Longest Path and Cycle Transversals in Chordal Graphs

James A. Long, Jr.
Kevin G. Milans (milans@math.wvu.edu)
Michael Wigal

West Virginia University

United States Naval Academy, Annapolis, MD
April 7, 2023
Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.
Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

▶ Suppose that P and Q are disjoint longest paths.
Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that P and Q are disjoint longest paths.
A Classic Result

Theorem
Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that P and Q are disjoint longest paths.

G is connected: every pair of vertices is joined by some path.
A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that P and Q are disjoint longest paths.

- G is connected: every pair of vertices is joined by some path.
Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that P and Q are disjoint longest paths.

G is connected: every pair of vertices is joined by some path.

Let R be a shortest path joining P and Q.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.
A Classic Result

Theorem

\begin{align*}
\text{Let } G \text{ be a connected graph. If } P \text{ and } Q \text{ are longest paths in } G, \\
\text{then } P \text{ and } Q \text{ share at least one vertex.}
\end{align*}

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.
A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.
A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.
Gallai’s Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \emptyset$.

Gallai (1966): Is some vertex common to every longest path?

Counter-example (Walther–Voss; T.I. Zamfirescu)
Gallai’s Problem

- If \(P \) and \(Q \) are longest paths in a connected graph, then
 \(V(P) \cap V(Q) \neq \emptyset \).
- Gallai (1966): Is some vertex common to every longest path?
Gallai’s Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \emptyset$.
- Gallai (1966): Is some vertex common to every longest path?
Gallai’s Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \emptyset$.
- Gallai (1966): Is some vertex common to every longest path?

Counter-example (Walther–Voss; T.I. Zamfirescu)

Petersen Graph
Gallai’s Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \emptyset$.

- Gallai (1966): Is some vertex common to every longest path?

Counter-example (Walther–Voss; T.I. Zamfirescu)

Petersen Graph

Petersen Fragment
Gallai’s Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \emptyset$.
- Gallai (1966): Is some vertex common to every longest path?

Counter-example (Walther–Voss; T.I. Zamfirescu)
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Gallai Families

- A **Gallai vertex** is a vertex belonging to every longest path.
- \mathcal{G} is a **Gallai family** of graphs if every connected graph in \mathcal{G} has a Gallai vertex.

Examples of Gallai families:
- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
- Jobson–Kézdy–Lehel–White (2016): P_4-free graphs, dually chordal graphs
- Cerioli–Lima (2016): P_4-sparse graphs
- Golan–Shan (2018): 2 P_2-free graphs
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
- Jobson–Kézdy–Lehel–White (2016): P_4-free graphs, dually chordal graphs
- Cerioli–Lima (2016): P_4-sparse graphs
- Golan–Shan (2018): $2P_2$-free graphs
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
- Jobson–Kézdy–Lehel–White (2016): P_4-free graphs, dually chordal graphs
- Cerioli–Lima (2016): P_4-sparse graphs
- Golan–Shan (2018): $2P_2$-free graphs
Gallai Families

- A **Gallai vertex** is a vertex belonging to every longest path.
- \mathcal{G} is a **Gallai family** of graphs if every connected graph in \mathcal{G} has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
Gallai Families

- A **Gallai vertex** is a vertex belonging to every longest path.
- \(\mathcal{G} \) is a **Gallai family** of graphs if every connected graph in \(\mathcal{G} \) has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \(\mathcal{G} \) is a Gallai family of graphs if every connected graph in \(\mathcal{G} \) has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
- Cerioli–Lima (2016): \(P_4 \)-sparse graphs
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \(\mathcal{G} \) is a Gallai family of graphs if every connected graph in \(\mathcal{G} \) has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
- Cerioli–Lima (2016): \(P_4 \)-sparse graphs
Gallai Families

A Gallai vertex is a vertex belonging to every longest path.

\(\mathcal{G} \) is a Gallai family of graphs if every connected graph in \(\mathcal{G} \) has a Gallai vertex.

Examples of Gallai families:

- Klavžar–Petkovšek (1990): split graphs and cacti
- BGLS+Joos (2015): circular arc graphs
- Cerioli–Lima (2016): \(P_4 \)-sparse graphs
- Golan–Shan (2018): \(2P_2 \)-free graphs
Gallai Families

- A **Gallai vertex** is a vertex belonging to every longest path.
- \(\mathcal{G} \) is a **Gallai family** of graphs if every connected graph in \(\mathcal{G} \) has a Gallai vertex.
- **Balister–Győri–Lehel–Schelp (2004):** “We could not extend our approach [on interval graphs] to [chordal graphs], but chordal graphs have a clique meeting every longest path. “It is possible that all longest paths must go through a common vertex in that clique.”
Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \(\mathcal{G} \) is a Gallai family of graphs if every connected graph in \(\mathcal{G} \) has a Gallai vertex.

