Longest Path and Cycle Transversals in Chordal Graphs

James A. Long, Jr.
Kevin G. Milans (milans@math.wvu.edu)
Michael Wigal

West Virginia University

United States Naval Academy, Annapolis, MD
April 7, 2023

A Classic Result

Theorem
Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

A Classic Result

Theorem
Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.

A Classic Result

Theorem
Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.

A Classic Result

Theorem

Let G be a connected graph. If P and Q are longest paths in G, then P and Q share at least one vertex.

- Suppose that P and Q are disjoint longest paths.
- G is connected: every pair of vertices is joined by some path.
- Let R be a shortest path joining P and Q.
- R and the longer parts of P and Q form a longer path.

Gallai's Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \varnothing$.

Gallai's Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \varnothing$.
- Gallai (1966): Is some vertex common to every longest path?

Gallai's Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \varnothing$.
- Gallai (1966): Is some vertex common to every longest path?
- Walther (1969): No.

Gallai's Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \varnothing$.
- Gallai (1966): Is some vertex common to every longest path?
- Walther (1969): No.

Counter-example (Walther-Voss; T.I. Zamfirescu)

Petersen Graph

Gallai's Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \varnothing$.
- Gallai (1966): Is some vertex common to every longest path?
- Walther (1969): No.

Counter-example (Walther-Voss; T.I. Zamfirescu)

Petersen Graph

Petersen Fragment

Gallai's Problem

- If P and Q are longest paths in a connected graph, then $V(P) \cap V(Q) \neq \varnothing$.
- Gallai (1966): Is some vertex common to every longest path?
- Walther (1969): No.

Counter-example (Walther-Voss; T.I. Zamfirescu)

Petersen Graph

Petersen Fragment

Redrawn

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti
- Balister-Győri-Lehel-Schelp (2004): interval graphs

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti
- Balister-Győri-Lehel-Schelp (2004): interval graphs
- Rezende-Fernandes-D.M.Martin-Wakabayashi (2011): outerplanar graphs and 2-trees

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti
- Balister-Győri-Lehel-Schelp (2004): interval graphs
- Rezende-Fernandes-D.M.Martin-Wakabayashi (2011): outerplanar graphs and 2-trees
- BGLS+Joos (2015): circular arc graphs

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti
- Balister-Győri-Lehel-Schelp (2004): interval graphs
- Rezende-Fernandes-D.M.Martin-Wakabayashi (2011): outerplanar graphs and 2-trees
- BGLS+Joos (2015): circular arc graphs
- Jobson-Kézdy-Lehel-White (2016): P_{4}-free graphs, dually chordal graphs

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti
- Balister-Győri-Lehel-Schelp (2004): interval graphs
- Rezende-Fernandes-D.M.Martin-Wakabayashi (2011): outerplanar graphs and 2-trees
- BGLS+Joos (2015): circular arc graphs
- Jobson-Kézdy-Lehel-White (2016): P_{4}-free graphs, dually chordal graphs
- Cerioli-Lima (2016): P_{4}-sparse graphs

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti
- Balister-Győri-Lehel-Schelp (2004): interval graphs
- Rezende-Fernandes-D.M.Martin-Wakabayashi (2011): outerplanar graphs and 2-trees
- BGLS+Joos (2015): circular arc graphs
- Jobson-Kézdy-Lehel-White (2016): P_{4}-free graphs, dually chordal graphs
- Cerioli-Lima (2016): P_{4}-sparse graphs
- Chen-Ehrenmüller-Fernandes-Heise-Shan-Yang-Yates (2017): K K $_{4}$-minor-free graphs

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
Examples of Gallai families:
- Klavžar-Petkovšek (1990): split graphs and cacti
- Balister-Győri-Lehel-Schelp (2004): interval graphs
- Rezende-Fernandes-D.M.Martin-Wakabayashi (2011): outerplanar graphs and 2-trees
- BGLS+Joos (2015): circular arc graphs
- Jobson-Kézdy-Lehel-White (2016): P_{4}-free graphs, dually chordal graphs
- Cerioli-Lima (2016): P_{4}-sparse graphs
- Chen-Ehrenmüller-Fernandes-Heise-Shan-Yang-Yates (2017): K_{4}-minor-free graphs
- Golan-Shan (2018): $2 P_{2}$-free graphs

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."

