Longest Path and Cycle Transversals in Chordal Graphs

James A. Long, Jr. Kevin G. Milans (milans@math.wvu.edu) Michael Wigal

West Virginia University

United States Naval Academy, Annapolis, MD April 7, 2023

Theorem

Theorem

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that *P* and *Q* are disjoint longest paths.

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that *P* and *Q* are disjoint longest paths.

► *G* is connected: every pair of vertices is joined by some path.

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that *P* and *Q* are disjoint longest paths.

► *G* is connected: every pair of vertices is joined by some path.

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that *P* and *Q* are disjoint longest paths.

• *G* is connected: every pair of vertices is joined by some path.

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that *P* and *Q* are disjoint longest paths.

- *G* is connected: every pair of vertices is joined by some path.
- Let *R* be a shortest path joining *P* and *Q*.

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

Suppose that *P* and *Q* are disjoint longest paths.

- *G* is connected: every pair of vertices is joined by some path.
- Let *R* be a shortest path joining *P* and *Q*.

Theorem

- Suppose that *P* and *Q* are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- \triangleright R and the longer parts of P and Q form a longer path.

Theorem

- Suppose that *P* and *Q* are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- \triangleright R and the longer parts of P and Q form a longer path.

Theorem

- Suppose that *P* and *Q* are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- \triangleright R and the longer parts of P and Q form a longer path.

Theorem

- Suppose that *P* and *Q* are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- \triangleright R and the longer parts of P and Q form a longer path.

If P and Q are longest paths in a connected graph, then V(P) ∩ V(Q) ≠ Ø.

If P and Q are longest paths in a connected graph, then V(P) ∩ V(Q) ≠ Ø.

▶ Gallai (1966): Is some vertex common to every longest path?

- ▶ If *P* and *Q* are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \emptyset$.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

- If P and Q are longest paths in a connected graph, then V(P) ∩ V(Q) ≠ Ø.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

Counter-example (Walther-Voss; T.I. Zamfirescu)

Petersen Graph

- If P and Q are longest paths in a connected graph, then V(P) ∩ V(Q) ≠ Ø.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

Counter-example (Walther-Voss; T.I. Zamfirescu)

Petersen Graph

Petersen Fragment

- If P and Q are longest paths in a connected graph, then V(P) ∩ V(Q) ≠ Ø.
- ▶ Gallai (1966): Is some vertex common to every longest path?
- ▶ Walther (1969): No.

Counter-example (Walther-Voss; T.I. Zamfirescu)

Petersen Graph

Petersen Fragment

Redrawn

► A Gallai vertex is a vertex belonging to every longest path.

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.

Examples of Gallai families:

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti
 - Balister–Győri–Lehel–Schelp (2004): interval graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti
 - Balister–Győri–Lehel–Schelp (2004): interval graphs
 - Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti
 - Balister–Győri–Lehel–Schelp (2004): interval graphs
 - Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
 - ▶ BGLS+Joos (2015): circular arc graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti
 - Balister–Győri–Lehel–Schelp (2004): interval graphs
 - Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
 - ▶ BGLS+Joos (2015): circular arc graphs
 - Jobson–Kézdy–Lehel–White (2016): P₄-free graphs, dually chordal graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti
 - Balister–Győri–Lehel–Schelp (2004): interval graphs
 - Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
 - ▶ BGLS+Joos (2015): circular arc graphs
 - Jobson–Kézdy–Lehel–White (2016): P₄-free graphs, dually chordal graphs
 - ► Cerioli–Lima (2016): P₄-sparse graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti
 - Balister–Győri–Lehel–Schelp (2004): interval graphs
 - Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
 - ▶ BGLS+Joos (2015): circular arc graphs
 - Jobson–Kézdy–Lehel–White (2016): P₄-free graphs, dually chordal graphs
 - Cerioli–Lima (2016): P₄-sparse graphs
 - Chen-Ehrenmüller-Fernandes-Heise-Shan-Yang-Yates (2017): K₄-minor-free graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Examples of Gallai families:
 - Klavžar–Petkovšek (1990): split graphs and cacti
 - Balister–Győri–Lehel–Schelp (2004): interval graphs
 - Rezende–Fernandes–D.M.Martin–Wakabayashi (2011): outerplanar graphs and 2-trees
 - ▶ BGLS+Joos (2015): circular arc graphs
 - Jobson–Kézdy–Lehel–White (2016): P₄-free graphs, dually chordal graphs
 - Cerioli–Lima (2016): P₄-sparse graphs
 - Chen-Ehrenmüller-Fernandes-Heise-Shan-Yang-Yates (2017): K₄-minor-free graphs
 - ▶ Golan–Shan (2018): 2P₂-free graphs

