Longest Path Transversals and Gallai Families

James A. Long Jr. Kevin G. Milans (milans@math.wvu.edu) Andrea Munaro

Illinois Institute of Technology (online) Oct 9, 2020

Easy exercise: if P and Q are longest paths in a connected graph, then some vertex belongs to both.

- Easy exercise: if P and Q are longest paths in a connected graph, then some vertex belongs to both.
- ▶ Gallai (1966): Is some vertex common to every longest path?

- Easy exercise: if P and Q are longest paths in a connected graph, then some vertex belongs to both.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

- Easy exercise: if P and Q are longest paths in a connected graph, then some vertex belongs to both.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

Counter-example (Walther, T.I. Zamfirescu)

Petersen Graph

- Easy exercise: if P and Q are longest paths in a connected graph, then some vertex belongs to both.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

Counter-example (Walther, T.I. Zamfirescu)

Petersen Graph

Split vertex

- Easy exercise: if P and Q are longest paths in a connected graph, then some vertex belongs to both.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

Counter-example (Walther, T.I. Zamfirescu)

Petersen Graph

Split vertex

Redrawn

Two natural questions

How many vertices are needed to hit every longest path in an *n*-vertex connected graph?

Two natural questions

- How many vertices are needed to hit every longest path in an *n*-vertex connected graph?
- For which graphs does Gallai's question have a positive answer?

A set S ⊆ V(G) is a longest path transversal or Gallai set if every longest path intersects S.

A set S ⊆ V(G) is a longest path transversal or Gallai set if every longest path intersects S.

• Let $\tau(G)$ be the min. size of a Gallai set in G.

- A set S ⊆ V(G) is a longest path transversal or Gallai set if every longest path intersects S.
- Let $\tau(G)$ be the min. size of a Gallai set in G.

Theorem (Rautenbach–Sereni (2014))

If G is a connected n-vertex graph, then $\tau(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.

- A set S ⊆ V(G) is a longest path transversal or Gallai set if every longest path intersects S.
- Let $\tau(G)$ be the min. size of a Gallai set in G.
- Theorem (Rautenbach–Sereni (2014))

If G is a connected n-vertex graph, then $\tau(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.

There is a connected 12-vertex graph G with \(\tau(G)) = 2.\)

- A set S ⊆ V(G) is a longest path transversal or Gallai set if every longest path intersects S.
- Let $\tau(G)$ be the min. size of a Gallai set in G.
- Theorem (Rautenbach–Sereni (2014))

If G is a connected n-vertex graph, then $\tau(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.

There is a connected 12-vertex graph G with \(\tau(G)) = 2.\)

Theorem (Grünbaum (1974))

There is a connected 324-vertex graph G with $\tau(G) = 3$.

- A set S ⊆ V(G) is a longest path transversal or Gallai set if every longest path intersects S.
- Let $\tau(G)$ be the min. size of a Gallai set in G.
- Theorem (Rautenbach–Sereni (2014))

If G is a connected n-vertex graph, then $\tau(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.

There is a connected 12-vertex graph G with \(\tau(G)) = 2.\)

Theorem (Grünbaum (1974))

There is a connected 324-vertex graph G with $\tau(G) = 3$.

• Let $\tau(n) = \max{\{\tau(G): |V(G)| = n \text{ and } G \text{ is connected}\}}.$

- A set S ⊆ V(G) is a longest path transversal or Gallai set if every longest path intersects S.
- Let $\tau(G)$ be the min. size of a Gallai set in G.
- Theorem (Rautenbach–Sereni (2014))

If G is a connected n-vertex graph, then $\tau(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.

There is a connected 12-vertex graph G with \(\tau(G)) = 2.\)

Theorem (Grünbaum (1974))

There is a connected 324-vertex graph G with $\tau(G) = 3$.

- Let $\tau(n) = \max{\{\tau(G): |V(G)| = n \text{ and } G \text{ is connected}\}}.$
- Probably $\tau(n)$ is small, perhaps even bounded.

Theorem $\tau(n) \leq 8n^{3/4}$

Theorem $\tau(n) \leq 8n^{3/4}$

• Our aim: show that $\tau(n) \leq Cn^{4/5}$ (up to minor details).

Theorem $\tau(n) \leq 8n^{3/4}$

• Our aim: show that $\tau(n) \leq Cn^{4/5}$ (up to minor details).

• Let $\mathcal{L}(G)$ be the set of longest paths in G.

Theorem $\tau(n) \leq 8n^{3/4}$

- Our aim: show that $\tau(n) \leq Cn^{4/5}$ (up to minor details).
- Let $\mathcal{L}(G)$ be the set of longest paths in G.

Menger's Theorem

Let A, B, S ⊆ V(G). The set S is an (A, B)-separator if G − S has no path from a vertex in A to a vertex in B.

Theorem $\tau(n) \leq 8n^{3/4}$

- Our aim: show that $\tau(n) \leq Cn^{4/5}$ (up to minor details).
- Let $\mathcal{L}(G)$ be the set of longest paths in G.

Menger's Theorem

- Let A, B, S ⊆ V(G). The set S is an (A, B)-separator if G - S has no path from a vertex in A to a vertex in B.
- Let A, B ⊆ V(G). An (A, B)-connector is a collection Q of vertex-disjoint paths such that each Q ∈ Q has one endpoint in A, the other endpoint in B, and internal vertices outside A ∪ B.

Theorem $\tau(n) \leq 8n^{3/4}$

- Our aim: show that $\tau(n) \leq Cn^{4/5}$ (up to minor details).
- Let $\mathcal{L}(G)$ be the set of longest paths in G.