Gallai Families

- A Gallai vertex is a vertex belonging to every longest path.
- \mathcal{G} is a Gallai family of graphs if every connected graph in \mathcal{G} has a Gallai vertex.
- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."

Question
Do the chordal graphs form a Gallai family?

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\operatorname{lpt}(G)$ may be of interest.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\operatorname{lpt}(G)$ may be of interest.
- Let G be a connected n-vertex graph.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\operatorname{lpt}(G)$ may be of interest.
- Let G be a connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lpt}(G) \leq\left\lceil\frac{n}{4}-\frac{n^{2 / 3}}{90}\right\rceil$.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\operatorname{lpt}(G)$ may be of interest.
- Let G be a connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lpt}(G) \leq\left\lceil\frac{n}{4}-\frac{n^{2 / 3}}{90}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lpt}(G) \leq O\left(n^{3 / 4}\right)$.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\operatorname{lpt}(G)$ may be of interest.
- Let G be a connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lpt}(G) \leq\left\lceil\frac{n}{4}-\frac{n^{2 / 3}}{90}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lpt}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Ren $(2023+): \operatorname{lpt}(G) \leq O\left(n^{2 / 3}\right)$.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\operatorname{lpt}(G)$ may be of interest.
- Let G be a connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lpt}(G) \leq\left\lceil\frac{n}{4}-\frac{n^{2 / 3}}{90}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lpt}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Ren $(2023+): \operatorname{lpt}(G) \leq O\left(n^{2 / 3}\right)$.
- Grünbaum (1974): Some connected graph G has $\operatorname{lpt}(G)=3$.

Longest Path Transversals

- A longest path transversal of G is a set of vertices intersecting every longest path.
- Let $\operatorname{lpt}(G)$ be the min. size of a longest path transversal in G.
- \mathcal{G} is Gallai if and only if $\operatorname{lpt}(G)=1$ for each connected $G \in \mathcal{G}$.
- If we cannot prove \mathcal{G} is Gallai, weaker upper bounds on $\operatorname{lpt}(G)$ may be of interest.
- Let G be a connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lpt}(G) \leq\left\lceil\frac{n}{4}-\frac{n^{2 / 3}}{90}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lpt}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Ren $(2023+): \operatorname{lpt}(G) \leq O\left(n^{2 / 3}\right)$.
- Grünbaum (1974): Some connected graph G has $\operatorname{lpt}(G)=3$.
- Open: is there a connected $\operatorname{graph} G$ with $\operatorname{lpt}(G) \geq 4$?

Chordal Graphs

- Let G be a graph and let C be a cycle in G.

Chordal Graphs

- Let G be a graph and let C be a cycle in G.

Chordal Graphs

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G-E(C)$ with both ends in C.

Chordal Graphs

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G-E(C)$ with both ends in C.

Chordal Graphs

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G-E(C)$ with both ends in C.

Chordal Graphs

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G-E(C)$ with both ends in C.

Chordal Graphs

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G-E(C)$ with both ends in C.
- A graph G is chordal if each cycle in G on at least 4 vertices has a chord.

Chordal Graphs

Petersen Fragment

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G-E(C)$ with both ends in C.
- A graph G is chordal if each cycle in G on at least 4 vertices has a chord.
- The Petersen Fragment is not chordal.

Chordal Graphs

Petersen Fragment

- Let G be a graph and let C be a cycle in G.
- A chord of C is an edge in $G-E(C)$ with both ends in C.
- A graph G is chordal if each cycle in G on at least 4 vertices has a chord.
- The Petersen Fragment is not chordal.