Balister–Győri–Lehel–Schelp (2004): “We could not extend our approach [on interval graphs] to [chordal graphs], but chordal graphs have a clique meeting every longest path. “It is possible that all longest paths must go through a common vertex in that clique.”

Question

Do the chordal graphs form a Gallai family?
Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\text{lpt}(G)$ be the min. size of a longest path transversal in G.

Rautenbach–Sereni (2014): $\text{lpt}(G) \leq \frac{n^4}{4} - \frac{n^2}{3}$.

Long–Milans–Munaro (2021): $\text{lpt}(G) \leq O\left(\frac{n^3}{4}\right)$.

Kierstead–Ren (2023+): $\text{lpt}(G) \leq O\left(\frac{n^2}{3}\right)$.

Grüenbaum (1974): Some connected graph G has $\text{lpt}(G) = 3$.

Open: is there a connected graph G with $\text{lpt}(G) \geq 4$?
Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\text{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\text{lpt}(G) = 1$ for each connected $G \in \mathcal{G}$.

- Grünbaum (1974): Some connected graph G has $\text{lpt}(G) = 3$.
- Open: is there a connected graph G with $\text{lpt}(G) \geq 4$?
Longest Path Transversals

- A **longest path transversal** of G is a set of vertices intersecting every longest path.
- Let $lpt(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(G) = 1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $lpt(G)$ may be of interest.

Rautenbach–Sereni (2014): $lpt(G) \leq \frac{n^4 - n^2}{90}$.
Long–Milans–Munaro (2021): $lpt(G) \leq O\left(\frac{n^3}{4}\right)$.
Kierstead–Ren (2023+): $lpt(G) \leq O\left(\frac{n^2}{3}\right)$.
Grüenbaum (1974): Some connected graph G has $lpt(G) = 3$.
Open: is there a connected graph G with $lpt(G) \geq 4$?
Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\text{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\text{lpt}(G) = 1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\text{lpt}(G)$ may be of interest.
- Let G be a connected n-vertex graph.
A longest path transversal of G is a set of vertices intersecting every longest path.

Let $\text{lpt}(G)$ be the min. size of a longest path transversal in G.

\mathcal{G} is Gallai if and only if $\text{lpt}(G) = 1$ for each connected $G \in \mathcal{G}$.

If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\text{lpt}(G)$ may be of interest.

Let G be a connected n-vertex graph.

- Rautenbach–Sereni (2014): $\text{lpt}(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.

Grünenbaum (1974): Some connected graph G has $\text{lpt}(G) = 3$.

Open: is there a connected graph G with $\text{lpt}(G) \geq 4$?
Longest Path Transversals

▶ A longest path transversal of G is a set of vertices intersecting every longest path.
▶ Let $\mathrm{lpt}(G)$ be the min. size of a longest path transversal in G.
▶ \mathcal{G} is Gallai if and only if $\mathrm{lpt}(G) = 1$ for each connected $G \in \mathcal{G}$.
▶ If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\mathrm{lpt}(G)$ may be of interest.
▶ Let G be a connected n-vertex graph.
 ▶ Rautenbach–Sereni (2014): $\mathrm{lpt}(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.
 ▶ Long–Milans–Munaro (2021): $\mathrm{lpt}(G) \leq O(n^{3/4})$.
A longest path transversal of G is a set of vertices intersecting every longest path.

Let $\text{lpt}(G)$ be the min. size of a longest path transversal in G.

\mathcal{G} is Gallai if and only if $\text{lpt}(G) = 1$ for each connected $G \in \mathcal{G}$.

If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\text{lpt}(G)$ may be of interest.

Let G be a connected n-vertex graph.

- Rautenbach–Sereni (2014): $\text{lpt}(G) \leq \left\lfloor \frac{n}{4} - \frac{n^{2/3}}{90} \right\rfloor$.
- Long–Milans–Munaro (2021): $\text{lpt}(G) \leq O(n^{3/4})$.
- Kierstead–Ren (2023+): $\text{lpt}(G) \leq O(n^{2/3})$.