Menger's Theorem

- Let A, B, S ⊆ V(G). The set S is an (A, B)-separator if G - S has no path from a vertex in A to a vertex in B.
- Let A, B ⊆ V(G). An (A, B)-connector is a collection Q of vertex-disjoint paths such that each Q ∈ Q has one endpoint in A, the other endpoint in B, and internal vertices outside A ∪ B.
- Theorem (Menger): the min. size of an (A, B)-separator equals the max. size of an (A, B)-connector.

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

 \blacktriangleright *H* is an induced subgraph of *G*

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

 \blacktriangleright *H* is an induced subgraph of *G*

$$\blacktriangleright X = V(G) - V(H)$$

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

 \blacktriangleright *H* is an induced subgraph of *G*

$$\blacktriangleright X = V(G) - V(H)$$

•
$$Y \subseteq X$$
 and $|Y| \leq \varepsilon |X|$

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

- \blacktriangleright *H* is an induced subgraph of *G*
- $\blacktriangleright X = V(G) V(H)$
- ► $Y \subseteq X$ and $|Y| \le \varepsilon |X|$
- If $P \in \mathcal{L}(G)$, then $P \subseteq H$ or $V(P) \cap Y \neq \emptyset$.

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

- \blacktriangleright *H* is an induced subgraph of *G*
- $\blacktriangleright X = V(G) V(H)$
- $Y \subseteq X$ and $|Y| \leq \varepsilon |X|$
- If $P \in \mathcal{L}(G)$, then $P \subseteq H$ or $V(P) \cap Y \neq \emptyset$.

Proof Idea

• Given a ε -partial transversal (H, X, Y), we either

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

- \blacktriangleright *H* is an induced subgraph of *G*
- $\blacktriangleright X = V(G) V(H)$
- $Y \subseteq X$ and $|Y| \leq \varepsilon |X|$
- If $P \in \mathcal{L}(G)$, then $P \subseteq H$ or $V(P) \cap Y \neq \emptyset$.

Proof Idea

- Given a ε -partial transversal (H, X, Y), we either
 - Find a Gallai set of size at most $Cn^{4/5}$, or

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

- \blacktriangleright *H* is an induced subgraph of *G*
- $\blacktriangleright X = V(G) V(H)$
- $Y \subseteq X$ and $|Y| \leq \varepsilon |X|$
- If $P \in \mathcal{L}(G)$, then $P \subseteq H$ or $V(P) \cap Y \neq \emptyset$.

Proof Idea

- Given a ε -partial transversal (H, X, Y), we either
 - Find a Gallai set of size at most $Cn^{4/5}$, or
 - Produce (H', X', Y') with |V(H')| < |V(H)|.

Definition

Let G be a graph. An ε -partial transversal is a triple (H, X, Y) such that

- \blacktriangleright *H* is an induced subgraph of *G*
- $\blacktriangleright X = V(G) V(H)$
- $Y \subseteq X$ and $|Y| \leq \varepsilon |X|$
- If $P \in \mathcal{L}(G)$, then $P \subseteq H$ or $V(P) \cap Y \neq \emptyset$.

Proof Idea

• Given a ε -partial transversal (H, X, Y), we either

- Find a Gallai set of size at most $Cn^{4/5}$, or
- ▶ Produce (H', X', Y') with |V(H')| < |V(H)|.</p>

Start with $(H, X, Y) = (G, \emptyset, \emptyset)$ and iterate.

• Let (H, X, Y) be a ε -partial transversal.

• Let (H, X, Y) be a ε -partial transversal.

▶ Does *H* have disjoint paths P_1 , P_2 of size εn ? Suppose not:

• Let (H, X, Y) be a ε -partial transversal.

- Does *H* have disjoint paths P_1 , P_2 of size εn ? Suppose not:
 - A longest path P in H has at most $2\varepsilon n$ vertices.

• Let (H, X, Y) be a ε -partial transversal.

- Does *H* have disjoint paths P_1 , P_2 of size εn ? Suppose not:
 - A longest path P in H has at most 2∈n vertices.
 - ► Either Y is a Gallai set or P ∈ L(G), implying that V(P) is a Gallai set.

• Let (H, X, Y) be a ε -partial transversal.

• Does *H* have disjoint paths P_1 , P_2 of size εn ? Suppose not:

- A longest path P in H has at most 2∈n vertices.
- ► Either Y is a Gallai set or P ∈ L(G), implying that V(P) is a Gallai set.
- $\quad \bullet \quad \tau(G) \leq \max\{|Y|, |V(P)|\} \leq 2\varepsilon n.$

• Let P_1, P_2 be disjoint paths in H of size εn .

- Let P_1, P_2 be disjoint paths in H of size εn .
- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.

- Let P_1, P_2 be disjoint paths in H of size εn .
- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- ► If we get a separator *S*:

• Let P_1, P_2 be disjoint paths in H of size εn .

- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- ► If we get a separator *S*:

• Let P_1, P_2 be disjoint paths in H of size εn .

- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- If we get a separator S:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.

• Let P_1, P_2 be disjoint paths in H of size εn .

- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- If we get a separator S:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.

• Let P_1, P_2 be disjoint paths in H of size εn .

- ▶ *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- If we get a separator S:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.
 - Let $Y' = Y \cup S$.

• Let P_1, P_2 be disjoint paths in H of size εn .

- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- If we get a separator S:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.
 - Let $Y' = Y \cup S$.
 - Note that H' is disjoint from P₁ or P₂.

• Let P_1, P_2 be disjoint paths in H of size εn .

- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- If we get a separator S:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.
 - Let $Y' = Y \cup S$.
 - Note that H' is disjoint from P₁ or P₂.
 - $|S| \leq \varepsilon \cdot \varepsilon n \leq \varepsilon \cdot |V(H) V(H')|.$

• Let P_1, P_2 be disjoint paths in H of size εn .

- ► *H* has a $(V(P_1), V(P_2))$ -separator *S* with $|S| \le \varepsilon^2 n$ or a $(V(P_1), V(P_2))$ -connector Q with $|Q| \ge \varepsilon^2 n$.
- If we get a separator S:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.
 - Let $Y' = Y \cup S$.
 - Note that H' is disjoint from P₁ or P₂.

$$|S| \leq \varepsilon \cdot \varepsilon n \leq \varepsilon \cdot |V(H) - V(H')|.$$

• (H', X', Y') is an ε -partial transversal.

• Let Q be a $(V(P_1), V(P_2))$ -connector with $|Q| \ge \varepsilon^2 n$.

Let Q be a (V(P₁), V(P₂))-connector with |Q| ≥ ε²n.
Average size of a path in Q is at most n/ε²n, or 1/ε².

- Let Q be a $(V(P_1), V(P_2))$ -connector with $|Q| \ge \varepsilon^2 n$.
- Average size of a path in Q is at most $\frac{n}{\varepsilon^2 n}$, or $\frac{1}{\varepsilon^2}$.
- At least half of the paths in Q have at most $\frac{2}{c^2}$ vertices.

- Let \mathcal{Q} be a $(V(P_1), V(P_2))$ -connector with $|\mathcal{Q}| \geq \varepsilon^2 n$.
- Average size of a path in Q is at most $\frac{n}{\varepsilon^2 n}$, or $\frac{1}{\varepsilon^2}$.
- At least half of the paths in Q have at most $\frac{2}{c^2}$ vertices.
- ▶ Let Q' be the set of $Q \in Q$ such that $|V(Q)| \leq \frac{2}{\varepsilon^2}$.

• Let Q be a $(V(P_1), V(P_2))$ -connector with $|Q| \ge \varepsilon^2 n$.

- Average size of a path in Q is at most $\frac{n}{\varepsilon^2 n}$, or $\frac{1}{\varepsilon^2}$.
- At least half of the paths in Q have at most $\frac{2}{c^2}$ vertices.
- Let \mathcal{Q}' be the set of $Q \in \mathcal{Q}$ such that $|V(Q)| \leq \frac{2}{\varepsilon^2}$.
- Choose Q₁, Q₂ ∈ Q' to maximize the distance between the endpoints in P₁.

- Let Q be a $(V(P_1), V(P_2))$ -connector with $|Q| \ge \varepsilon^2 n$.
- Average size of a path in Q is at most $\frac{n}{\varepsilon^2 n}$, or $\frac{1}{\varepsilon^2}$.
- At least half of the paths in Q have at most $\frac{2}{c^2}$ vertices.
- Let \mathcal{Q}' be the set of $Q \in \mathcal{Q}$ such that $|V(Q)| \leq \frac{2}{\varepsilon^2}$.
- Choose Q₁, Q₂ ∈ Q' to maximize the distance between the endpoints in P₁.
- Let C be the cycle formed by P_1 , P_2 , Q_1 , and Q_2 .

- Let Q be a $(V(P_1), V(P_2))$ -connector with $|Q| \ge \varepsilon^2 n$.
- Average size of a path in Q is at most $\frac{n}{\varepsilon^2 n}$, or $\frac{1}{\varepsilon^2}$.
- At least half of the paths in Q have at most $\frac{2}{c^2}$ vertices.
- Let \mathcal{Q}' be the set of $Q \in \mathcal{Q}$ such that $|V(Q)| \leq \frac{2}{\varepsilon^2}$.
- Choose Q₁, Q₂ ∈ Q' to maximize the distance between the endpoints in P₁.
- Let C be the cycle formed by P_1 , P_2 , Q_1 , and Q_2 .
- Note that $\frac{\varepsilon^2 n}{2} \leq |V(C)| \leq 2\varepsilon n + 2 \cdot \frac{2}{\varepsilon^2}$.

$$\geq \frac{\varepsilon^2 n}{2} \leq |V(C)| \leq 2\varepsilon n + 2 \cdot \frac{2}{\varepsilon^2}$$

$$\frac{\varepsilon^2 n}{2} \le |V(C)| \le 2\varepsilon n + 2 \cdot \frac{2}{\varepsilon^2}$$
▶ Is V(C) ∪ Y a Gallai set?

$$\frac{\varepsilon^2 n}{2} \leq |V(C)| \leq 2\varepsilon n + 2 \cdot \frac{2}{\varepsilon^2}$$

▶ Is
$$V(C) \cup Y$$
 a Gallai set?

• If yes, then $\tau(G) \leq |Y| + |V(C)| \leq 3\varepsilon n + \frac{4}{\varepsilon^2}$.

$$\quad \epsilon^{\frac{2^{n}}{2}} \leq |V(C)| \leq 2\varepsilon n + 2 \cdot \frac{2}{\varepsilon^{2}}$$

- If yes, then $\tau(G) \leq |Y| + |V(C)| \leq 3\varepsilon n + \frac{4}{\varepsilon^2}$.
- Otherwise, H contains a path $P \in \mathcal{L}(G)$ disjoint from C.

$$\quad \epsilon^{\frac{\varepsilon^2 n}{2}} \leq |V(C)| \leq 2\varepsilon n + 2 \cdot \frac{2}{\varepsilon^2}$$

▶ Is $V(C) \cup Y$ a Gallai set?