Longest Path Transversals in Chordal Graphs

- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."

Longest Path Transversals in Chordal Graphs

- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."
- If G is a connected chordal graph, then $\operatorname{lpt}(G) \leq \omega(G)$.

Longest Path Transversals in Chordal Graphs

- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."
- If G is a connected chordal graph, then $\operatorname{lpt}(G) \leq \omega(G)$.
- Harvey-Payne (2022): If G is a connected chordal graph, then $\operatorname{lpt}(G) \leq 4\lceil\omega(G) / 5\rceil$.

Longest Path Transversals in Chordal Graphs

- Balister-Győri-Lehel-Schelp (2004): "We could not extend our approach [on interval graphs] to [chordal graphs]", but chordal graphs have a clique meeting every longest path. "It is possible that all longest paths must go through a common vertex in that clique."
- If G is a connected chordal graph, then $\operatorname{lpt}(G) \leq \omega(G)$.
- Harvey-Payne (2022): If G is a connected chordal graph, then $\operatorname{lpt}(G) \leq 4\lceil\omega(G) / 5\rceil$.

Theorem
If G is a connected n-vertex chordal graph, then
$\operatorname{lpt}(G) \leq O\left(\log ^{2} n\right)$.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Connected graphs can have $\operatorname{lct}(G)$ linear in $|V(G)|$:

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Connected graphs can have lct (G) linear in $|V(G)|$:

- If G is 2-connected, then the longest cycles in G pairwise intersect.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lct}(G) \leq\left\lceil\frac{n}{3}-\frac{n^{2 / 3}}{36}\right\rceil$.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lct}(G) \leq\left\lceil\frac{n}{3}-\frac{n^{2 / 3}}{36}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lct}(G) \leq O\left(n^{3 / 4}\right)$.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lct}(G) \leq\left\lceil\frac{n}{3}-\frac{n^{2 / 3}}{36}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lct}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Rey (2021): $\operatorname{lct}(G) \leq O\left(n^{2 / 3}\right)$.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lct}(G) \leq\left\lceil\frac{n}{3}-\frac{n^{2 / 3}}{36}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lct}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Rey (2021): $\operatorname{lct}(G) \leq O\left(n^{2 / 3}\right)$.
- Grünbaum (1974) some 2-connected G has $\operatorname{lct}(G)=3$.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lct}(G) \leq\left\lceil\frac{n}{3}-\frac{n^{2 / 3}}{36}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lct}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Rey (2021): $\operatorname{lct}(G) \leq O\left(n^{2 / 3}\right)$.
- Grünbaum (1974) some 2-connected G has $\operatorname{lct}(G)=3$.
- Open: is there a 2 -connected graph G with $\operatorname{lct}(G) \geq 4$?

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lct}(G) \leq\left\lceil\frac{n}{3}-\frac{n^{2 / 3}}{36}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lct}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Rey (2021): $\operatorname{lct}(G) \leq O\left(n^{2 / 3}\right)$.
- Grünbaum (1974) some 2-connected G has $\operatorname{lct}(G)=3$.
- Open: is there a 2-connected graph G with $\operatorname{lct}(G) \geq 4$?
- Harvey-Payne (2022): If G is a 2-connected chordal graph, then $\operatorname{lpt}(G) \leq 2\lceil\omega(G) / 3\rceil$.