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Balister–Győri–Lehel–Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."

- ► A Gallai vertex is a vertex belonging to every longest path.
- G is a Gallai family of graphs if every connected graph in G has a Gallai vertex.
- Balister–Győri–Lehel–Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."

Question

Do the chordal graphs form a Gallai family?

► A longest path transversal of *G* is a set of vertices intersecting every longest path.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- If we cannot prove G is Gallai, weaker upper bounds on lpt(G) may be of interest.
- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- If we cannot prove G is Gallai, weaker upper bounds on lpt(G) may be of interest.
- Let G be a connected n-vertex graph.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- If we cannot prove G is Gallai, weaker upper bounds on lpt(G) may be of interest.
- Let G be a connected *n*-vertex graph.

▶ Rautenbach–Sereni (2014):
$$lpt(G) \leq \left| \frac{n}{4} - \frac{n^{2/3}}{90} \right|$$
.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- If we cannot prove G is Gallai, weaker upper bounds on lpt(G) may be of interest.
- Let G be a connected *n*-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lpt(G) \leq \left\lceil \frac{n}{4} \frac{n^{2/3}}{90} \right\rceil$.
 - ▶ Long-Milans-Munaro (2021): $lpt(G) \leq O(n^{3/4})$.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- If we cannot prove G is Gallai, weaker upper bounds on lpt(G) may be of interest.
- Let G be a connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lpt(G) \leq \left\lceil \frac{n}{4} \frac{n^{2/3}}{90} \right\rceil$.
 - Long–Milans–Munaro (2021): $lpt(G) \leq O(n^{3/4})$.
 - Kierstead–Ren (2023+): $lpt(G) \leq O(n^{2/3})$.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- If we cannot prove G is Gallai, weaker upper bounds on lpt(G) may be of interest.
- Let G be a connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lpt(G) \leq \left\lceil \frac{n}{4} \frac{n^{2/3}}{90} \right\rceil$.
 - ▶ Long-Milans-Munaro (2021): $lpt(G) \le O(n^{3/4})$.
 - Kierstead–Ren (2023+): $lpt(G) \leq O(n^{2/3})$.

• Grünbaum (1974): Some connected graph G has lpt(G) = 3.

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let lpt(G) be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $lpt(\mathcal{G}) = 1$ for each connected $\mathcal{G} \in \mathcal{G}$.
- If we cannot prove G is Gallai, weaker upper bounds on lpt(G) may be of interest.
- Let G be a connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lpt(G) \leq \left\lceil \frac{n}{4} \frac{n^{2/3}}{90} \right\rceil$.
 - ▶ Long-Milans-Munaro (2021): $lpt(G) \le O(n^{3/4})$.
 - Kierstead–Ren (2023+): $lpt(G) \leq O(n^{2/3})$.
- Grünbaum (1974): Some connected graph G has lpt(G) = 3.
- Open: is there a connected graph G with $lpt(G) \ge 4$?

• Let G be a graph and let C be a cycle in G.

• Let G be a graph and let C be a cycle in G.

Let G be a graph and let C be a cycle in G. A short of C is an edge in C = E(C) with both on

• Let G be a graph and let C be a cycle in G.

Let G be a graph and let C be a cycle in G. A short of C is an edge in C = E(C) with both on

Let G be a graph and let C be a cycle in G. A chord of C is an edge in C = E(C) with both and

- ▶ Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in G E(C) with both ends in C.
- A graph G is chordal if each cycle in G on at least 4 vertices has a chord.