- ▶ If yes, then $\tau(G) \leq |Y| + |V(C)| \leq 3\varepsilon n + \frac{4}{\varepsilon^2}$.
- Otherwise, H contains a path $P \in \mathcal{L}(G)$ disjoint from C.
- Note that $|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}$.

►
$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}$$
.

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.

• If we get a separator *S* with $|S| \leq \frac{\varepsilon^3 n}{2}$:

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.

• If we get a separator *S* with $|S| \leq \frac{\varepsilon^3 n}{2}$:

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- ▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.
- If we get a separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- ▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.
- If we get a separator S with $|S| \leq \frac{\varepsilon^3 n}{2}$:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - ▶ Let $X' = X \cup (V(H) V(H'))$.

$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- ▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.
- If we get a separator S with $|S| \leq \frac{\varepsilon^3 n}{2}$:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.

• Let
$$X' = X \cup (V(H) - V(H'))$$
.

• Let $Y' = Y \cup S$.

$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- ▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.
- If we get a separator S with $|S| \leq \frac{\varepsilon^3 n}{2}$:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.
 - Let $Y' = Y \cup S$.

Note that H' is disjoint from C or P.

$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- ▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.
- If we get a separator S with $|S| \leq \frac{\varepsilon^3 n}{2}$:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.
 - Let $Y' = Y \cup S$.
 - ▶ Note that H' is disjoint from C or P.

$$|S| \leq \varepsilon \cdot \frac{\varepsilon^2 n}{2} \leq \varepsilon \cdot |V(H) - V(H')|.$$

$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- ▶ *H* has a (*V*(*C*), *V*(*P*))-separator *S* with $|S| \le \frac{\varepsilon^3 n}{2}$ or a (*V*(*C*), *V*(*P*))-connector *Q* with $|Q| \ge \frac{\varepsilon^3 n}{2}$.
- If we get a separator S with $|S| \leq \frac{\varepsilon^3 n}{2}$:
 - At most one component H' of H S contains paths in $\mathcal{L}(G)$.
 - Let $X' = X \cup (V(H) V(H'))$.
 - Let $Y' = Y \cup S$.
 - Note that H' is disjoint from C or P.

$$|S| \leq \varepsilon \cdot \frac{\varepsilon^2 n}{2} \leq \varepsilon \cdot |V(H) - V(H')|.$$

• (H', X', Y') is an ε -partial transversal.

►
$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}$$
.

$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a (V(C), V(P))-connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in \mathcal{Q}$ to minimize dist. between endpoints in *P*.

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a (V(C), V(P))-connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in \mathcal{Q}$ to minimize dist. between endpoints in *P*.

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a $(V(\mathcal{C}), V(\mathcal{P}))$ -connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in Q$ to minimize dist. between endpoints in *P*.
- ▶ Dist. between ends of Q_1 and Q_2 on P is roughly at most $\frac{2}{\epsilon^3}$.

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a $(V(\mathcal{C}), V(\mathcal{P}))$ -connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in \mathcal{Q}$ to minimize dist. between endpoints in P.
- ▶ Dist. between ends of Q_1 and Q_2 on P is roughly at most $\frac{2}{\epsilon^3}$.

• If
$$\frac{2}{\varepsilon^3} < \frac{1}{2}|V(C)|$$
, then we obtain a longer path.

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a $(V(\mathcal{C}), V(\mathcal{P}))$ -connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in \mathcal{Q}$ to minimize dist. between endpoints in P.
- ▶ Dist. between ends of Q_1 and Q_2 on P is roughly at most $\frac{2}{\epsilon^3}$.
- If $\frac{2}{\varepsilon^3} < \frac{1}{2} |V(C)|$, then we obtain a longer path.

$$\blacktriangleright |V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a (V(C), V(P))-connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in \mathcal{Q}$ to minimize dist. between endpoints in P.
- ▶ Dist. between ends of Q_1 and Q_2 on P is roughly at most $\frac{2}{\epsilon^3}$.
- If $\frac{2}{\varepsilon^3} < \frac{1}{2}|V(C)|$, then we obtain a longer path.
- Set ε large enough so that $\frac{2}{\varepsilon^3} < \frac{\varepsilon^2 n}{4}$ to avoid this case.

$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a (V(C), V(P))-connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in \mathcal{Q}$ to minimize dist. between endpoints in P.
- ▶ Dist. between ends of Q_1 and Q_2 on P is roughly at most $\frac{2}{\epsilon^3}$.
- If $\frac{2}{\varepsilon^3} < \frac{1}{2}|V(C)|$, then we obtain a longer path.
- Set ε large enough so that ²/_{ε³} < ^{ε²n}/₄ to avoid this case.
 Take ε = cn^{-1/5}.

$$|V(P)| \ge |V(C)| \ge \frac{\varepsilon^2 n}{2}.$$

- Let \mathcal{Q} be a (V(C), V(P))-connector with $|\mathcal{Q}| \geq \frac{\varepsilon^3 n}{2}$.
- Choose $Q_1, Q_2 \in \mathcal{Q}$ to minimize dist. between endpoints in P.
- ▶ Dist. between ends of Q_1 and Q_2 on P is roughly at most $\frac{2}{\epsilon^3}$.
- If $\frac{2}{\varepsilon^3} < \frac{1}{2}|V(C)|$, then we obtain a longer path.
- Set ε large enough so that $\frac{2}{\varepsilon^3} < \frac{\varepsilon^2 n}{4}$ to avoid this case.

