are longest paths in a connected
graph, then some vertex belongs to both.

> Gallai (1966): |s some vertex common to every longest path?

» Walther (1969): No.

Counter-example (Walther, T.I. Zamfirescu)
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Two natural questions

» How many vertices are needed to hit every longest path in an
n-vertex connected graph?



Two natural questions

» How many vertices are needed to hit every longest path in an
n-vertex connected graph?

» For which graphs does Gallai's question have a positive
answer?
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Longest path transversals

> Aset S C V(G)is a longest path transversal or Gallai set if
every longest path intersects S.

» Let 7(G) be the min. size of a Gallai set in G.

Theorem (Rautenbach—Sereni (2014))

If G is a connected n-vertex graph, then 7(G) < H - %-‘.

1 » There is a connected
é é 12-vertex graph G with
AN T7(G) = 2.

Theorem (Griinbaum (1974))

There is a connected 324-vertex graph G with 7(G) = 3.
» Let 7(n) = max{7(G): |V(G)| = n and G is connected}.
» Probably 7(n) is small, perhaps even bounded.
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A sublinear bound

Theorem

7(n) < 8n3/4
» Our aim: show that 7(n) < Cn*/> (up to minor details).
» Let £(G) be the set of longest paths in G.

Menger's Theorem

» Let A,B,S C V(G). Theset S is an (A, B)-separator if
G — S has no path from a vertex in A to a vertex in B.

> Let A, B C V(G). An (A, B)-connector is a collection Q of
vertex-disjoint paths such that each Q € Q has one endpoint
in A, the other endpoint in B, and internal vertices outside
AU B.

» Theorem (Menger): the min. size of an (A, B)-separator
equals the max. size of an (A, B)-connector.
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Partial Transversals

Definition
Let G be a graph. An e-partial transversal is a
triple (H, X, Y') such that

: X » H is an induced subgraph of G
> X =V(G)— V(H)
® > Y C X and |Y| <¢|X]
» If P e L(G), then P C H or
V(IP)NY # o.
Proof ldea
» Given a e-partial transversal (H, X, Y'), we either

> Find a Gallai set of size at most Cn*/®, or
> Produce (H', X, Y') with [V(H')| < |V(H)|.

» Start with (H, X, Y) = (G, 2, ) and iterate.
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» Let (H, X, Y) be a e-partial transversal.
» Does H have disjoint paths P;, P, of size en? Suppose not:

» A longest path P in H has at most 2en vertices.

» Either Y is a Gallai set or P € L(G), implying that V(P) is a
Gallai set.

> 7(G) < max{|Y],|V(P)|} < 2en.
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» Let P, P> be disjoint paths in H of size en.

» H has a (V(P1), V(P,))-separator S with |S| < %nor a
(V(P1), V(P,))-connector Q with |Q| > &2n.
> If we get a separator S:
> At most one component H' of H — S contains paths in £L(G).
> Let X' = X U(V(H) — V(H")).
> Let Y =YUS.
» Note that H’ is disjoint from P; or P;.
> |S|<e-en<e-|V(H)- V(H)|.
> (H',X',Y') is an e-partial transversal.
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Let Q be a (V(P1), V(P,))-connector with |Q| > £2n.

. . . n 1
Average size of a path in Q is at most 7, or .

Let Q' be the set of @ € Q such that |V(Q)| < 6%

Choose Q1, @ € Q' to maximize the distance between the
endpoints in P1.

>
>
» At least half of the paths in Q have at most E% vertices.
>
>
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Let Q be a (V(P1), V(P,))-connector with |Q| > £2n.
Average size of a path in Q is at most 7, or 6%

At least half of the paths in @ have at most E% vertices.
Let Q' be the set of @ € Q such that |V(Q)| < 6%

Choose Q1, @ € Q' to maximize the distance between the
endpoints in Py.
Let C be the cycle formed by P1, P>, @1, and Q.
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H X
— P,

Q\/ Q@
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Let Q be a (V(P1), V(P,))-connector with |Q| > £2n.
Average size of a path in Q is at most 7, or 6%

At least half of the paths in @ have at most E% vertices.
Let Q' be the set of @ € Q such that |V(Q)| < 6%

Choose Q1, @ € Q' to maximize the distance between the
endpoints in Py.