Petersen Fragment

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in G E(C) with both ends in C.
- A graph G is chordal if each cycle in G on at least 4 vertices has a chord.
- The Petersen Fragment is not chordal.

Petersen Fragment

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in G E(C) with both ends in C.
- A graph G is chordal if each cycle in G on at least 4 vertices has a chord.
- The Petersen Fragment is not chordal.

Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."

- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."
- ▶ If G is a connected chordal graph, then $lpt(G) \le \omega(G)$.

- Balister–Győri–Lehel–Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."
- ▶ If G is a connected chordal graph, then $lpt(G) \le \omega(G)$.
- Harvey–Payne (2022): If G is a connected chordal graph, then lpt(G) ≤ 4 [ω(G)/5].

- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."
- ▶ If G is a connected chordal graph, then $lpt(G) \le \omega(G)$.
- ▶ Harvey–Payne (2022): If *G* is a connected chordal graph, then $lpt(G) \le 4 \lceil \omega(G)/5 \rceil$.

Theorem

If G is a connected n-vertex chordal graph, then $lpt(G) \le O(log^2 n)$.

► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- ▶ Connected graphs can have lct(G) linear in |V(G)|:

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- ▶ Connected graphs can have lct(G) linear in |V(G)|:

If G is 2-connected, then the longest cycles in G pairwise intersect.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let *G* be a 2-connected *n*-vertex graph.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected *n*-vertex graph.

▶ Rautenbach–Sereni (2014): $lct(G) \leq \left\lceil \frac{n}{3} - \frac{n^{2/3}}{36} \right\rceil$.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lct(G) \leq \left\lceil \frac{n}{3} \frac{n^{2/3}}{36} \right\rceil$.
 - Long–Milans–Munaro (2021): $lct(G) \leq O(n^{3/4})$.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lct(G) \leq \left\lceil \frac{n}{3} \frac{n^{2/3}}{36} \right\rceil$.
 - ▶ Long-Milans-Munaro (2021): $lct(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $lct(G) \leq O(n^{2/3})$.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lct(G) \leq \left[\frac{n}{3} \frac{n^{2/3}}{36}\right]$.
 - ► Long-Milans-Munaro (2021): $lct(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $lct(G) \leq O(n^{2/3})$.
- Grünbaum (1974) some 2-connected G has lct(G) = 3.

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lct(G) \leq \left\lceil \frac{n}{3} \frac{n^{2/3}}{36} \right\rceil$.
 - ▶ Long-Milans-Munaro (2021): $lct(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $lct(G) \leq O(n^{2/3})$.
- Grünbaum (1974) some 2-connected G has lct(G) = 3.
- Open: is there a 2-connected graph G with $lct(G) \ge 4$?

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lct(G) \leq \left\lceil \frac{n}{3} \frac{n^{2/3}}{36} \right\rceil$.
 - ▶ Long-Milans-Munaro (2021): $lct(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $\operatorname{lct}(G) \leq O(n^{2/3})$.
- Grünbaum (1974) some 2-connected G has lct(G) = 3.
- Open: is there a 2-connected graph G with $lct(G) \ge 4$?
- Harvey-Payne (2022): If G is a 2-connected chordal graph, then lpt(G) ≤ 2 [ω(G)/3].

- ► A longest cycle transversal of *G* is a set of vertices that intersects every longest cycle.
- Let lct(G) be the min. size of a longest cycle transversal in G.
- Let G be a 2-connected n-vertex graph.
 - ▶ Rautenbach–Sereni (2014): $lct(G) \leq \left\lceil \frac{n}{3} \frac{n^{2/3}}{36} \right\rceil$.
 - ▶ Long-Milans-Munaro (2021): $lct(G) \leq O(n^{3/4})$.
 - Kierstead–Rey (2021): $lct(G) \leq O(n^{2/3})$.
- Grünbaum (1974) some 2-connected G has lct(G) = 3.
- Open: is there a 2-connected graph G with $lct(G) \ge 4$?
- Harvey−Payne (2022): If G is a 2-connected chordal graph, then lpt(G) ≤ 2 [ω(G)/3].