• Take
$$\varepsilon = cn^{-1/5}$$

• $\tau(G) \leq \max\{2\varepsilon n, 3\varepsilon n + \frac{4}{\varepsilon^2}\} \leq Cn^{4/5}$

► For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.
- A C_2 -transversal is a longest cycle transversal.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.
- ► A C₂-transversal is a longest cycle transversal.
- Let $\tau_R(G)$ be the minimum size of an *R*-transversal in *G*.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.
- A C_2 -transversal is a longest cycle transversal.
- Let $\tau_R(G)$ be the minimum size of an *R*-transversal in *G*.

Theorem

Let R be a connected m-edge multigraph with $m \ge 1$ and let G be an n-vertex graph. If the maximum R-subdivisions of G pairwise intersect, then $\tau_R(G) \le 8m^{5/4}n^{3/4}$.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.
- ► A C₂-transversal is a longest cycle transversal.
- Let $\tau_R(G)$ be the minimum size of an *R*-transversal in *G*.

Theorem

Let R be a connected m-edge multigraph with $m \ge 1$ and let G be an n-vertex graph. If the maximum R-subdivisions of G pairwise intersect, then $\tau_R(G) \le 8m^{5/4}n^{3/4}$.

Corollary

Let G be an n-vertex graph.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.
- ► A C₂-transversal is a longest cycle transversal.
- Let $\tau_R(G)$ be the minimum size of an *R*-transversal in *G*.

Theorem

Let R be a connected m-edge multigraph with $m \ge 1$ and let G be an n-vertex graph. If the maximum R-subdivisions of G pairwise intersect, then $\tau_R(G) \le 8m^{5/4}n^{3/4}$.

Corollary

Let G be an n-vertex graph.

• If G is connected, then $\tau(G) \leq 8n^{3/4}$.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.
- ► A C₂-transversal is a longest cycle transversal.
- Let $\tau_R(G)$ be the minimum size of an *R*-transversal in *G*.

Theorem

Let R be a connected m-edge multigraph with $m \ge 1$ and let G be an n-vertex graph. If the maximum R-subdivisions of G pairwise intersect, then $\tau_R(G) \le 8m^{5/4}n^{3/4}$.

Corollary

Let G be an n-vertex graph.

- If G is connected, then $\tau(G) \leq 8n^{3/4}$.
- If G is 2-connected, then $\tau_{C_2}(G) \leq 20n^{3/4}$.

- ▶ For a multigraph *R*, an *R*-transversal in *G* is a set of vertices that intersects every maximum subdivision of *R*.
- A P_2 -transversal is a Gallai set/longest path transversal.
- ► A C₂-transversal is a longest cycle transversal.
- Let $\tau_R(G)$ be the minimum size of an *R*-transversal in *G*.

Theorem

Let R be a connected m-edge multigraph with $m \ge 1$ and let G be an n-vertex graph. If the maximum R-subdivisions of G pairwise intersect, then $\tau_R(G) \le 8m^{5/4}n^{3/4}$.

Corollary

Let G be an n-vertex graph.

- If G is connected, then $\tau(G) \leq 8n^{3/4}$.
- If G is 2-connected, then $\tau_{C_2}(G) \leq 20n^{3/4}$.
- If $\kappa(G) > m^2$ and R is a connected m-edge multigraph, then $\tau_R(G) \le 8m^{5/4}n^{3/4}$.

► A Gallai vertex is a vertex belonging to every longest path.

► A Gallai vertex is a vertex belonging to every longest path.

• A graph G has a Gallai vertex iff $\tau(G) = 1$.

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.
- \mathcal{G} is a Gallai family if $\tau(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.

A Gallai vertex is a vertex belonging to every longest path.
A graph G has a Gallai vertex iff τ(G) = 1.
G is a Gallai family if τ(G) = 1 for each connected G ∈ G.
Some known Gallai families:

► A Gallai vertex is a vertex belonging to every longest path.

• A graph G has a Gallai vertex iff $\tau(G) = 1$.

• \mathcal{G} is a Gallai family if $\tau(G) = 1$ for each connected $G \in \mathcal{G}$. Some known Gallai families:

Klavžar–Petkovšek (1990): split graphs and cacti

► A Gallai vertex is a vertex belonging to every longest path.

• A graph G has a Gallai vertex iff $\tau(G) = 1$.

• \mathcal{G} is a Gallai family if $\tau(G) = 1$ for each connected $G \in \mathcal{G}$. Some known Gallai families:

Klavžar–Petkovšek (1990): split graphs and cacti

Balister–Győri–Lehel–Schelp (2004): interval graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.

- Klavžar–Petkovšek (1990): split graphs and cacti
- Balister–Győri–Lehel–Schelp (2004): interval graphs
- Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.

- Klavžar–Petkovšek (1990): split graphs and cacti
- Balister–Győri–Lehel–Schelp (2004): interval graphs
- Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
- ▶ BGLS+Joos (2015): circular arc graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.

- Klavžar–Petkovšek (1990): split graphs and cacti
- Balister–Győri–Lehel–Schelp (2004): interval graphs
- Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
- ▶ BGLS+Joos (2015): circular arc graphs
- Jobson–Kézdy–Lehel–White (2016): P₄-free graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.

- Klavžar–Petkovšek (1990): split graphs and cacti
- Balister–Győri–Lehel–Schelp (2004): interval graphs
- Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
- ▶ BGLS+Joos (2015): circular arc graphs
- Jobson–Kézdy–Lehel–White (2016): P₄-free graphs
- Cerioli–Lima (2016): P₄-sparse graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.