Longest Cycle Transversals

- A longest cycle transversal of G is a set of vertices that intersects every longest cycle.
- Let $\operatorname{lct}(G)$ be the min. size of a longest cycle transversal in G.
- Let G be a 2 -connected n-vertex graph.
- Rautenbach-Sereni (2014): $\operatorname{lct}(G) \leq\left\lceil\frac{n}{3}-\frac{n^{2 / 3}}{36}\right\rceil$.
- Long-Milans-Munaro (2021): $\operatorname{lct}(G) \leq O\left(n^{3 / 4}\right)$.
- Kierstead-Rey (2021): $\operatorname{lct}(G) \leq O\left(n^{2 / 3}\right)$.
- Grünbaum (1974) some 2-connected G has $\operatorname{lct}(G)=3$.
- Open: is there a 2 -connected graph G with $\operatorname{lct}(G) \geq 4$?
- Harvey-Payne (2022): If G is a 2-connected chordal graph, then $\operatorname{lpt}(G) \leq 2\lceil\omega(G) / 3\rceil$.

Theorem

If G is a 2-connected n-vertex chordal graph, then
$\operatorname{lct}(G) \leq O(\log n)$.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

G

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

G

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

$$
\geqslant \quad G
$$

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x)=\{u \in V(G): x \in V(S(u))\}$.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x)=\{u \in V(G): x \in V(S(u))\}$.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)|=\#($ max. cliques in $G) \leq|V(G)|$.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x)=\{u \in V(G): x \in V(S(u))\}$.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)|=\#($ max. cliques in $G) \leq|V(G)|$.
- Lemma: every tree T has a vertex z such that each component of $T-z$ has at most $|V(T)| / 2$ vertices.

Tree Representations

- Gavril (1974): A graph G is chordal if and only if G in the intersection graph of subtrees of a host tree T.

- Given $u \in V(G)$, let $S(u)$ be the corresponding subtree in G.
- Given $x \in V(T)$, let $B(x)$ be the corresponding bag: $B(x)=\{u \in V(G): x \in V(S(u))\}$.
- Fact: if T is a minimal tree representation of a chordal graph G, then the bags in T are the maximal cliques in G and $|V(T)|=\#($ max. cliques in $G) \leq|V(G)|$.
- Lemma: every tree T has a vertex z such that each component of $T-z$ has at most $|V(T)| / 2$ vertices.
- Lemma: If G is 2 -connected and C_{1} and C_{2} are longest cycles in G, then $C_{1} \cup C_{2}$ is a 2-connected subgraph.

The Core Capture Property

- Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$
\operatorname{core}(H)=\bigcup_{u v \in E(H)}(V(S(u)) \cap V(S(v)))
$$

The Core Capture Property

- Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$
\operatorname{core}(H)=\bigcup_{u v \in E(H)}(V(S(u)) \cap V(S(v)))
$$

The Core Capture Property

- Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$
\operatorname{core}(H)=\bigcup_{u v \in E(H)}(V(S(u)) \cap V(S(v)))
$$

The Core Capture Property

- Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$
\operatorname{core}(H)=\bigcup_{u v \in E(H)}(V(S(u)) \cap V(S(v)))
$$

- If $S(u)$ intersects core (H) and $u \notin V(H)$, then u completes a triangle with an edge in H.

The Core Capture Property

- Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$
\operatorname{core}(H)=\bigcup_{u v \in E(H)}(V(S(u)) \cap V(S(v)))
$$

- If $S(u)$ intersects core (H) and $u \notin V(H)$, then u completes a triangle with an edge in H.

The Core Capture Property

- Let G be chordal with tree representation T. The core of a subgraph H of G is given by

$$
\operatorname{core}(H)=\bigcup_{u v \in E(H)}(V(S(u)) \cap V(S(v)))
$$

- If $S(u)$ intersects core (H) and $u \notin V(H)$, then u completes a triangle with an edge in H.
- A set $W \subseteq V(T)$ has the core capture property (ccp) for a family of subgraphs \mathcal{H} if each $H \in \mathcal{H}$ has a core vertex in W.