Let C be the cycle formed by P1, P>, @1, and Q.
Note that 527” <|V(O)| <2en+2- 527
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> L <|V(C)| <2en+2- 3
> Is V(C)U Y a Gallai set?
» If yes, then 7(G) < |Y|+|V(C)| < 3en+ ;12_
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> S < |V(C)|<2en+2- 2

> Is V(C)U Y a Gallai set?

> If yes, then 7(G) < |Y| + |V(C)| < 3en+ 5.

» Otherwise, H contains a path P € £(G) disjoint from C.
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> S < |V(C)|<2en+2- 2

> Is V(C)U Y a Gallai set?

> If yes, then 7(G) < |Y| + |V(C)| < 3en+ 5.

» Otherwise, H contains a path P € £(G) disjoint from C.
> Note that [V(P)| > |V(C)| > 52.
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> [V(P)| > |V(C)| = 5.
» H has a (V(C), V(P))-separator S with lS\ < 537” or a
(V(C), V(P))-connector Q with |Q] > .

> If we get a separator S with |S| < 537”:
> At most one component H' of H — S contains paths in £(G).
Let X' = X U (V(H) — V(H)).
Let Y =Y US.
Note that H’ is disjoint from C or P.

>
| 2
| 2
> [S| <e- 5 <e- [V(H) = V(H).
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> [V(P)| > |V(C)| = 5.
» H has a (V(C), V(P))-separator S with lS\ < 537” or a
(V(C), V(P))-connector Q with |Q] > .

> If we get a separator S with |S| < 537”:
> At most one component H' of H — S contains paths in £(G).
> Let X' = X U(V(H) — V(H")).
> Let Y =YUS.
» Note that H’ is disjoint from C or P.
> [S| <e- 52 <e- [V(H) - V(H).
> (H',X’,Y’) is an e-partial transversal.
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> [V(P)| 2 |V(C)| > .
» Let Q be a (V(C), V(P))-connector with |Q| > 537"
» Choose @1, @ € Q to minimize dist. between endpoints in P.
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» Choose @1, @ € Q to minimize dist. between endpoints in P.
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V(P) = |V(C)| = 2.
. 3n
Let Q be a (V(C), V(P))-connector with [Q| > &,
Choose @1, @ € Q to minimize dist. between endpoints in P.

Dist. between ends of 1 and @ on P is roughly at most 6%
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If a% < 3|V(C)|, then we obtain a longer path.
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Let Q be a (V(C), V(P))-connector with [Q| > &,
Choose @1, @ € Q to minimize dist. between endpoints in P.
Dist. between ends of 1 and @ on P is roughly at most 6%
If a% < 3|V(C)|, then we obtain a longer path.
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Set ¢ large enough so that & < £ to avoid this case.
& g € 4
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. 3n
Let Q be a (V(C), V(P))-connector with [Q| > &,
Choose @1, @ € Q to minimize dist. between endpoints in P.
Dist. between ends of 1 and @ on P is roughly at most 6%
If a% < 3|V(C)|, then we obtain a longer path.
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Set ¢ large enough so that 6% < 5" to avoid this case.
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Partial Transversal Refinement

H X

2

V(P)| = [V(C)] = .
. 3

Let Q be a (V(C), V(P))-connector with [Q| > &,
Choose @1, @ € Q to minimize dist. between endpoints in P.
Dist. between ends of 1 and @ on P is roughly at most 6%
If a% < 3|V(C)|, then we obtain a longer path.
Set ¢ large enough so that 6% < 5%” to avoid this case.
Take € = cn~ /3.
7(G) < max{2en,3en+ 4} < Cn*/5

vVvyvVvy VvV VVYVY
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Maximum Subdivision Transversals
» For a multigraph R, an R-transversal in G is a set of vertices
that intersects every maximum subdivision of R.
» A P,-transversal is a Gallai set/longest path transversal.
> A C,-transversal is a longest cycle transversal.
» Let 7r(G) be the minimum size of an R-transversal in G.