- Klavžar–Petkovšek (1990): split graphs and cacti
- Balister–Győri–Lehel–Schelp (2004): interval graphs
- Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
- ▶ BGLS+Joos (2015): circular arc graphs
- Jobson–Kézdy–Lehel–White (2016): P₄-free graphs
- Cerioli–Lima (2016): P₄-sparse graphs
- Chen-Ehrenmüller-Fernandes-Heise-Shan-Yang-Yates (2017): K₄-minor-free graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.

- Klavžar–Petkovšek (1990): split graphs and cacti
- Balister–Győri–Lehel–Schelp (2004): interval graphs
- Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
- ▶ BGLS+Joos (2015): circular arc graphs
- Jobson–Kézdy–Lehel–White (2016): P₄-free graphs
- Cerioli–Lima (2016): P₄-sparse graphs
- Chen-Ehrenmüller-Fernandes-Heise-Shan-Yang-Yates (2017): K₄-minor-free graphs
- ► Golan–Shan (2018): 2P₂-free graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.
- \mathcal{G} is a Gallai family if $\tau(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- ▶ A graph not containing an induced copy of *H* is *H*-free.

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.
- \mathcal{G} is a Gallai family if $\tau(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- ▶ A graph not containing an induced copy of *H* is *H*-free.
- ▶ A graph *H* is a fixer if the *H*-free graphs form a Gallai family.

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.
- \mathcal{G} is a Gallai family if $\tau(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- ► A graph not containing an induced copy of *H* is *H*-free.
- ► A graph *H* is a fixer if the *H*-free graphs form a Gallai family.

Question

Which graphs are fixers?

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.
- \mathcal{G} is a Gallai family if $\tau(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- ▶ A graph not containing an induced copy of *H* is *H*-free.
- ► A graph *H* is a fixer if the *H*-free graphs form a Gallai family.

Question

Which graphs are fixers?

Theorem

• If H is a fixer, then H is a linear forest with $|V(H)| \leq 9$.

- ► A Gallai vertex is a vertex belonging to every longest path.
- A graph G has a Gallai vertex iff $\tau(G) = 1$.
- \mathcal{G} is a Gallai family if $\tau(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- ► A graph not containing an induced copy of *H* is *H*-free.
- ▶ A graph *H* is a fixer if the *H*-free graphs form a Gallai family.

Question

Which graphs are fixers?

Theorem

- If H is a fixer, then H is a linear forest with $|V(H)| \leq 9$.
- This suffices when $|V(H)| \leq 4$.

Gallai Families and Independence Number

• Theorem: $5P_1$ is a fixer.

Gallai Families and Independence Number

- Theorem: $5P_1$ is a fixer.
- Equivalently, if $\alpha(G) \leq 4$ and G is connected, then $\tau(G) = 1$.

Gallai Families and Independence Number

• Theorem: $5P_1$ is a fixer.

• Equivalently, if $\alpha(G) \leq 4$ and G is connected, then $\tau(G) = 1$.

Is it true that τ(G) = 1 when α(G) ≤ 5 and G is connected?
- Theorem: $5P_1$ is a fixer.
- Equivalently, if $\alpha(G) \leq 4$ and G is connected, then $\tau(G) = 1$.

- ▶ Is it true that $\tau(G) = 1$ when $\alpha(G) \leq 5$ and G is connected?
- ► This would be best possible.

- Theorem: $5P_1$ is a fixer.
- Equivalently, if $\alpha(G) \leq 4$ and G is connected, then $\tau(G) = 1$.

- ▶ Is it true that $\tau(G) = 1$ when $\alpha(G) \le 5$ and G is connected?
- ► This would be best possible.

▶ Chvátal–Erdős: if $\alpha(G) \leq \kappa(G)$, then G has a spanning cycle.

- Theorem: $5P_1$ is a fixer.
- Equivalently, if $\alpha(G) \leq 4$ and G is connected, then $\tau(G) = 1$.

- Is it true that \(\tau(G)) = 1\) when \(\alpha(G)) ≤ 5\) and \(G) is connected?\)
- ► This would be best possible.
- Chvátal–Erdős: if α(G) ≤ κ(G), then G has a spanning cycle.
 If α(G) ≤ κ(G) + 1, then G has a spanning path.

- Theorem: $5P_1$ is a fixer.
- Equivalently, if $\alpha(G) \leq 4$ and G is connected, then $\tau(G) = 1$.

- Is it true that \(\tau(G)) = 1\) when \(\alpha(G)) ≤ 5\) and \(G) is connected?\)
- ► This would be best possible.
- ▶ Chvátal–Erdős: if $\alpha(G) \leq \kappa(G)$, then G has a spanning cycle.
- If $\alpha(G) \leq \kappa(G) + 1$, then G has a spanning path.
- If $\alpha(G) \leq \kappa(G) + 1$, then $\tau(G) = 1$.

- Theorem: $5P_1$ is a fixer.
- Equivalently, if $\alpha(G) \leq 4$ and G is connected, then $\tau(G) = 1$.

- Is it true that \(\tau(G)) = 1\) when \(\alpha(G)) ≤ 5\) and \(G) is connected?\)
- ► This would be best possible.
- ▶ Chvátal–Erdős: if $\alpha(G) \leq \kappa(G)$, then G has a spanning cycle.
- If $\alpha(G) \leq \kappa(G) + 1$, then G has a spanning path.
- If $\alpha(G) \leq \kappa(G) + 1$, then $\tau(G) = 1$.

Theorem

For each positive k, there exists n_0 such that if G is an n-vertex k-connected graph with $n \ge n_0$ and $\alpha(G) \le k + 2$, then $\tau(G) = 1$.