Theorem

If G is a 2-connected n-vertex chordal graph, then $lct(G) \leq O(\log n)$.

• Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

• Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

G

• Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

• G

• Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

• Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

• Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

► Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

► Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

► Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

► Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

• Given $u \in V(G)$, let S(u) be the corresponding subtree in G.

• Given $x \in V(T)$, let B(x) be the corresponding bag: $B(x) = \{u \in V(G) : x \in V(S(u))\}.$

► Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given x ∈ V(T), let B(x) be the corresponding bag: B(x) = {u ∈ V(G): x ∈ V(S(u))}.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and |V(T)| = #(max. cliques in G) ≤ |V(G)|.

► Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given x ∈ V(T), let B(x) be the corresponding bag: B(x) = {u ∈ V(G): x ∈ V(S(u))}.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and |V(T)| = #(max. cliques in G) ≤ |V(G)|.
- ► Lemma: every tree T has a vertex z such that each component of T z has at most |V(T)|/2 vertices.

► Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given x ∈ V(T), let B(x) be the corresponding bag: B(x) = {u ∈ V(G): x ∈ V(S(u))}.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and |V(T)| = #(max. cliques in G) ≤ |V(G)|.
- ► Lemma: every tree T has a vertex z such that each component of T z has at most |V(T)|/2 vertices.
- ▶ Lemma: If G is 2-connected and C_1 and C_2 are longest cycles in G, then $C_1 \cup C_2$ is a 2-connected subgraph.

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\operatorname{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\operatorname{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\operatorname{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\operatorname{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

If S(u) intersects core(H) and u ∉ V(H), then u completes a triangle with an edge in H.

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\operatorname{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

If S(u) intersects core(H) and u ∉ V(H), then u completes a triangle with an edge in H.

Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$\operatorname{core}(H) = \bigcup_{uv \in E(H)} (V(S(u)) \cap V(S(v))).$$

If S(u) intersects core(H) and u ∉ V(H), then u completes a triangle with an edge in H.

A set W ⊆ V(T) has the core capture property (ccp) for a family of subgraphs H if each H ∈ H has a core vertex in W.

Lemma

Let:

1. G: a 2-connected chordal graph

Lemma

Let:

- 1. G: a 2-connected chordal graph
- 2. T: a minimal tree representation of G with a root vertex

Lemma

Let:

- 1. G: a 2-connected chordal graph
- 2. T: a minimal tree representation of G with a root vertex
- 3. $\mathcal{C}:$ a family of longest cycles in G

Lemma

Let:

- 1. G: a 2-connected chordal graph
- 2. T: a minimal tree representation of G with a root vertex
- 3. C: a family of longest cycles in G
- 4. X: a rooted subtree of T with V(X) having the ccp for C.

Lemma

Let:

- 1. G: a 2-connected chordal graph
- 2. T: a minimal tree representation of G with a root vertex
- 3. C: a family of longest cycles in G
- 4. X: a rooted subtree of T with V(X) having the ccp for C.

Then there exists:

1. \mathcal{C}' : a subfamily of $\mathcal C$

Lemma

Let:

- 1. G: a 2-connected chordal graph
- 2. T: a minimal tree representation of G with a root vertex
- 3. C: a family of longest cycles in G
- 4. X: a rooted subtree of T with V(X) having the ccp for C.

Then there exists:

- 1. \mathcal{C}' : a subfamily of $\mathcal C$
- 2. X': a rooted subtree of X having the ccp for C', with $|V(X')| \le |V(X)|/2$.

Lemma

Let:

- 1. G: a 2-connected chordal graph
- 2. T: a minimal tree representation of G with a root vertex
- 3. C: a family of longest cycles in G
- 4. X: a rooted subtree of T with V(X) having the ccp for C.

Then there exists:

- 1. \mathcal{C}' : a subfamily of $\mathcal C$
- 2. X': a rooted subtree of X having the ccp for C', with $|V(X')| \le |V(X)|/2$.
- 3. A: a set of at most 4 verts in G meeting each cycle in C C'.

