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Gallai’s Problem

I Easy exercise: if P and Q are longest paths in a connected
graph, then some vertex belongs to both.

I Gallai (1966): Is some vertex common to every longest path?

I Walther (1969): No.

Counter-example (Walther, T.I. Zamfirescu)

Petersen Graph Split vertex Redrawn
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Two natural questions

I How many vertices are needed to hit every longest path in an
n-vertex connected graph?

I For which graphs does Gallai’s question have a positive
answer?
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Longest path transversals
I A set S ⊆ V (G ) is a longest path transversal or Gallai set if

every longest path intersects S .

I Let τ(G ) be the min. size of a Gallai set in G .

Theorem (Rautenbach–Sereni (2014))

If G is a connected n-vertex graph, then τ(G ) ≤
⌈
n
4 −

n2/3

90

⌉
.

I There is a connected
12-vertex graph G with
τ(G ) = 2.

Theorem (Grünbaum (1974))

There is a connected 324-vertex graph G with τ(G ) = 3.

I Let τ(n) = max{τ(G ) : |V (G )| = n and G is connected}.
I Probably τ(n) is small, perhaps even bounded.
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A sublinear bound

Theorem
τ(n) ≤ 8n3/4

I Our aim: show that τ(n) ≤ Cn4/5 (up to minor details).

I Let L(G ) be the set of longest paths in G .

Menger’s Theorem

I Let A,B,S ⊆ V (G ). The set S is an (A,B)-separator if
G − S has no path from a vertex in A to a vertex in B.

I Let A,B ⊆ V (G ). An (A,B)-connector is a collection Q of
vertex-disjoint paths such that each Q ∈ Q has one endpoint
in A, the other endpoint in B, and internal vertices outside
A ∪ B.

I Theorem (Menger): the min. size of an (A,B)-separator
equals the max. size of an (A,B)-connector.
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Partial Transversals

H X

Y

Definition
Let G be a graph. An ε-partial transversal is a
triple (H,X ,Y ) such that

I H is an induced subgraph of G

I X = V (G )− V (H)

I Y ⊆ X and |Y | ≤ ε|X |
I If P ∈ L(G ), then P ⊆ H or

V (P) ∩ Y 6= ∅.

Proof Idea

I Given a ε-partial transversal (H,X ,Y ), we either

I Find a Gallai set of size at most Cn4/5, or
I Produce (H ′,X ′,Y ′) with |V (H ′)| < |V (H)|.

I Start with (H,X ,Y ) = (G ,∅,∅) and iterate.
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I Let (H,X ,Y ) be a ε-partial transversal.

I Does H have disjoint paths P1, P2 of size εn? Suppose not:

I A longest path P in H has at most 2εn vertices.
I Either Y is a Gallai set or P ∈ L(G ), implying that V (P) is a

Gallai set.
I τ(G ) ≤ max{|Y |, |V (P)|} ≤ 2εn.



Partial Transversal Refinement

H X

Y

P

Y

P1

P2

S

S

H′ Q1 Q2

C

YP

SQ1 Q2

I Let (H,X ,Y ) be a ε-partial transversal.
I Does H have disjoint paths P1, P2 of size εn? Suppose not:

I A longest path P in H has at most 2εn vertices.
I Either Y is a Gallai set or P ∈ L(G ), implying that V (P) is a

Gallai set.
I τ(G ) ≤ max{|Y |, |V (P)|} ≤ 2εn.



Partial Transversal Refinement

H X

Y

P

Y

P1

P2

S

S

H′ Q1 Q2

C

YP

SQ1 Q2

I Let (H,X ,Y ) be a ε-partial transversal.
I Does H have disjoint paths P1, P2 of size εn? Suppose not:

I A longest path P in H has at most 2εn vertices.

I Either Y is a Gallai set or P ∈ L(G ), implying that V (P) is a
Gallai set.

I τ(G ) ≤ max{|Y |, |V (P)|} ≤ 2εn.



Partial Transversal Refinement

H X

Y

P

Y

P1

P2

S

S

H′ Q1 Q2

C

YP

SQ1 Q2

I Let (H,X ,Y ) be a ε-partial transversal.
I Does H have disjoint paths P1, P2 of size εn? Suppose not:

I A longest path P in H has at most 2εn vertices.
I Either Y is a Gallai set or P ∈ L(G ), implying that V (P) is a

Gallai set.