Grüenbaum (1974): Some connected graph G has $\text{lpt}(G) = 3$.

Open: is there a connected graph G with $\text{lpt}(G) \geq 4$?
A longest path transversal of G is a set of vertices intersecting every longest path.

Let $lpt(G)$ be the min. size of a longest path transversal in G.

G is Gallai if and only if $lpt(G) = 1$ for each connected $G \in \mathcal{G}$.

If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $lpt(G)$ may be of interest.

Let G be a connected n-vertex graph.

- Rautenbach–Sereni (2014): $lpt(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.
- Long–Milans–Munaro (2021): $lpt(G) \leq O(n^{3/4})$.
- Kierstead–Ren (2023+): $lpt(G) \leq O(n^{2/3})$.
- Grünbaum (1974): Some connected graph G has $lpt(G) = 3$.

Open: is there a connected graph G with $lpt(G) \geq 4$?
A longest path transversal of G is a set of vertices intersecting every longest path.

Let $\text{lpt}(G)$ be the min. size of a longest path transversal in G.

\mathcal{G} is Gallai if and only if $\text{lpt}(G) = 1$ for each connected $G \in \mathcal{G}$.

If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\text{lpt}(G)$ may be of interest.

Let G be a connected n-vertex graph.

- Rautenbach–Sereni (2014): $\text{lpt}(G) \leq \left\lceil \frac{n}{4} - \frac{n^{2/3}}{90} \right\rceil$.
- Long–Milans–Munaro (2021): $\text{lpt}(G) \leq O(n^{3/4})$.
- Kierstead–Ren (2023+): $\text{lpt}(G) \leq O(n^{2/3})$.

Grünbaum (1974): Some connected graph G has $\text{lpt}(G) = 3$.

Open: is there a connected graph G with $\text{lpt}(G) \geq 4$?
Let G be a graph and let C be a cycle in G. The Petersen Fragment is not chordal.
Let G be a graph and let C be a cycle in G. The Petersen Fragment is not chordal.
Let G be a graph and let C be a cycle in G.

A chord of C is an edge in $G - E(C)$ with both ends in C.

The Petersen Fragment is not chordal.
Chordal Graphs

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G - E(C)$ with both ends in C.

The Petersen Fragment is not chordal.
Let G be a graph and let C be a cycle in G.

A chord of C is an edge in $G - E(C)$ with both ends in C.

The Petersen Fragment is not chordal.
Let G be a graph and let C be a cycle in G.

A chord of C is an edge in $G - E(C)$ with both ends in C.

The Petersen Fragment is not chordal.
Chordal Graphs

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G - E(C)$ with both ends in C.
- A graph G is chordal if each cycle in G on at least 4 vertices has a chord.

The Petersen Fragment is not chordal.
Let G be a graph and let C be a cycle in G.

A chord of C is an edge in $G - E(C)$ with both ends in C.

A graph G is **chordal** if each cycle in G on at least 4 vertices has a chord.

The Petersen Fragment is **not** chordal.
Let G be a graph and let C be a cycle in G.

A chord of C is an edge in $G - E(C)$ with both ends in C.

A graph G is chordal if each cycle in G on at least 4 vertices has a chord.

The Petersen Fragment is not chordal.
Balister–Győri–Lehel–Schelp (2004): “We could not extend our approach [on interval graphs] to [chordal graphs]”, but chordal graphs have a clique meeting every longest path. “It is possible that all longest paths must go through a common vertex in that clique.”
Balister–Győri–Lehel–Schelp (2004): “We could not extend our approach [on interval graphs] to [chordal graphs]”, but chordal graphs have a clique meeting every longest path. “It is possible that all longest paths must go through a common vertex in that clique.”

If G is a connected chordal graph, then $\text{lpt}(G) \leq \omega(G)$.
Balister–Győri–Lehel–Schelp (2004): “We could not extend our approach [on interval graphs] to [chordal graphs]”, but chordal graphs have a clique meeting every longest path. “It is possible that all longest paths must go through a common vertex in that clique.”

If G is a connected chordal graph, then $\text{lpt}(G) \leq \omega(G)$.

Harvey–Payne (2022): If G is a connected chordal graph, then $\text{lpt}(G) \leq 4 \lceil \omega(G)/5 \rceil$.
Balister–Györi–Lehel–Schelp (2004): “We could not extend our approach [on interval graphs] to [chordal graphs],” but chordal graphs have a clique meeting every longest path. “It is possible that all longest paths must go through a common vertex in that clique.”