Key Lemma

Lemma
Let:

1. G: a 2-connected chordal graph

Key Lemma

Lemma
Let:

1. G: a 2-connected chordal graph
2. T : a minimal tree representation of G with a root vertex

Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T : a minimal tree representation of G with a root vertex
3. \mathcal{C} : a family of longest cycles in G

Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T : a minimal tree representation of G with a root vertex
3. \mathcal{C} : a family of longest cycles in G
4. X : a rooted subtree of T with $V(X)$ having the ccp for \mathcal{C}.

Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T : a minimal tree representation of G with a root vertex
3. \mathcal{C} : a family of longest cycles in G
4. X : a rooted subtree of T with $V(X)$ having the ccp for \mathcal{C}.

Then there exists:

1. \mathcal{C}^{\prime} : a subfamily of \mathcal{C}

Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T : a minimal tree representation of G with a root vertex
3. \mathcal{C} : a family of longest cycles in G
4. X : a rooted subtree of T with $V(X)$ having the ccp for \mathcal{C}.

Then there exists:

1. \mathcal{C}^{\prime} : a subfamily of \mathcal{C}
2. X^{\prime} : a rooted subtree of X having the ccp for \mathcal{C}^{\prime}, with $\left|V\left(X^{\prime}\right)\right| \leq|V(X)| / 2$.

Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T : a minimal tree representation of G with a root vertex
3. \mathcal{C} : a family of longest cycles in G
4. X : a rooted subtree of T with $V(X)$ having the ccp for \mathcal{C}.

Then there exists:

1. \mathcal{C}^{\prime} : a subfamily of \mathcal{C}
2. X^{\prime} : a rooted subtree of X having the $c c p$ for \mathcal{C}^{\prime}, with $\left|V\left(X^{\prime}\right)\right| \leq|V(X)| / 2$.
3. A : a set of at most 4 verts in G meeting each cycle in $\mathcal{C}-\mathcal{C}^{\prime}$.

Key Lemma

Lemma

Let:

1. G: a 2-connected chordal graph
2. T : a minimal tree representation of G with a root vertex
3. \mathcal{C} : a family of longest cycles in G
4. X : a rooted subtree of T with $V(X)$ having the ccp for \mathcal{C}.

Then there exists:

1. \mathcal{C}^{\prime} : a subfamily of \mathcal{C}
2. X^{\prime} : a rooted subtree of X having the ccp for \mathcal{C}^{\prime}, with $\left|V\left(X^{\prime}\right)\right| \leq|V(X)| / 2$.
3. A : a set of at most 4 verts in G meeting each cycle in $\mathcal{C}-\mathcal{C}^{\prime}$.

Theorem
If G is a 2-connected n-vertex chordal graph, then $\operatorname{lct}(G) \leq 4(1+\lceil\lg n\rceil)$.

Key Lemma Sketch

- \mathcal{C} : family of longest cycles.

Key Lemma Sketch

$$
x
$$

- \mathcal{C} : family of longest cycles.
- X: rooted subtree with root x, having ccp for \mathcal{C}.

Key Lemma Sketch

$$
x
$$

- \mathcal{C} : family of longest cycles.
- X: rooted subtree with root x, having ccp for \mathcal{C}.
- z: vertex such that $X-z$ has small components.

Key Lemma Sketch

- \mathcal{C} : family of longest cycles.
- X: rooted subtree with root x, having ccp for \mathcal{C}.
- z: vertex such that $X-z$ has small components.
- Q : the $x z$-path.

Key Lemma Sketch

- \mathcal{C} : family of longest cycles.
- X : rooted subtree with root x, having ccp for \mathcal{C}.
- z: vertex such that $X-z$ has small components.
- Q : the $x z$-path.
- $D(y)$: all descendants of y (including y).

Key Lemma Sketch

- \mathcal{C} : family of longest cycles.
- X : rooted subtree with root x, having ccp for \mathcal{C}.
- z: vertex such that $X-z$ has small components.
- Q : the $x z$-path.
- $D(y)$: all descendants of y (including y).
- Q_{0} : minimal subpath of Q whose descendants $D\left(Q_{0}\right)$ have ccp for \mathcal{C}.