I τ(G ) ≤ max{|Y |, |V (P)|} ≤ 2εn.



Partial Transversal Refinement

H X

Y

P

Y

P1

P2

S

S

H′ Q1 Q2

C

YP

SQ1 Q2

I Let (H,X ,Y ) be a ε-partial transversal.
I Does H have disjoint paths P1, P2 of size εn? Suppose not:

I A longest path P in H has at most 2εn vertices.
I Either Y is a Gallai set or P ∈ L(G ), implying that V (P) is a

Gallai set.
I τ(G ) ≤ max{|Y |, |V (P)|} ≤ 2εn.



Partial Transversal Refinement

H X

Y

P

Y

P1

P2

S

S

H′ Q1 Q2

C

YP

SQ1 Q2

I Let P1,P2 be disjoint paths in H of size εn.

I H has a (V (P1),V (P2))-separator S with |S | ≤ ε2n or a
(V (P1),V (P2))-connector Q with |Q| ≥ ε2n.

I If we get a separator S :

I At most one component H ′ of H − S contains paths in L(G ).
I Let X ′ = X ∪ (V (H)− V (H ′)).
I Let Y ′ = Y ∪ S .
I Note that H ′ is disjoint from P1 or P2.
I |S | ≤ ε · εn ≤ ε · |V (H)− V (H ′)|.
I (H ′,X ′,Y ′) is an ε-partial transversal.
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I Let Q be a (V (P1),V (P2))-connector with |Q| ≥ ε2n.

I Average size of a path in Q is at most n
ε2n

, or 1
ε2

.

I At least half of the paths in Q have at most 2
ε2

vertices.

I Let Q′ be the set of Q ∈ Q such that |V (Q)| ≤ 2
ε2

.

I Choose Q1,Q2 ∈ Q′ to maximize the distance between the
endpoints in P1.

I Let C be the cycle formed by P1, P2, Q1, and Q2.

I Note that ε2n
2 ≤ |V (C )| ≤ 2εn + 2 · 2

ε2
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I Is V (C ) ∪ Y a Gallai set?

I If yes, then τ(G ) ≤ |Y |+ |V (C )| ≤ 3εn + 4
ε2

.

I Otherwise, H contains a path P ∈ L(G ) disjoint from C .

I Note that |V (P)| ≥ |V (C )| ≥ ε2n
2 .
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I |V (P)| ≥ |V (C )| ≥ ε2n
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I H has a (V (C ),V (P))-separator S with |S | ≤ ε3n
2 or a

(V (C ),V (P))-connector Q with |Q| ≥ ε3n
2 .

I If we get a separator S with |S | ≤ ε3n
2 :

I At most one component H ′ of H − S contains paths in L(G ).
I Let X ′ = X ∪ (V (H)− V (H ′)).
I Let Y ′ = Y ∪ S .
I Note that H ′ is disjoint from C or P.
I |S | ≤ ε · ε

2n
2 ≤ ε · |V (H)− V (H ′)|.

I (H ′,X ′,Y ′) is an ε-partial transversal.
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I |V (P)| ≥ |V (C )| ≥ ε2n
2 .

I Let Q be a (V (C ),V (P))-connector with |Q| ≥ ε3n
2 .

I Choose Q1,Q2 ∈ Q to minimize dist. between endpoints in P.

I Dist. between ends of Q1 and Q2 on P is roughly at most 2
ε3

.

I If 2
ε3
< 1

2 |V (C )|, then we obtain a longer path.

I Set ε large enough so that 2
ε3
< ε2n

4 to avoid this case.

I Take ε = cn−1/5.

I τ(G ) ≤ max{2εn, 3εn + 4
ε2
} ≤ Cn4/5
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Maximum Subdivision Transversals
I For a multigraph R, an R-transversal in G is a set of vertices

that intersects every maximum subdivision of R.

I A P2-transversal is a Gallai set/longest path transversal.

I A C2-transversal is a longest cycle transversal.

I Let τR(G ) be the minimum size of an R-transversal in G .