If G is a connected chordal graph, then $\text{lpt}(G) \leq \omega(G)$.

Harvey–Payne (2022): If G is a connected chordal graph, then $\text{lpt}(G) \leq 4 \lceil \omega(G)/5 \rceil$.

Theorem

*If G is a connected n-vertex chordal graph, then $\text{lpt}(G) \leq O(\log^2 n)$.***
Longest Cycle Transversals

- A **longest cycle transversal** of G is a set of vertices that intersects every longest cycle.
Longest Cycle Transversals

A longest cycle transversal of G is a set of vertices that intersects every longest cycle.

Let $lct(G)$ be the min. size of a longest cycle transversal in G.
Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Connected graphs can have $\text{lct}(G)$ linear in $|V(G)|$:

![Diagram showing a tree with multiple branches and vertices representing the concept of longest cycle transversals.](image-url)
Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Connected graphs can have $\text{lct}(G)$ linear in $|V(G)|$:

- If G is 2-connected, then the longest cycles in G pairwise intersect.
Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
Longest Cycle Transversals

- A **longest cycle transversal** of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - Rautenbach–Sereni (2014): $\text{lct}(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.

Theorem

If G is a 2-connected n-vertex chordal graph, then $\text{lct}(G) \leq O(\log n)$.

Note: The text was formatted to ensure proper indentation and spacing for a clear and readable representation.
Longest Cycle Transversals

- A **longest cycle transversal** of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - Rautenbach–Sereni (2014): $\text{lct}(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.
 - Long–Milans–Munaro (2021): $\text{lct}(G) \leq O(n^{3/4})$.
Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.

Let G be a 2-connected n-vertex graph.

- Rautenbach–Sereni (2014): $\text{lct}(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.
- Long–Milans–Munaro (2021): $\text{lct}(G) \leq O(n^{3/4})$.
- Kierstead–Rey (2021): $\text{lct}(G) \leq O(n^{2/3})$.

Grünbaum (1974) some 2-connected G has $\text{lct}(G) = 3$.

Open: is there a 2-connected graph G with $\text{lct}(G) \geq 4$?

Harvey–Payne (2022): If G is a 2-connected chordal graph, then $\text{lct}(G) \leq 2 \lceil \omega(G)/3 \rceil$.

Theorem: If G is a 2-connected n-vertex chordal graph, then $\text{lct}(G) \leq O(\log n)$.
Longest Cycle Transversals

- A **longest cycle transversal** of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - Rautenbach–Sereni (2014): $\text{lct}(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.
 - Long–Milans–Munaro (2021): $\text{lct}(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $\text{lct}(G) \leq O(n^{2/3})$.
- Grünbaum (1974) some 2-connected G has $\text{lct}(G) = 3$.

Theorem

If G is a 2-connected n-vertex chordal graph, then $\text{lct}(G) \leq O(\log n)$.
Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - Rautenbach–Sereni (2014): $\text{lct}(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.
 - Long–Milans–Munaro (2021): $\text{lct}(G) \leq O\left(\frac{n^{3/4}}{4}\right)$.
 - Kierstead–Rey (2021): $\text{lct}(G) \leq O\left(\frac{n^{2/3}}{3}\right)$.
- Grünbaum (1974) some 2-connected G has $\text{lct}(G) = 3$.
- Open: is there a 2-connected graph G with $\text{lct}(G) \geq 4$?
Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - Rautenbach–Sereni (2014): $\text{lct}(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.
 - Long–Milans–Munaro (2021): $\text{lct}(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $\text{lct}(G) \leq O(n^{2/3})$.
- Grünbaum (1974) some 2-connected G has $\text{lct}(G) = 3$.
- Open: is there a 2-connected graph G with $\text{lct}(G) \geq 4$?
- Harvey–Payne (2022): If G is a 2-connected chordal graph, then $\text{lpt}(G) \leq 2 \left\lceil \omega(G)/3 \right\rceil$.
Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\text{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - Rautenbach–Sereni (2014): $lct(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.
 - Long–Milans–Munaro (2021): $lct(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $lct(G) \leq O(n^{2/3})$.
- Grünbaum (1974) some 2-connected G has $lct(G) = 3$.
- Open: is there a 2-connected graph G with $lct(G) \geq 4$?
- Harvey–Payne (2022): If G is a 2-connected chordal graph, then $lpt(G) \leq 2 \left\lceil \omega(G)/3 \right\rceil$.