Lemma

Let:

- 1. G: a 2-connected chordal graph
- 2. T: a minimal tree representation of G with a root vertex
- 3. C: a family of longest cycles in G
- 4. X: a rooted subtree of T with V(X) having the ccp for C.

Then there exists:

- 1. \mathcal{C}' : a subfamily of $\mathcal C$
- 2. X': a rooted subtree of X having the ccp for C', with $|V(X')| \le |V(X)|/2$.
- 3. A: a set of at most 4 verts in G meeting each cycle in C C'.

Theorem

If G is a 2-connected n-vertex chordal graph, then $lct(G) \le 4(1 + \lceil lg n \rceil)$.

 \blacktriangleright C: family of longest cycles.

x

- \blacktriangleright C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.

x

• Z

- C: family of longest cycles.
- \blacktriangleright X: rooted subtree with root x, having ccp for C.
- > z: vertex such that X z has small components.

- C: family of longest cycles.
- \blacktriangleright X: rooted subtree with root x, having ccp for C.
- > z: vertex such that X z has small components.
- Q: the xz-path.

- C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.
- > z: vertex such that X z has small components.
- Q: the xz-path.
- D(y): all descendants of y (including y).

- C: family of longest cycles.
- X: rooted subtree with root x, having ccp for C.
- ► z: vertex such that X z has small components.
- Q: the xz-path.
- D(y): all descendants of y (including y).
- ▶ Q₀: minimal subpath of Q whose descendants D(Q₀) have ccp for C.

Lemma: G has distinct vertices w₁ and w₂ with S(w₁), S(w₂) containing Q₀.

- Lemma: G has distinct vertices w₁ and w₂ with S(w₁), S(w₂) containing Q₀.
- We add w_1, w_2 to A.

- Lemma: G has distinct vertices w₁ and w₂ with S(w₁), S(w₂) containing Q₀.
- We add w_1, w_2 to A.
- Let $C_1 = \{C \in C : V(C_1) \cap \{w_1, w_2\} = \varnothing\}.$

▶ A path P in G is good if $|V(P)| \ge 3$, $S(u) \subseteq D(Q_0) - V(Q_0)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \emptyset$ for each endpoint v of P.

- A path P in G is good if |V(P)| ≥ 3, S(u) ⊆ D(Q₀) V(Q₀) for each interior vertex u ∈ V(P), and S(v) ∩ V(Q) ≠ Ø for each endpoint v of P.
- Except for a degen. case, each $C \in C_1$ contains a good path.

- A path P in G is good if |V(P)| ≥ 3, S(u) ⊆ D(Q₀) V(Q₀) for each interior vertex u ∈ V(P), and S(v) ∩ V(Q) ≠ Ø for each endpoint v of P.
- Except for a degen. case, each $C \in C_1$ contains a good path.
- ▶ Let *P* be a longest good path in *G* with endpoints *w*₃ and *w*₄.

- A path P in G is good if |V(P)| ≥ 3, S(u) ⊆ D(Q₀) V(Q₀) for each interior vertex u ∈ V(P), and S(v) ∩ V(Q) ≠ Ø for each endpoint v of P.
- Except for a degen. case, each $C \in C_1$ contains a good path.
- Let P be a longest good path in G with endpoints w₃ and w₄.
- ▶ If $C \in C_1$ does not intersect P, then we get a longer cycle by replacing the interior of a good path in C with w_1Pw_2 .

▶ Let $A = \{w_1, w_2, w_3, w_4\}$ and $C' = \{C \in C : V(C) \cap A = \emptyset\}.$

Let A = {w₁, w₂, w₃, w₄} and C' = {C ∈ C: V(C) ∩ A = ∅}.
Each C ∈ C' intersects P in an interior vertex of P.

- ▶ Let $A = \{w_1, w_2, w_3, w_4\}$ and $C' = \{C \in C : V(C) \cap A = \emptyset\}.$
- Each $C \in C'$ intersects P in an interior vertex of P.
- For some y ∈ V(Q₀), each interior vertex u of P has a subtree S(u) contained in a component of D(y) − y.

