A Dichotomy Theorem for First-Fit Chain Partitions

Kevin G. Milans, Michael C. Wigal

December 16, 2019

Abstract

First-Fit is a greedy algorithm for partitioning the elements of a poset into chains. Let $\operatorname{FF}(w, Q)$ be the maximum number of chains that First-Fit uses on a Q-free poset of width w. A result due to Bosek, Krawczyk, and Matecki states that $\operatorname{FF}(w, Q)$ is finite when Q has width at most 2 . We describe a family of posets \mathcal{Q} and show that the following dichotomy holds: if $Q \in \mathcal{Q}$, then $\mathrm{FF}(w, Q) \leq 2^{c(\log w)^{2}}$ for some constant c depending only on Q, and if $Q \notin \mathcal{Q}$, then $\mathrm{FF}(w, Q) \geq 2^{w}-1$.

1 Introduction

A partially ordered set or poset is a pair (P, \leq) where P is a set and \leq is an antisymmetric, reflexive, and transitive relation on P. We use P instead of (P, \leq) when there is no ambiguity in simplifying this notation. We write $x>y$ when $x \geq y$ and $x \neq y$. All posets in this paper are finite.

Two points $x, y \in P$ are comparable if $x \leq y$ or $y \leq x$. Otherwise, x and y are said to be incomparable, denoted $x \| y$. We say that y covers x if $y>x$ and there does not exist a point $z \in P$ such that $y>z>x$. A chain C is a set of pairwise comparable elements, and the height of P is the size of a maximum chain. An antichain A is a set of pairwise incomparable elements, and the width of P is the size of a maximum antichain.

A chain partition of a poset P is a partition of the elements of P into nonempty chains. Dilworth's theorem states that for each poset P, the minimum size of a chain partition equals the width of P. A Dilworth partition of P is a chain partition of P of minimum size. A poset Q is a subposet of P if Q can be obtained from P by deleting elements. We say that P is Q-free if Q is not a subposet of P.

First-Fit is a simple algorithm that constructs an ordered chain partition of a poset P by processing the elements of P in a given presentation order. Suppose that First-Fit has already partitioned $\left\{x_{1}, \ldots, x_{k-1}\right\}$ into chains $\left(C_{1}, \ldots, C_{t}\right)$. First-Fit then assigns x_{k} to the first chain C_{j} such that $C_{j} \cup\left\{x_{k}\right\}$ is a chain; if necessary, we introduce a new chain C_{t+1} containing only x_{k}.

We are concerned with the efficiency of the First-Fit algorithm. A classical example due to Kierstead (see, for example, pages 87 and 88 in [13]) shows that First-Fit may use arbitrarily
many chains even on posets of width 2. However, Bosek, Krawczyk, and Matecki [4] proved that for each fixed poset Q of width at most 2, the number of chains used by First-Fit on a Q-free poset P is bounded in terms of the width of P. Let $\operatorname{FF}(w, Q)$ be the maximum, over all Q-free posets P of width w and all presentation orders of P, of the number of chains that First-Fit uses. The upper bound on $\mathrm{FF}(w, Q)$ given by Bosek, Krawczyk, and Matecki's can be as large as a tower of w 's with a height that is linear in $|Q|$.

1.1 Prior work

Aside from the result of Bosek, Krawczyk, and Matecki [4], prior work has focused on establishing bounds on $\operatorname{FF}(w, Q)$ when Q is a particular poset of interest. We outline the history briefly.

Let N be the 4 -element poset with points $\{a, b, c, d\}$ and relations $a<c$ and $b<c, d$. The performance of First-Fit on N-free posets is closely related to the performance of the greedy coloring algorithm on graphs that contain no induced copies of the 4 -vertex path. The clique number of a graph G, denoted $\omega(G)$, is the maximum size of a set of pairwise adjacent vertices in G. A proper coloring of G assigns to each vertex a color such that adjacent vertices receive distinct colors. The greedy coloring algorithm gives a proper coloring of G by processing the vertices of G in some order, greedily assigning to each vertex u the first color not already assigned to a neighbor of u. Extending our notation to the analogous problem for graphs, let $\operatorname{FFG}(w, H)$ be the maximum, over all graphs G such that G contains no induced copy of H and $\omega(G) \leq w$ and all orderings of the vertices of G, of the number of colors used by the greedy coloring algorithm. Let P_{n} be the path on n vertices. It is well-known that $\operatorname{FFG}\left(w, P_{4}\right)=w$. If P is a poset and G is the incomparibility graph of P, then P contains N as a subposet if and only if G contains an induced copy of P_{4}. Hence we have $w \leq \operatorname{FF}(w, N) \leq \operatorname{FFG}\left(w, P_{4}\right)=w$ and so $\operatorname{FF}(w, N)=w$. Kierstead, Penrice, and Trotter [14] proved that $\operatorname{FFG}\left(w, P_{5}\right)$ is bounded by a function of w, and a consequence of a theorem of Gyárfás and Lehel [8] is that $\operatorname{FFG}\left(w, P_{6}\right)$ is unbounded. As noted in [14], combining results in these two papers gives that, when T is a tree, $\operatorname{FFG}(w, T)$ is bounded if and only if T does not contain $P_{2}+2 P_{1}$ as an induced subgraph, where $P_{2}+2 P_{1}$ is the disjoint union of a copy of P_{2} and two copies of P_{1}.