Theorem

If G is a 2-connected n-vertex chordal graph, then $lct(G) \leq O(\log n)$.
Tree Representations

- Gavril (1974): A graph G is \textit{chordal} if and only if G in the intersection graph of subtrees of a \textit{host tree} T.

Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.

Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x) = \{ u \in V(G) : x \in V(S(u)) \}$.

Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| \leq \#(\text{max. cliques in } G)$.

Lemma: every tree T has a vertex z such that each component of $T - z$ has at most $|V(T)|/2$ vertices.

Lemma: If G is 2-connected and C_1 and C_2 are longest cycles in G, then $C_1 \cup C_2$ is a 2-connected subgraph.
Tree Representations

Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

T G
Tree Representations

- Gavril (1974): A graph G is **chordal** if and only if G in the intersection graph of subtrees of a **host tree** T.

![Diagram of tree T and graph G]
Tree Representations

Gavril (1974): A graph G is chordal if and only if G is in the intersection graph of subtrees of a host tree T.

Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| \leq \#(\text{max. cliques in } G)$.

Lemma: every tree T has a vertex z such that each component of $T - z$ has at most $|V(T)|/2$ vertices.

Lemma: If G is 2-connected and C_1 and C_2 are longest cycles in G, then $C_1 \cup C_2$ is a 2-connected subgraph.
Tree Representations

- Gavril (1974): A graph G is **chordal** if and only if G in the intersection graph of subtrees of a host tree T.

![Graph Diagram]

Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.

Given $x \in V(T)$, let $B(x)$ be the corresponding bag:

$$B(x) = \{ u \in V(G) : x \in V(S(u)) \}.$$

Fact: If T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| = \#(\text{max. cliques in } G) \leq |V(G)|$.

Lemma: Every tree T has a vertex z such that each component of $T - z$ has at most $|V(T)|/2$ vertices.

Lemma: If G is 2-connected and C_1 and C_2 are longest cycles in G, then $C_1 \cup C_2$ is a 2-connected subgraph.
Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

```
\begin{itemize}
  \item Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in $G$.
  \item Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x) = \{ u \in V(G) : x \in V(S(u)) \}$.
  \item Fact: if $T$ is a minimal tree representation of a chordal graph $G$, then the bags in $T$ are the maximal cliques in $G$ and $|V(T)| \leq \#(\text{max. cliques in } G)$.
  \item Lemma: every tree $T$ has a vertex $z$ such that each component of $T - z$ has at most $|V(T)|/2$ vertices.
  \item Lemma: If $G$ is 2-connected and $C_1$ and $C_2$ are longest cycles in $G$, then $C_1 \cup C_2$ is a 2-connected subgraph.
\end{itemize}
```
Tree Representations

Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

T

G
Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.

Given $x \in V(T)$, let $B(x)$ be the corresponding bag:

$$B(x) = \{ u \in V(G) : x \in V(S(u)) \}.$$

Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| = \#\text{(max. cliques in } G) \leq |V(G)|$.

Lemma: every tree T has a vertex z such that each component of $T - z$ has at most $|V(T)|/2$ vertices.

Lemma: If G is 2-connected and C_1 and C_2 are longest cycles in G, then $C_1 \cup C_2$ is a 2-connected subgraph.
Tree Representations

- Gavril (1974): A graph G is **chordal** if and only if G in the intersection graph of subtrees of a **host tree** T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x) = \{ u \in V(G) : x \in V(S(u)) \}$.

- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| = \#(\text{max. cliques in } G) \leq |V(G)|$.

- Lemma: every tree T has a vertex z such that each component of $T - z$ has at most $|V(T)|/2$ vertices.

- Lemma: If G is 2-connected and C_1 and C_2 are longest cycles in G, then $C_1 \cup C_2$ is a 2-connected subgraph.
Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

![Diagram of tree and graph]

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x) = \{u \in V(G): x \in V(S(u))\}$.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| = \#(\text{max. cliques in } G) \leq |V(G)|$.
Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x) = \{ u \in V(G) : x \in V(S(u)) \}$.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| = \#(\text{max. cliques in } G) \leq |V(G)|$.
- Lemma: every tree T has a vertex z such that each component of $T - z$ has at most $|V(T)|/2$ vertices.
Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x) = \{ u \in V(G) : x \in V(S(u)) \}$.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)| = \#(\text{max. cliques in } G) \leq |V(G)|$.
- Lemma: every tree T has a vertex z such that each component of $T - z$ has at most $|V(T)|/2$ vertices.
- Lemma: If G is 2-connected and C_1 and C_2 are longest cycles in G, then $C_1 \cup C_2$ is a 2-connected subgraph.
The Core Capture Property