Theorem

Let R be a connected m-edge multigraph with m > 1 and let G be
an n-vertex graph. If the maximum R-subdivisions of G pairwise
intersect, then Tr(G) < 8m>/*n3/4.

Corollary
Let G be an n-vertex graph.
> If G is connected, then 7(G) < 8n%/*.
> If G is 2-connected, then 7¢,(G) < 20n3/4,

» If k(G) > m? and R is a connected m-edge multigraph, then
TrR(G) < 8m>/4n3/4.



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.
» A graph G has a Gallai vertex iff 7(G) = 1.



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.
» A graph G has a Gallai vertex iff 7(G) = 1.
» G is a Gallai family if 7(G) = 1 for each connected G € G.



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.
» A graph G has a Gallai vertex iff 7(G) = 1.
» G is a Gallai family if 7(G) =1 for each connected G € G.

Some known Gallai families:



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.

» A graph G has a Gallai vertex iff 7(G) = 1.

» G is a Gallai family if 7(G) =1 for each connected G € G.
Some known Gallai families:

» Klavzar—Petkoviek (1990): split graphs and cacti



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.

» A graph G has a Gallai vertex iff 7(G) = 1.

» G is a Gallai family if 7(G) =1 for each connected G € G.
Some known Gallai families:

» Klavzar—Petkoviek (1990): split graphs and cacti

> Balister—Gydri-Lehel-Schelp (2004): interval graphs



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.

» A graph G has a Gallai vertex iff 7(G) = 1.

» G is a Gallai family if 7(G) =1 for each connected G € G.
Some known Gallai families:

» Klavzar—Petkoviek (1990): split graphs and cacti

> Balister—Gydri-Lehel-Schelp (2004): interval graphs

» Rezende-Fernandes—D.M.Martin-Wakabayashi (2011):
outerplanar graphs and 2-trees



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.

» A graph G has a Gallai vertex iff 7(G) = 1.

» G is a Gallai family if 7(G) =1 for each connected G € G.
Some known Gallai families:

» Klavzar—Petkoviek (1990): split graphs and cacti

> Balister—Gydri-Lehel-Schelp (2004): interval graphs

» Rezende-Fernandes—D.M.Martin-Wakabayashi (2011):
outerplanar graphs and 2-trees

» BGLS+Joos (2015): circular arc graphs



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.

» A graph G has a Gallai vertex iff 7(G) = 1.

» G is a Gallai family if 7(G) =1 for each connected G € G.
Some known Gallai families:

» Klavzar—Petkoviek (1990): split graphs and cacti

> Balister—Gydri-Lehel-Schelp (2004): interval graphs

» Rezende-Fernandes—D.M.Martin-Wakabayashi (2011):
outerplanar graphs and 2-trees

BGLS+Joos (2015): circular arc graphs
Jobson—Kézdy—Lehel-White (2016): Pa-free graphs

vy



Gallai Families

>
>
>

A Gallai vertex is a vertex belonging to every longest path.
A graph G has a Gallai vertex iff 7(G) = 1.
G is a Gallai family if 7(G) =1 for each connected G € G.

Some known Gallai families:

|
>
>

v

Klavzar—Petkoviek (1990): split graphs and cacti
Balister—Gyéri-Lehel-Schelp (2004): interval graphs

Rezende—-Fernandes—-D.M.Martin—Wakabayashi (2011):
outerplanar graphs and 2-trees

BGLS+Joos (2015): circular arc graphs
Jobson—Kézdy—Lehel-White (2016): Pa-free graphs
Cerioli-Lima (2016): P4-sparse graphs



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.