Proposition

If G is a connected $(P_2 + 2P_1)$ -free grap $d(u) = \Delta(G)$, then u is a Gallai vertex. $P_2 + 2P_1$ If G is a connected $(P_2 + 2P_1)$ -free graph and

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

$$\triangleright$$
 $P = v_0 \dots v_\ell$, longest path

Proposition

• V(G) - V(P) is an independent set.

Proposition

If G is a connected
$$(P_2 + 2P_1)$$
-free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

▶ $P = v_0 \dots v_\ell$, longest path

• V(G) - V(P) is an independent set.

• Let u be a vertex with $d(u) = k = \Delta(G)$.

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

 \blacktriangleright S = N(u)

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

▶
$$S = N(u)$$

▶ $T = \{v_0\} \cup \{v_{i+1}: v_i \in S\}$

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

▶
$$S = N(u)$$

▶ $T = \{v_0\} \cup \{v_{i+1}: v_i \in S\}$

T is an independent set

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

• S = N(u)• $T = \{v_0\} \cup \{v_{i+1}: v_i \in S\}$

T is an independent set

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

• S = N(u)• $T = \{v_0\} \cup \{v_{i+1}: v_i \in S\}$

T is an independent set

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

Each vertex in S has at most 1 non-neighbor in T.

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

Each vertex in S has at most 1 non-neighbor in T.

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

Each vertex in S has at most 1 non-neighbor in T.

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

Each vertex in S has at most 1 non-neighbor in T.

Each vertex in S has at least k neighbors in T.

Proposition

If G is a connected $(P_2 + 2P_1)$ -free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.

Proof:

- Each vertex in S has at most 1 non-neighbor in T.
- Each vertex in S has at least k neighbors in T.
- Each vertex in S has degree at least k + 1, and $k + 1 > \Delta(G)$.

Proposition

If G is a connected
$$(P_2 + 2P_1)$$
-free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.
 $P_2 + 2P_1$

▶ Vertices of degree $\Delta(G) - 1$ need not be Gallai.

If G is a connected
$$(P_2 + 2P_1)$$
-free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.
 $P_2 + 2P_1$

- Vertices of degree $\Delta(G) 1$ need not be Gallai.
- Let *M* be a maximum matching in $K_{t,t+2}$.

If G is a connected
$$(P_2 + 2P_1)$$
-free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.
 $P_2 + 2P_1$

- Vertices of degree $\Delta(G) 1$ need not be Gallai.
- Let *M* be a maximum matching in $K_{t,t+2}$.

• Let
$$G = K_{t,t+2} - M$$
.

If G is a connected
$$(P_2 + 2P_1)$$
-free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.
 $P_2 + 2P_1$

- Vertices of degree $\Delta(G) 1$ need not be Gallai.
- Let *M* be a maximum matching in $K_{t,t+2}$.

• Let
$$G = K_{t,t+2} - M$$
.

Proposition

If G is a connected
$$(P_2 + 2P_1)$$
-free graph and $d(u) = \Delta(G)$, then u is a Gallai vertex.
 $P_2 + 2P_1$

- Vertices of degree $\Delta(G) 1$ need not be Gallai.
- Let *M* be a maximum matching in $K_{t,t+2}$.

• Let
$$G = K_{t,t+2} - M$$
.

• Two non-Gallai vertices of degree $\Delta(G) - 1$.

Lemma

Lemma

If H is a fixer, then H is a linear forest on at most 9 vertices.

If G has no Gallai vertex, then H is induced in G.

Lemma

If H is a fixer, then H is a linear forest on at most 9 vertices.

If G has no Gallai vertex, then H is induced in G.

Lemma

- If G has no Gallai vertex, then H is induced in G.
- Subdividing the edges in G many times implies H is acyclic.

Lemma

- If G has no Gallai vertex, then H is induced in G.
- Subdividing the edges in G many times implies H is acyclic.
- Replacing each vertex of degree three with a triangle implies *H* is K_{1,3}-free.

Lemma

- If G has no Gallai vertex, then H is induced in G.
- Subdividing the edges in G many times implies H is acyclic.
- Replacing each vertex of degree three with a triangle implies *H* is K_{1,3}-free.
- So H is a linear forest.

Lemma

- If G has no Gallai vertex, then H is induced in G.
- Subdividing the edges in G many times implies H is acyclic.
- Replacing each vertex of degree three with a triangle implies *H* is K_{1,3}-free.
- So *H* is a linear forest.
- ► $|V(H)| \le |V(G)| 3 = 9.$

Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

Lemmas

▶ Let *G* be a connected graph.

Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

Lemmas

- ▶ Let *G* be a connected graph.
- ▶ If G is P_4 -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.

Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

Lemmas

- Let G be a connected graph.
- If G is P_4 -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- ▶ If G is $(P_3 + P_1)$ -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

- Let G be a connected graph.
- ▶ If G is P_4 -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- ▶ If G is $(P_3 + P_1)$ -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- If G is 2P₂-free and d(u) ≥ Δ(G), then u is Gallai. (Golan-Shan (2018))

Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

- Let G be a connected graph.
- If G is P_4 -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- If G is $(P_3 + P_1)$ -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- If G is 2P₂-free and d(u) ≥ Δ(G), then u is Gallai. (Golan–Shan (2018))
- If G is $(P_2 + 2P_1)$ -free and $d(u) \ge \Delta(G)$, then u is Gallai.

Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

- Let G be a connected graph.
- If G is P_4 -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- If G is $(P_3 + P_1)$ -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- If G is 2P₂-free and d(u) ≥ Δ(G), then u is Gallai. (Golan–Shan (2018))
- If G is $(P_2 + 2P_1)$ -free and $d(u) \ge \Delta(G)$, then u is Gallai.
- If G is $4P_1$ -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.

