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Gallai's Problem

» If P and @ are longest paths in a connected graph, then

V(P)NV(Q) # @.

> Gallai (1966): |s some vertex common to every longest path?

» Walther (1969): No.

Counter-example (Walther—Voss; T.l. Zamfirescu)
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> A Gallai vertex is a vertex belonging to every longest path.

> G is a Gallai family of graphs if every connected graph in G
has a Gallai vertex.

» Balister—Gy&ri—Lehel-Schelp (2004): “We could not extend
our approach [on interval graphs] to [chordal graphs|”, but
chordal graphs have a clique meeting every longest path. “It
is possible that all longest paths must go through a common
vertex in that clique.”

Question
Do the chordal graphs form a Gallai family?
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A longest path transversal of G is a set of vertices intersecting
every longest path.

Let Ipt(G) be the min. size of a longest path transversal in G.
G is Gallai if and only if Ipt(G) = 1 for each connected G € G.

If we cannot prove G is Gallai, weaker upper bounds on
Ipt(G) may be of interest.

Let G be a connected n-vertex graph.
> Rautenbach—Sereni (2014): Ipt(G) < H %83 .

» Long-Milans—Munaro (2021): Ipt(G) < O(n/%).
> Kierstead—Ren (2023+): Ipt(G) < O(n?/3).

Griinbaum (1974): Some connected graph G has Ipt(G) = 3.
Open: is there a connected graph G with Ipt(G) > 47
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» Balister—Gy6ri-Lehel-Schelp (2004): “We could not extend
our approach [on interval graphs] to [chordal graphs|”, but
chordal graphs have a clique meeting every longest path. “It
is possible that all longest paths must go through a common
vertex in that clique.”

» If G is a connected chordal graph, then Ipt(G) < w(G).

» Harvey—Payne (2022): If G is a connected chordal graph, then
Ipt(G) < 4 [w(G)/5].

Theorem
If G is a connected n-vertex chordal graph, then

Ipt(G) < O(log? n).
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» If G is 2-connected, then the longest cycles in G pairwise
intersect.
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Longest Cycle Transversals

» A longest cycle transversal of G is a set of vertices that
intersects every longest cycle.
» Let Ict(G) be the min. size of a longest cycle transversal in G.

» Let G be a 2-connected n-vertex graph.
» Rautenbach—Sereni (2014): lct(G) < [g - ”;gg .

> Long-Milans—Munaro (2021): lct(G) < O(n/%).
> Kierstead—Rey (2021): lct(G) < O(n?/3).

» Griinbaum (1974) some 2-connected G has lct(G) = 3.
» Open: is there a 2-connected graph G with lct(G) > 47

» Harvey—Payne (2022): If G is a 2-connected chordal graph,
then Ipt(G) < 2 [w(G)/3].

Theorem

If G is a 2-connected n-vertex chordal graph, then
let(G) < O(log n).
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» Gavril (1974): A graph G is chordal if and only if G in the
intersection graph of subtrees of a host tree T.
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Given u € V(G), let S(u) be the corresponding subtree in G.
» Given x € V(T), let B(x) be the corresponding bag:
B(x) ={ue V(G): x € V(S(u))}.

» Fact: if T is a minimal tree representation of a chordal graph
G, then the bags in T are the maximal cliques in G and
|[V(T)| = #(max. cliques in G) < |V(G)|.

> Lemma: every tree T has a vertex z such that each

component of T — z has at most |V/(T)|/2 vertices.



Tree Representations

| 2

v

Gavril (1974): A graph G is chordal if and only if G in the
intersection graph of subtrees of a host tree T.

T'.\= /.' . | /| /.G
/ \ //\‘\,

Given u € V(G), let S(u) be the corresponding subtree in G.
Given x € V(T), let B(x) be the corresponding bag:

B(x) ={ue V(G): x € V(S(u))}.

Fact: if T is a minimal tree representation of a chordal graph
G, then the bags in T are the maximal cliques in G and
|[V(T)| = #(max. cliques in G) < |V(G)|.

Lemma: every tree T has a vertex z such that each
component of T — z has at most |V/(T)|/2 vertices.