» A graph G has a Gallai vertex iff 7(G) = 1.

» G is a Gallai family if 7(G) =1 for each connected G € G.
Some known Gallai families:

» Klavzar—Petkoviek (1990): split graphs and cacti

> Balister—Gydri-Lehel-Schelp (2004): interval graphs

» Rezende-Fernandes—D.M.Martin-Wakabayashi (2011):
outerplanar graphs and 2-trees

BGLS+Joos (2015): circular arc graphs
Jobson—Kézdy—Lehel-White (2016): Pa-free graphs
Cerioli-Lima (2016): P4-sparse graphs

vvyyypy

Chen—Ehrenmiiller—Fernandes—Heise-Shan—Yang—Yates
(2017): Ks-minor-free graphs



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.

» A graph G has a Gallai vertex iff 7(G) = 1.

» G is a Gallai family if 7(G) =1 for each connected G € G.
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» Klavzar—Petkoviek (1990): split graphs and cacti
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Cerioli-Lima (2016): P4-sparse graphs

vvyyypy

Chen—Ehrenmiiller—Fernandes—Heise-Shan—Yang—Yates
(2017): Ks-minor-free graphs
Golan—Shan (2018): 2P-free graphs

v



Gallai Families

> A Gallai vertex is a vertex belonging to every longest path.
» A graph G has a Gallai vertex iff 7(G) = 1.
» G is a Gallai family if 7(G) =1 for each connected G € G.

» A graph not containing an induced copy of H is H-free.



Gallai Families

v

A Gallai vertex is a vertex belonging to every longest path.
A graph G has a Gallai vertex iff 7(G) = 1.
G is a Gallai family if 7(G) =1 for each connected G € G.

vy

» A graph not containing an induced copy of H is H-free.

v

A graph H is a fixer if the H-free graphs form a Gallai family.



Gallai Families

v

A Gallai vertex is a vertex belonging to every longest path.
A graph G has a Gallai vertex iff 7(G) = 1.
G is a Gallai family if 7(G) =1 for each connected G € G.

vy

» A graph not containing an induced copy of H is H-free.

v

A graph H is a fixer if the H-free graphs form a Gallai family.

Question
Which graphs are fixers?



Gallai Families

v

A Gallai vertex is a vertex belonging to every longest path.
A graph G has a Gallai vertex iff 7(G) = 1.
G is a Gallai family if 7(G) =1 for each connected G € G.

vy

» A graph not containing an induced copy of H is H-free.

v

A graph H is a fixer if the H-free graphs form a Gallai family.

Question
Which graphs are fixers?

Theorem
» If H is a fixer, then H is a linear forest with |V (H)| < 9.



Gallai Families

v

A Gallai vertex is a vertex belonging to every longest path.
A graph G has a Gallai vertex iff 7(G) = 1.
G is a Gallai family if 7(G) =1 for each connected G € G.

vy

» A graph not containing an induced copy of H is H-free.

v

A graph H is a fixer if the H-free graphs form a Gallai family.

Question
Which graphs are fixers?

Theorem
» If H is a fixer, then H is a linear forest with |V (H)| < 9.
» This suffices when |V (H)| < 4.
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Theorem: 5P; is a fixer.
Equivalently, if «(G) < 4 and G is connected, then 7(G) = 1.

: » s it true that 7(G) = 1 when
é\é a(G) <5 and G is connected?
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N » This would be best possible.
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Chvétal-Erdés: if a(G) < k(G), then G has a spanning cycle.
If a(G) < k(G)+ 1, then G has a spanning path.
If a(G) < k(G)+1, then 7(G) = 1.
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Theorem: 5P; is a fixer.
Equivalently, if «(G) < 4 and G is connected, then 7(G) = 1.