Theorem
Let R be a connected m-edge multigraph with m ≥ 1 and let G be
an n-vertex graph. If the maximum R-subdivisions of G pairwise
intersect, then τR(G ) ≤ 8m5/4n3/4.

Corollary

Let G be an n-vertex graph.

I If G is connected, then τ(G ) ≤ 8n3/4.

I If G is 2-connected, then τC2(G ) ≤ 20n3/4.

I If κ(G ) > m2 and R is a connected m-edge multigraph, then
τR(G ) ≤ 8m5/4n3/4.
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I A graph G has a Gallai vertex iff τ(G ) = 1.

I G is a Gallai family if τ(G ) = 1 for each connected G ∈ G.

I A graph not containing an induced copy of H is H-free.

I A graph H is a fixer if the H-free graphs form a Gallai family.

Question
Which graphs are fixers?

Theorem

I If H is a fixer, then H is a linear forest with |V (H)| ≤ 9.

I This suffices when |V (H)| ≤ 4.
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Gallai Families and Independence Number

I Theorem: 5P1 is a fixer.

I Equivalently, if α(G ) ≤ 4 and G is connected, then τ(G ) = 1.

I Is it true that τ(G ) = 1 when
α(G ) ≤ 5 and G is connected?

I This would be best possible.

I Chvátal–Erdős: if α(G ) ≤ κ(G ), then G has a spanning cycle.

I If α(G ) ≤ κ(G ) + 1, then G has a spanning path.

I If α(G ) ≤ κ(G ) + 1, then τ(G ) = 1.

Theorem
For each positive k, there exists n0 such that if G is an n-vertex
k-connected graph with n ≥ n0 and α(G ) ≤ k + 2, then τ(G ) = 1.
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P2 + 2P1

If G is a connected (P2 + 2P1)-free graph and
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Potential fixers

Lemma
If H is a fixer, then H is a linear forest on at most 9 vertices.

G

I If G has no Gallai vertex,
then H is induced in G .

I Subdividing the edges in G
many times implies H is
acyclic.

I Replacing each vertex of
degree three with a triangle
implies H is K1,3-free.

I So H is a linear forest.

I |V (H)| ≤ |V (G )| − 3 = 9.
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Fixers of order 4

Theorem
If H is a fixer, then H is a linear forest on at most 9 vertices and
this is sufficient when |V (H)| ≤ 4.

Lemmas

I Let G be a connected graph.

I If G is P4-free and d(u) ≥ ∆(G )− 1, then u is Gallai.

I If G is (P3 + P1)-free and d(u) ≥ ∆(G )− 1, then u is Gallai.

I If G is 2P2-free and d(u) ≥ ∆(G ), then u is Gallai.
(Golan–Shan (2018))

I If G is (P2 + 2P1)-free and d(u) ≥ ∆(G ), then u is Gallai.

I If G is 4P1-free and d(u) ≥ ∆(G )− 1, then u is Gallai.

I All degree conditions are sharp, except that possibly
d(u) ≥ ∆(G )− 1 is sufficient in the case of 2P2-free graphs.
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A 5-vertex fixer

I G is 5P1-free if and only if α(G ) ≤ 4.

I When α(G ) ≤ 4, vertices of max. degree need not be Gallai:

Theorem
If G is connected and α(G ) ≤ 4, then G has a Gallai vertex. That
is, 5P1 is a fixer.

I The 12-vertex counter-example has independence number 6.

I Is 6P1 a fixer?
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Summary and Open Problems

Theorem
Let R be a connected m-edge multigraph. If G is an n-vertex
graph and κ(G ) > m2, then τR(G ) ≤ 8m5/3n3/4.

Theorem
If α(G ) ≤ 4, then τ(G ) = 1.

Open Problems

I Does α(G ) ≤ 5 imply τ(G ) = 1? (Would be best possible.)

I Improve on τ(G ) ≤ Cn3/4 for connected G .

I Is there a graph G such that τ(G ) ≥ 4?

I Is there a multigraph R such that for each k, there is a graph
Gk such that the maximum R-subdivisions in Gk are pairwise
intersecting and τR(G ) ≥ k?

Thank You.
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