Let \(G \) be chordal with tree representation \(T \). The core of a subgraph \(H \) of \(G \) is given by

\[
\text{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).
\]
The Core Capture Property

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\text{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$
The Core Capture Property

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\text{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$
The Core Capture Property

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\text{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

If $S(u)$ intersects core(H) and $u \notin V(H)$, then u completes a triangle with an edge in H.
The Core Capture Property

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\text{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

If $S(u)$ intersects $\text{core}(H)$ and $u \not\in V(H)$, then u completes a triangle with an edge in H.

A set $W \subseteq V(T)$ has the core capture property (ccp) for a family of subgraphs H if each $H \in H$ has a core vertex in W.
The Core Capture Property

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\text{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

If $S(u)$ intersects $\text{core}(H)$ and $u \notin V(H)$, then u completes a triangle with an edge in H.

A set $W \subseteq V(T)$ has the core capture property (ccp) for a family of subgraphs \mathcal{H} if each $H \in \mathcal{H}$ has a core vertex in W.
Key Lemma

Lemma

Let:
1. G: a 2-connected chordal graph
Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T: a minimal tree representation of G with a root vertex
Key Lemma

Lemma

Let:

1. \(G \): a 2-connected chordal graph
2. \(T \): a minimal tree representation of \(G \) with a root vertex
3. \(C \): a family of longest cycles in \(G \)

Then there exists:

1. \(C' \): a subfamily of \(C \)
2. \(X' \): a rooted subtree of \(X \) having the ccp for \(C' \), with \(|V(X')| \leq |V(X)|/2\)
3. \(A \): a set of at most 4 verts in \(G \) meeting each cycle in \(C - C' \)

Theorem

If \(G \) is a 2-connected \(n \)-vertex chordal graph, then \(lct(G) \leq 4(1 + \lceil \lg n \rceil) \).
Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T: a minimal tree representation of G with a root vertex
3. C: a family of longest cycles in G
4. X: a rooted subtree of T with $V(X)$ having the ccp for C.

Then there exists:

1. C': a subfamily of C
2. X': a rooted subtree of X having the ccp for C', with $|V(X')| \leq |V(X)|/2$
3. A: a set of at most 4 verts in G meeting each cycle in $C - C'$.
Lemma

Let:

1. \(G \): a 2-connected chordal graph
2. \(T \): a minimal tree representation of \(G \) with a root vertex
3. \(C \): a family of longest cycles in \(G \)
4. \(X \): a rooted subtree of \(T \) with \(V(X) \) having the ccp for \(C \).

Then there exists:

1. \(C' \): a subfamily of \(C \)
Key Lemma

Lemma

Let:

1. \(G \): a 2-connected chordal graph
2. \(T \): a minimal tree representation of \(G \) with a root vertex
3. \(C \): a family of longest cycles in \(G \)
4. \(X \): a rooted subtree of \(T \) with \(V(X) \) having the ccp for \(C \).

Then there exists:

1. \(C' \): a subfamily of \(C \)
2. \(X' \): a rooted subtree of \(X \) having the ccp for \(C' \), with
 \[|V(X')| \leq |V(X)|/2. \]
Key Lemma

Lemma

Let:
1. \(G \): a 2-connected chordal graph
2. \(T \): a minimal tree representation of \(G \) with a root vertex
3. \(C \): a family of longest cycles in \(G \)
4. \(X \): a rooted subtree of \(T \) with \(V(X) \) having the ccp for \(C \).

Then there exists:
1. \(C' \): a subfamily of \(C \)
2. \(X' \): a rooted subtree of \(X \) having the ccp for \(C' \), with \(|V(X')| \leq |V(X)|/2 \).
3. \(A \): a set of at most 4 verts in \(G \) meeting each cycle in \(C - C' \).
Key Lemma

Lemma

Let:
1. G: a 2-connected chordal graph
2. T: a minimal tree representation of G with a root vertex
3. C: a family of longest cycles in G
4. X: a rooted subtree of T with $V(X)$ having the ccp for C.

Then there exists:
1. C': a subfamily of C
2. X': a rooted subtree of X having the ccp for C', with $|V(X')| \leq |V(X)|/2$.
3. A: a set of at most 4 verts in G meeting each cycle in $C - C'$.