Key Lemma Sketch

- Lemma: G has distinct vertices w_{1} and w_{2} with $S\left(w_{1}\right), S\left(w_{2}\right)$ containing Q_{0}.

Key Lemma Sketch

- Lemma: G has distinct vertices w_{1} and w_{2} with $S\left(w_{1}\right), S\left(w_{2}\right)$ containing Q_{0}.
- We add w_{1}, w_{2} to A.

Key Lemma Sketch

- Lemma: G has distinct vertices w_{1} and w_{2} with $S\left(w_{1}\right), S\left(w_{2}\right)$ containing Q_{0}.
- We add w_{1}, w_{2} to A.
- Let $\mathcal{C}_{1}=\left\{C \in \mathcal{C}: V\left(C_{1}\right) \cap\left\{w_{1}, w_{2}\right\}=\varnothing\right\}$.

Key Lemma Sketch

- A path P in G is good if $|V(P)| \geq 3, S(u) \subseteq D\left(Q_{0}\right)-V\left(Q_{0}\right)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \varnothing$ for each endpoint v of P.

Key Lemma Sketch

- A path P in G is good if $|V(P)| \geq 3, S(u) \subseteq D\left(Q_{0}\right)-V\left(Q_{0}\right)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \varnothing$ for each endpoint v of P.
- Except for a degen. case, each $C \in \mathcal{C}_{1}$ contains a good path.

Key Lemma Sketch

- A path P in G is good if $|V(P)| \geq 3, S(u) \subseteq D\left(Q_{0}\right)-V\left(Q_{0}\right)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \varnothing$ for each endpoint v of P.
- Except for a degen. case, each $C \in \mathcal{C}_{1}$ contains a good path.
- Let P be a longest good path in G with endpoints w_{3} and w_{4}.

Key Lemma Sketch

- A path P in G is good if $|V(P)| \geq 3, S(u) \subseteq D\left(Q_{0}\right)-V\left(Q_{0}\right)$ for each interior vertex $u \in V(P)$, and $S(v) \cap V(Q) \neq \varnothing$ for each endpoint v of P.
- Except for a degen. case, each $C \in \mathcal{C}_{1}$ contains a good path.
- Let P be a longest good path in G with endpoints w_{3} and w_{4}.
- If $C \in \mathcal{C}_{1}$ does not intersect P, then we get a longer cycle by replacing the interior of a good path in C with $w_{1} P w_{2}$.

Key Lemma Sketch

- Let $A=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and $\mathcal{C}^{\prime}=\{C \in \mathcal{C}: V(C) \cap A=\varnothing\}$.

Key Lemma Sketch

- Let $A=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and $\mathcal{C}^{\prime}=\{C \in \mathcal{C}: V(C) \cap A=\varnothing\}$.
- Each $C \in \mathcal{C}^{\prime}$ intersects P in an interior vertex of P.

Key Lemma Sketch

- Let $A=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and $\mathcal{C}^{\prime}=\{C \in \mathcal{C}: V(C) \cap A=\varnothing\}$.
- Each $C \in \mathcal{C}^{\prime}$ intersects P in an interior vertex of P.
- For some $y \in V\left(Q_{0}\right)$, each interior vertex u of P has a subtree $S(u)$ contained in a component of $D(y)-y$.

Key Lemma Sketch

- Let $A=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and $\mathcal{C}^{\prime}=\{C \in \mathcal{C}: V(C) \cap A=\varnothing\}$.
- Each $C \in \mathcal{C}^{\prime}$ intersects P in an interior vertex of P.
- For some $y \in V\left(Q_{0}\right)$, each interior vertex u of P has a subtree $S(u)$ contained in a component of $D(y)-y$.