: » s it true that 7(G) = 1 when
é\é a(G) <5 and G is connected?
/ \

N » This would be best possible.

v

» Chvatal-Erdds: if a(G) < k(G), then G has a spanning cycle.
» If (G) < k(G) + 1, then G has a spanning path.
> If o(G) < k(G)+1, then 7(G) = 1.

Theorem

For each positive k, there exists ng such that if G is an n-vertex
k-connected graph with n > ng and o(G) < k + 2, then 7(G) = 1.
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Example: P, + 2P; is a fixer

Proposition
{ ’ If G is a connected (P + 2P;)-free graph and
| S d(u) = A(G), then u is a Gallai vertex.
Py + 2Py
Proof:

Vo Ve

W

u

> P=\y...v, longest path
» V(G) — V(P) is an independent set.
» Let u be a vertex with d(u) = k = A(G).
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Example: P, + 2P; is a fixer

Proposition
I ’ If G is a connected (P + 2P;)-free graph and
| S d(u) = A(G), then u is a Gallai vertex.
Py + 2Py
Proof:

° Vyp

» Each vertex in S has at most 1 non-neighbor in T.
» Each vertex in S has at least k neighbors in T.
» Each vertex in S has degree at least k+1, and k+1 > A(G).
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Example: P, + 2P; is a fixer

Proposition
{ ’ If G is a connected (P + 2P;)-free graph and
| S d(u) = A(G), then u is a Gallai vertex.
Py + 2Py

» Vertices of degree A(G) — 1 need not be Gallai.
» Let M be a maximum matching in K; ¢40.
> Let G = Kt,t+2 — M.

Gallai vertices

Non-Gallai vertices

» Two non-Gallai vertices of degree A(G) — 1.
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Potential fixers

Lemma
If H is a fixer, then H is a linear forest on at most 9 vertices.

» If G has no Gallai vertex,
then H is induced in G.

» Subdividing the edges in G
many times implies H is
acyclic.

» Replacing each vertex of
degree three with a triangle

/ implies H is Ki 3-free.

» So H is a linear forest.

G > [V(H)| < |V(6)| -3 =9.
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Fixers of order 4

Theorem
If H is a fixer, then H is a linear forest on at most 9 vertices and
this is sufficient when |V (H)| < 4.

Lemmas
» Let G be a connected graph.
» If G is Ps-free and d(u) > A(G) — 1, then u is Gallai.
» If G is (P3+ P1)-free and d(u) > A(G) — 1, then u is Gallai.
>
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(Golan—Shan (2018))

If G is (P2 + 2P;)-free and d(u) > A(G), then u is Gallai.
If G is 4P;-free and d(u) > A(G) — 1, then u is Gallai.

vy

> All degree conditions are sharp, except that possibly
d(u) > A(G) — 1 is sufficient in the case of 2P,-free graphs.
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A 5-vertex fixer

» G is 5P;-free if and only if a(G) < 4.
» When «a(G) < 4, vertices of max. degree need not be Gallai:

Y/YW Z%x

~

Theorem
If G is connected and a(G) < 4, then G has a Gallai vertex. That
is, 5P1 is a fixer.
> The 12-vertex counter-example has independence number 6.
> Is 6P; a fixer?
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Summary and Open Problems

Theorem
Let R be a connected m-edge multigraph. If G is an n-vertex
graph and k(G) > m?, then Tr(G) < 8m®/3n3/4,

Theorem
If a(G) < 4, then 7(G) = 1.

Open Problems
» Does a(G) < 5 imply 7(G) = 1? (Would be best possible.)
Improve on 7(G) < Cn3/* for connected G.

>
» |s there a graph G such that 7(G) > 47
>

Is there a multigraph R such that for each k, there is a graph
Gk such that the maximum R-subdivisions in Gy are pairwise
intersecting and Tgr(G) > k7

Thank You.
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