Theorem

If H is a fixer, then H is a linear forest on at most 9 vertices and this is sufficient when $|V(H)| \le 4$.

- Let G be a connected graph.
- If G is P_4 -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- If G is $(P_3 + P_1)$ -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- If G is 2P₂-free and d(u) ≥ Δ(G), then u is Gallai. (Golan–Shan (2018))
- If G is $(P_2 + 2P_1)$ -free and $d(u) \ge \Delta(G)$, then u is Gallai.
- If G is $4P_1$ -free and $d(u) \ge \Delta(G) 1$, then u is Gallai.
- All degree conditions are sharp, except that possibly d(u) ≥ Δ(G) − 1 is sufficient in the case of 2P₂-free graphs.

• G is 5P₁-free if and only if $\alpha(G) \leq 4$.

- G is 5P₁-free if and only if $\alpha(G) \leq 4$.
- When $\alpha(G) \leq 4$, vertices of max. degree need not be Gallai:

- G is 5P₁-free if and only if $\alpha(G) \leq 4$.
- When $\alpha(G) \leq 4$, vertices of max. degree need not be Gallai:

Theorem

If G is connected and $\alpha(G) \leq 4$, then G has a Gallai vertex. That is, $5P_1$ is a fixer.

- G is 5P₁-free if and only if $\alpha(G) \leq 4$.
- When $\alpha(G) \leq 4$, vertices of max. degree need not be Gallai:

Theorem

If G is connected and $\alpha(G) \leq 4$, then G has a Gallai vertex. That is, $5P_1$ is a fixer.

▶ The 12-vertex counter-example has independence number 6.

- G is 5P₁-free if and only if $\alpha(G) \leq 4$.
- When $\alpha(G) \leq 4$, vertices of max. degree need not be Gallai:

Theorem

If G is connected and $\alpha(G) \leq 4$, then G has a Gallai vertex. That is, $5P_1$ is a fixer.

- ▶ The 12-vertex counter-example has independence number 6.
- ▶ Is 6P₁ a fixer?

Theorem

Let R be a connected m-edge multigraph. If G is an n-vertex graph and $\kappa(G) > m^2$, then $\tau_R(G) \le 8m^{5/3}n^{3/4}$.

Theorem

Let R be a connected m-edge multigraph. If G is an n-vertex graph and $\kappa(G) > m^2$, then $\tau_R(G) \le 8m^{5/3}n^{3/4}$.

Theorem If $\alpha(G) \leq 4$, then $\tau(G) = 1$.

Theorem

Let R be a connected m-edge multigraph. If G is an n-vertex graph and $\kappa(G) > m^2$, then $\tau_R(G) \le 8m^{5/3}n^{3/4}$.

Theorem If $\alpha(G) \leq 4$, then $\tau(G) = 1$.

Open Problems

▶ Does $\alpha(G) \leq 5$ imply $\tau(G) = 1$? (Would be best possible.)

Theorem

Let R be a connected m-edge multigraph. If G is an n-vertex graph and $\kappa(G) > m^2$, then $\tau_R(G) \le 8m^{5/3}n^{3/4}$.

Theorem If $\alpha(G) \leq 4$, then $\tau(G) = 1$.

Open Problems

- ▶ Does $\alpha(G) \leq 5$ imply $\tau(G) = 1$? (Would be best possible.)
- Improve on $\tau(G) \leq Cn^{3/4}$ for connected *G*.

Theorem

Let R be a connected m-edge multigraph. If G is an n-vertex graph and $\kappa(G) > m^2$, then $\tau_R(G) \le 8m^{5/3}n^{3/4}$.

Theorem

If $\alpha(G) \leq 4$, then $\tau(G) = 1$.

Open Problems

- ▶ Does $\alpha(G) \leq 5$ imply $\tau(G) = 1$? (Would be best possible.)
- Improve on $\tau(G) \leq Cn^{3/4}$ for connected G.
- Is there a graph G such that $\tau(G) \ge 4$?

Theorem

Let R be a connected m-edge multigraph. If G is an n-vertex graph and $\kappa(G) > m^2$, then $\tau_R(G) \le 8m^{5/3}n^{3/4}$.

Theorem

If $\alpha(G) \leq 4$, then $\tau(G) = 1$.

Open Problems

- ▶ Does $\alpha(G) \leq 5$ imply $\tau(G) = 1$? (Would be best possible.)
- Improve on $\tau(G) \leq Cn^{3/4}$ for connected *G*.
- Is there a graph G such that $\tau(G) \ge 4$?
- Is there a multigraph R such that for each k, there is a graph G_k such that the maximum R-subdivisions in G_k are pairwise intersecting and τ_R(G) ≥ k?

Theorem

Let R be a connected m-edge multigraph. If G is an n-vertex graph and $\kappa(G) > m^2$, then $\tau_R(G) \le 8m^{5/3}n^{3/4}$.

Theorem

If $\alpha(G) \leq 4$, then $\tau(G) = 1$.

Open Problems

- ▶ Does $\alpha(G) \leq 5$ imply $\tau(G) = 1$? (Would be best possible.)
- Improve on $\tau(G) \leq Cn^{3/4}$ for connected *G*.
- Is there a graph G such that $\tau(G) \ge 4$?
- Is there a multigraph R such that for each k, there is a graph G_k such that the maximum R-subdivisions in G_k are pairwise intersecting and τ_R(G) ≥ k?

Thank You.