Theorem

If G is a 2-connected n-vertex chordal graph, then

$lct(G) \leq 4(1 + \lceil \lg n \rceil)$.
Key Lemma Sketch

- C: family of longest cycles.
Key Lemma Sketch

- C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.

x

\rightarrow
Key Lemma Sketch

- C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.
- z: vertex such that $X - z$ has small components.
Key Lemma Sketch

- C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.
- z: vertex such that $X - z$ has small components.
- Q: the xz-path.
Key Lemma Sketch

- C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.
- z: vertex such that $X - z$ has small components.
- Q: the xz-path.
- $D(y)$: all descendants of y (including y).
Key Lemma Sketch

- C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.
- z: vertex such that $X - z$ has small components.
- Q: the xz-path.
- $D(y)$: all descendants of y (including y).
- Q_0: minimal subpath of Q whose descendants $D(Q_0)$ have ccp for C.
Lemma: \(G \) has distinct vertices \(w_1 \) and \(w_2 \) with \(S(w_1), S(w_2) \) containing \(Q_0 \).
Lemma: \(G \) has distinct vertices \(w_1 \) and \(w_2 \) with \(S(w_1), S(w_2) \) containing \(Q_0 \).

We add \(w_1, w_2 \) to \(A \).
Lemma: G has distinct vertices w_1 and w_2 with $S(w_1), S(w_2)$ containing Q_0.

We add w_1, w_2 to A.

Let $C_1 = \{ C \in \mathcal{C} : V(C_1) \cap \{w_1, w_2\} = \emptyset \}$.

A path P in G is good if $|V(P)| \geq 3$, $S(u) \subseteq D(Q_0) - V(Q_0)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \emptyset$ for each endpoint v of P.

Key Lemma Sketch

A path P in G is good if $|V(P)| \geq 3$, $S(u) \subseteq D(Q_0) - V(Q_0)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \emptyset$ for each endpoint v of P.

Key Lemma Sketch

- $S(w_1)$
- $S(w_2)$
- Q_0
- x
- z
A path P in G is good if $|V(P)| \geq 3$, $S(u) \subseteq D(Q_0) - V(Q_0)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \emptyset$ for each endpoint v of P.

Except for a degenerate case, each $C \in C_1$ contains a good path.
A path P in G is good if $|V(P)| \geq 3$, $S(u) \subseteq D(Q_0) - V(Q_0)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \emptyset$ for each endpoint v of P.

Except for a degenerate case, each $C \in C_1$ contains a good path.

Let P be a longest good path in G with endpoints w_3 and w_4.
A path P in G is **good** if $|V(P)| \geq 3$, $S(u) \subseteq D(Q_0) - V(Q_0)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \emptyset$ for each endpoint v of P.

Except for a degen. case, each $C \in C_1$ contains a good path.

Let P be a longest good path in G with endpoints w_3 and w_4.

If $C \in C_1$ does not intersect P, then we get a longer cycle by replacing the interior of a good path in C with w_1Pw_2.
Let $A = \{w_1, w_2, w_3, w_4\}$ and $C' = \{C \in C : V(C) \cap A = \emptyset\}$.
Key Lemma Sketch

Let $A = \{w_1, w_2, w_3, w_4\}$ and $C' = \{C \in C : V(C) \cap A = \emptyset\}$.

Each $C \in C'$ intersects P in an interior vertex of P.
Let $A = \{w_1, w_2, w_3, w_4\}$ and $\mathcal{C}' = \{C \in \mathcal{C} : V(C) \cap A = \emptyset\}$.

Each $C \in \mathcal{C}'$ intersects P in an interior vertex of P.

For some $y \in V(Q_0)$, each interior vertex u of P has a subtree $S(u)$ contained in a component of $D(y) - y$.
Let $A = \{w_1, w_2, w_3, w_4\}$ and $C' = \{C \in C : V(C) \cap A = \emptyset\}$.

Each $C \in C'$ intersects P in an interior vertex of P.

For some $y \in V(Q_0)$, each interior vertex u of P has a subtree $S(u)$ contained in a component of $D(y) - y$.
Let \(A = \{w_1, w_2, w_3, w_4\} \) and \(C' = \{C \in C : V(C) \cap A = \emptyset\} \).

Each \(C \in C' \) intersects \(P \) in an interior vertex of \(P \).

For some \(y \in V(Q_0) \), each interior vertex \(u \) of \(P \) has a subtree \(S(u) \) contained in a component of \(D(y) - y \).