Lemma: If G is 2-connected and C; and C; are longest cycles
in G, then C; U G, is a 2-connected subgraph.
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subgraph H of G is given by
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» If S(u) intersects core(H) and u ¢ V(H), then u completes a
triangle with an edge in H.
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The Core Capture Property

» Let G be chordal with tree representation 7. The core of a
subgraph H of G is given by

core( U (V(S(u)) N V(S(v))).

uveE(H)

v

T &—eo—o—0
Hu1 F———u Hus
I {2 | | Ug
: v ; ¢

| v
uy up u3 ug us

» If S(u) intersects core(H) and u ¢ V(H), then u completes a
triangle with an edge in H.

> Aset W C V(T) has the core capture property (ccp) for a
family of subgraphs H if each H € H has a core vertex in W.
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Key Lemma

Lemma
Let:
1. G: a 2-connected chordal graph

2. T: a minimal tree representation of G with a root vertex
3. C: a family of longest cycles in G
4. X: a rooted subtree of T with V(X) having the ccp for C.
Then there exists:
1. C': a subfamily of C
2. X': a rooted subtree of X having the ccp for C', with
V(X) < [V(X)]/2.
3. A: a set of at most 4 verts in G meeting each cycle in C — C'.

Theorem
If G is a 2-connected n-vertex chordal graph, then
let(G) < 4(1+ [lgn]).
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Key Lemma Sketch

C: family of longest cycles.

X: rooted subtree with root x, having ccp for C.
z: vertex such that X — z has small components.
Q: the xz-path.

D(y): all descendants of y (including y).

vVvYVvyVvVvyVvyy

Qo: minimal subpath of @ whose descendants D(Qp) have
ccp for C.
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» Lemma: G has distinct vertices wy and wy with S(wy), S(we)
containing Q.

» We add wy, wp to A.
» Let C; = {C eC: V(Cl) N {Wl, W2} = @}
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» A path Pin G is good if |[V(P)| > 3, S(u) € D(Qo) — V(Qo)
for each interior vertex u € V(P), and S(v) N V(Q) # @ for
each endpoint v of P.

> Except for a degen. case, each C € C; contains a good path.
> Let P be a longest good path in G with endpoints w3 and wy.



Key Lemma Sketch

>

v

A path Pin G is good if [V(P)| > 3, S(u) € D(Qo) — V(Qo)
for each interior vertex u € V(P), and S(v) N V(Q) # & for
each endpoint v of P.

Except for a degen. case, each C € C; contains a good path.
Let P be a longest good path in G with endpoints ws and wj.

If C € C1 does not intersect P, then we get a longer cycle by
replacing the interior of a good path in C with wy Pws.
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Key Lemma Sketch

X/

> Let A={wi,wo,wz,ws} and ' ={C eC: V(C)NA= g}
» Each C € (' intersects P in an interior vertex of P.

» For some y € V(Qp), each interior vertex u of P has a
subtree S(u) contained in a component of D(y) — y.

» Take X’ to be this component.
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Host tree: subdivided star

» Gavril (1974): A graph G is chordal if and only if G is the
intersection graph of subtrees of a host tree.

> A graph G is an interval graph if and only if G has a tree
representation T such that T is a path.

» Long—Milans—Wigal: if G is connected and has a tree
representation T such that T is a subdivided star, then
Ipt(G) = 1.
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Open Problems

1.

Prove Ipt(G) = 1 when G is a connected chordal graph (or
find a counterexample).

. Prove Ipt(G) = 1 when G is a connected chordal graph with

tree representation T, such that T belongs to some nice
family of trees. (When T is a subdivided caterpillar, we get a
constant bound on Ipt(G) but not Ipt(G) = 1.)

Improve the bounds Ipt(G) < O(log? n) and

lct(G) < O(log n) when G is an n-vertex
connected/2-connected chordal graph.

Our arguments do not give efficient algorithms for finding the
transversals; can we find these in polynomial time?

Improve the Kierstead—Ren (2023+) bound Ipt(G) < O(n?/3)
when G is a connected n-vertex graph.

Find a connected graph G with Ipt(G) > 4 (or show no such
graph exists).

Thank You.
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