Key Lemma Sketch

- Let $A=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and $\mathcal{C}^{\prime}=\{C \in \mathcal{C}: V(C) \cap A=\varnothing\}$.
- Each $C \in \mathcal{C}^{\prime}$ intersects P in an interior vertex of P.
- For some $y \in V\left(Q_{0}\right)$, each interior vertex u of P has a subtree $S(u)$ contained in a component of $D(y)-y$.
- Take X^{\prime} to be this component.

Host tree: subdivided star

- Gavril (1974): A graph G is chordal if and only if G is the intersection graph of subtrees of a host tree.

Host tree: subdivided star

- Gavril (1974): A graph G is chordal if and only if G is the intersection graph of subtrees of a host tree.
- A graph G is an interval graph if and only if G has a tree representation T such that T is a path.

Host tree: subdivided star

- Gavril (1974): A graph G is chordal if and only if G is the intersection graph of subtrees of a host tree.
- A graph G is an interval graph if and only if G has a tree representation T such that T is a path.
- Long-Milans-Wigal: if G is connected and has a tree representation T such that T is a subdivided star, then $\operatorname{lpt}(G)=1$.

Open Problems

1. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph (or find a counterexample).

Open Problems

1. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph (or find a counterexample).
2. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\operatorname{lpt}(G)$ but not $\operatorname{lpt}(G)=1$.)

Open Problems

1. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph (or find a counterexample).
2. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\operatorname{lpt}(G)$ but not $\operatorname{lpt}(G)=1$.)
3. Improve the bounds $\operatorname{lpt}(G) \leq O\left(\log ^{2} n\right)$ and $\operatorname{lct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.

Open Problems

1. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph (or find a counterexample).
2. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\operatorname{lpt}(G)$ but not $\operatorname{lpt}(G)=1$.)
3. Improve the bounds $\operatorname{lpt}(G) \leq O\left(\log ^{2} n\right)$ and $\operatorname{lct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.
4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?

Open Problems

1. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph (or find a counterexample).
2. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\operatorname{lpt}(G)$ but not $\operatorname{lpt}(G)=1$.)
3. Improve the bounds $\operatorname{lpt}(G) \leq O\left(\log ^{2} n\right)$ and $\operatorname{lct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.
4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?
5. Improve the Kierstead-Ren $(2023+)$ bound $\operatorname{lpt}(G) \leq O\left(n^{2 / 3}\right)$ when G is a connected n-vertex graph.

Open Problems

1. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph (or find a counterexample).
2. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\operatorname{lpt}(G)$ but not $\operatorname{lpt}(G)=1$.)
3. Improve the bounds $\operatorname{lpt}(G) \leq O\left(\log ^{2} n\right)$ and $\operatorname{lct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.
4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?
5. Improve the Kierstead-Ren $(2023+)$ bound $\operatorname{lpt}(G) \leq O\left(n^{2 / 3}\right)$ when G is a connected n-vertex graph.
6. Find a connected graph G with $\operatorname{lpt}(G) \geq 4$ (or show no such graph exists).

Open Problems

1. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph (or find a counterexample).
2. Prove $\operatorname{lpt}(G)=1$ when G is a connected chordal graph with tree representation T, such that T belongs to some nice family of trees. (When T is a subdivided caterpillar, we get a constant bound on $\operatorname{lpt}(G)$ but not $\operatorname{lpt}(G)=1$.)
3. Improve the bounds $\operatorname{lpt}(G) \leq O\left(\log ^{2} n\right)$ and $\operatorname{lct}(G) \leq O(\log n)$ when G is an n-vertex connected/2-connected chordal graph.
4. Our arguments do not give efficient algorithms for finding the transversals; can we find these in polynomial time?
5. Improve the Kierstead-Ren $(2023+)$ bound $\operatorname{lpt}(G) \leq O\left(n^{2 / 3}\right)$ when G is a connected n-vertex graph.
6. Find a connected graph G with $\operatorname{lpt}(G) \geq 4$ (or show no such graph exists).

Thank You.