Take \(X' \) to be this component.
Host tree: subdivided star

- Gavril (1974): A graph G is chordal if and only if G is the intersection graph of subtrees of a host tree.
Host tree: subdivided star

- Gavril (1974): A graph G is **chordal** if and only if G is the intersection graph of subtrees of a host tree.
- A graph G is an **interval graph** if and only if G has a tree representation T such that T is a path.
Host tree: subdivided star

- **Gavril (1974):** A graph G is **chordal** if and only if G is the intersection graph of subtrees of a host tree.
- **A graph G is an interval graph** if and only if G has a tree representation T such that T is a path.
- **Long–Milans–Wigal:** if G is connected and has a tree representation T such that T is a subdivided star, then $lpt(G) = 1$.

![Subdivided star graph](image)
Open Problems

1. Prove \(\text{lpt}(G) = 1 \) when \(G \) is a connected chordal graph (or find a counterexample).
Open Problems

1. Prove $\text{lpt}(G) = 1$ when G is a connected chordal graph (or find a counterexample).

2. Prove $\text{lpt}(G) = 1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\text{lpt}(G)$ but not $\text{lpt}(G) = 1$.)

3. Improve the bounds $\text{lpt}(G) \leq O(\log n)$ and $\text{lct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.

4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?

5. Improve the Kierstead–Ren (2023+) bound $\text{lpt}(G) \leq O(n^{2/3})$ when G is a connected n-vertex graph.

6. Find a connected graph G with $\text{lpt}(G) \geq 4$ (or show no such graph exists).

Thank You.
Open Problems

1. Prove $lpt(G) = 1$ when G is a connected chordal graph (or find a counterexample).

2. Prove $lpt(G) = 1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $lpt(G)$ but not $lpt(G) = 1$.)

3. Improve the bounds $lpt(G) \leq O(\log^2 n)$ and $lct(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.

4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?

5. Improve the Kierstead–Ren (2023+) bound $lpt(G) \leq O(n^2/3)$ when G is a connected n-vertex graph.

6. Find a connected graph G with $lpt(G) \geq 4$ (or show no such graph exists).

Thank You.
Open Problems

1. Prove $lpt(G) = 1$ when G is a connected chordal graph (or find a counterexample).

2. Prove $lpt(G) = 1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $lpt(G)$ but not $lpt(G) = 1$.)

3. Improve the bounds $lpt(G) \leq O(\log^2 n)$ and $lct(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.

4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?

5. Improve the Kierstead–Ren (2023+) bound $lpt(G) \leq O(n^2/3)$ when G is a connected n-vertex graph.

6. Find a connected graph G with $lpt(G) \geq 4$ (or show no such graph exists).

Thank You.
Open Problems

1. Prove $\text{lpt}(G) = 1$ when G is a connected chordal graph (or find a counterexample).

2. Prove $\text{lpt}(G) = 1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\text{lpt}(G)$ but not $\text{lpt}(G) = 1$.)

3. Improve the bounds $\text{lpt}(G) \leq O(\log^2 n)$ and $\text{lct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.

4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?

5. Improve the Kierstead–Ren (2023+) bound $\text{lpt}(G) \leq O(n^{2/3})$ when G is a connected n-vertex graph.
Open Problems

1. Prove $lpt(G) = 1$ when G is a connected chordal graph (or find a counterexample).
2. Prove $lpt(G) = 1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $lpt(G)$ but not $lpt(G) = 1$.)
3. Improve the bounds $lpt(G) \leq O(\log^2 n)$ and $lct(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.
4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?
5. Improve the Kierstead–Ren (2023+) bound $lpt(G) \leq O(n^{2/3})$ when G is a connected n-vertex graph.
6. Find a connected graph G with $lpt(G) \geq 4$ (or show no such graph exists).
Open Problems

1. Prove $l_{pt}(G) = 1$ when G is a connected chordal graph (or find a counterexample).

2. Prove $l_{pt}(G) = 1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $l_{pt}(G)$ but not $l_{pt}(G) = 1$.)

3. Improve the bounds $l_{pt}(G) \leq O(\log^2 n)$ and $l_{ct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.

4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?

5. Improve the Kierstead–Ren (2023+) bound $l_{pt}(G) \leq O(n^{2/3})$ when G is a connected n-vertex graph.

6. Find a connected graph G with $l_{pt}(G) \geq 4$ (or show no such graph exists).

Thank You.