- ▶ Let $A = \{w_1, w_2, w_3, w_4\}$ and $C' = \{C \in C : V(C) \cap A = \emptyset\}.$
- Each $C \in C'$ intersects P in an interior vertex of P.
- For some y ∈ V(Q₀), each interior vertex u of P has a subtree S(u) contained in a component of D(y) − y.

- ▶ Let $A = \{w_1, w_2, w_3, w_4\}$ and $C' = \{C \in C : V(C) \cap A = \emptyset\}.$
- Each $C \in C'$ intersects P in an interior vertex of P.
- For some y ∈ V(Q₀), each interior vertex u of P has a subtree S(u) contained in a component of D(y) − y.
- ► Take X' to be this component.

Host tree: subdivided star

► Gavril (1974): A graph G is chordal if and only if G is the intersection graph of subtrees of a host tree.

Host tree: subdivided star

- Gavril (1974): A graph G is chordal if and only if G is the intersection graph of subtrees of a host tree.
- ► A graph G is an interval graph if and only if G has a tree representation T such that T is a path.

Host tree: subdivided star

- Gavril (1974): A graph G is chordal if and only if G is the intersection graph of subtrees of a host tree.
- ► A graph G is an interval graph if and only if G has a tree representation T such that T is a path.
- Long-Milans-Wigal: if G is connected and has a tree representation T such that T is a subdivided star, then lpt(G) = 1.

1. Prove lpt(G) = 1 when G is a connected chordal graph (or find a counterexample).

- 1. Prove lpt(G) = 1 when G is a connected chordal graph (or find a counterexample).
- Prove lpt(G) = 1 when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on lpt(G) but not lpt(G) = 1.)

- 1. Prove lpt(G) = 1 when G is a connected chordal graph (or find a counterexample).
- 2. Prove lpt(G) = 1 when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on lpt(G) but not lpt(G) = 1.)
- Improve the bounds lpt(G) ≤ O(log² n) and lct(G) ≤ O(log n) when G is an n-vertex connected/2-connected chordal graph.

- 1. Prove lpt(G) = 1 when G is a connected chordal graph (or find a counterexample).
- 2. Prove lpt(G) = 1 when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on lpt(G) but not lpt(G) = 1.)
- 3. Improve the bounds $lpt(G) \le O(\log^2 n)$ and $lct(G) \le O(\log n)$ when G is an *n*-vertex connected/2-connected chordal graph.
- 4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?

- 1. Prove lpt(G) = 1 when G is a connected chordal graph (or find a counterexample).
- 2. Prove lpt(G) = 1 when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on lpt(G) but not lpt(G) = 1.)
- 3. Improve the bounds $lpt(G) \le O(\log^2 n)$ and $lct(G) \le O(\log n)$ when G is an *n*-vertex connected/2-connected chordal graph.
- 4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?
- 5. Improve the Kierstead–Ren (2023+) bound $lpt(G) \le O(n^{2/3})$ when G is a connected *n*-vertex graph.

- 1. Prove lpt(G) = 1 when G is a connected chordal graph (or find a counterexample).
- Prove lpt(G) = 1 when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on lpt(G) but not lpt(G) = 1.)
- 3. Improve the bounds $lpt(G) \le O(\log^2 n)$ and $lct(G) \le O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.
- 4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?
- 5. Improve the Kierstead–Ren (2023+) bound $lpt(G) \le O(n^{2/3})$ when G is a connected *n*-vertex graph.
- 6. Find a connected graph G with $lpt(G) \ge 4$ (or show no such graph exists).

- 1. Prove lpt(G) = 1 when G is a connected chordal graph (or find a counterexample).
- 2. Prove lpt(G) = 1 when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on lpt(G) but not lpt(G) = 1.)
- 3. Improve the bounds $lpt(G) \le O(\log^2 n)$ and $lct(G) \le O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.
- 4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?
- 5. Improve the Kierstead–Ren (2023+) bound $lpt(G) \le O(n^{2/3})$ when G is a connected *n*-vertex graph.
- 6. Find a connected graph G with $lpt(G) \ge 4$ (or show no such graph exists).

Thank You.