Let \underline{r} denote the chain with r elements. The disjoint union of posets P and Q is denoted $P+Q$, with each element in P incomparable to every element in Q. An interval order is a poset whose elements are closed intervals with $\left[x_{1}, x_{2}\right]<\left[y_{1}, y_{2}\right]$ if and only if $x_{2}<y_{1}$. Fishburn [7] proved that a poset P is an interval order if and only if P is $(\underline{2}+\underline{2})$-free. The problem of determining the performance of First-Fit on interval orders is still open, despite significant efforts by various different research groups over the years. Currently, the best known bounds are $(5-o(1)) w \leq \mathrm{FF}(w, \underline{2}+\underline{2}) \leq 8 w$. The lower bound is due to Kierstead, D. Smith, and Trotter [11]. The upper bound is due to Brightwell, Kierstead, and Trotter (unpublished), and independently Narayanaswamy and Babu [16], who improved on the breakthrough column construction method due to Pemmaraju, Raman, and Varadarajan [17].

The interval orders are the $(\underline{2}+\underline{2})$-free posets; we obtain a larger class of posets by
forbidding the disjoint union of longer chains. Bosek, Krawczyk, and Szczypka [5] showed that when $r \geq s, \operatorname{FF}(w, \underline{r}+\underline{s}) \leq(3 r-2)(w-1) w+w$. Joret and Milans [10] improved the bound to $\operatorname{FF}(w,(\underline{r}+\underline{s})) \leq 8(r-1)(s-1) w$. Dujmović, Joret, and Wood [6] further improved the bound to $\mathrm{FF}(w,(\underline{r}+\underline{r})) \leq 8(2 r-3) w$, which is best possible up to the constants.

The ladder of height n, denoted L_{n}, consists of two disjoint chains $x_{1}<\cdots<x_{n}$ and $y_{1}<\cdots<y_{n}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$ and no relations of the form $y_{i} \leq x_{j}$. Kierstead and M. Smith [12] showed that $\operatorname{FF}\left(w, L_{2}\right)=w^{2}$ and $\operatorname{FF}\left(2, L_{n}\right) \leq 2 n$. They also proved the general bound $\mathrm{FF}\left(w, L_{n}\right) \leq w^{\gamma(\lg (w)+\lg (n))}$, where $\lg (x)$ denotes the base-2 logarithm; this result plays an important role in our main theorem.

1.2 Our Results

Our aim is to say something about the behavior of $\operatorname{FF}(w, Q)$ in terms of the structure of Q. We obtain subexponential bounds on $\operatorname{FF}(w, Q)$ when Q belongs to a particular family of posets \mathcal{Q}, and we also give an exponential lower bound on $\operatorname{FF}(w, Q)$ when $Q \notin \mathcal{Q}$. From the point of view of the First-Fit algorithm, efficiency is vastly improved if a single poset in \mathcal{Q} is forbidden. From the point of view of an adversary, forcing First-Fit to use exponentially many chains requires all posets in \mathcal{Q} to appear.

For each $x \in P$, we define the above set of x, denoted $A(x)$, to be $\{y \in P: y>x\}$; also, when S is a set of points, we define $A(S)$ to be $\bigcup_{x \in S} A(x)$. Similarly, the below set of x, denoted $B(x)$, is $\{y \in P: y<x\}$ and we extend this to sets via $B(S)=\bigcup_{x \in S} B(x)$. We define $A[x]=A(x) \cup\{x\}$ and similarly for $B[x]$. The series composition of posets S_{1}, \ldots, S_{n}, denoted $S_{1} \otimes \cdots \otimes S_{n}$, produces a poset S which has disjoint copies of S_{1}, \ldots, S_{n} arranged so that $x<y$ whenever $x \in S_{i}, y \in S_{j}$ and $i<j$. The blocks of S are the subposets S_{1}, \ldots, S_{n}.

2 Dichotomy Theorem

A poset is ladder-like if its elements can be partitioned into two chains C_{1} and C_{2} such that if $(x, y) \in C_{1} \times C_{2}$ and x is comparable to y, then $x<y$. Our first lemma shows that every ladder-like poset is contained in a sufficiently large ladder.

Lemma 1. If P is a ladder-like poset of size n, then P is a subposet of L_{n}.
Proof. Let P be a ladder-like poset of size n. Clearly the 1 -element poset is a subposet of L_{1}, and so we may assume $n \geq 2$. Let C_{1} and C_{2} be a chain partition of P such that whenever $(x, y) \in C_{1} \times C_{2}$ and x and y are comparable, we have $x<y$. Suppose that P has a maximum element u. Recall that L_{n} consists of chains $x_{1}<\cdots<x_{n}$ and $y_{1}<\cdots<y_{n}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$. By induction, $P-u$ can be embedded into the copy of L_{n-1} in L_{n} induced by $\left\{x_{1}, \ldots, x_{n-1}\right\} \cup\left\{y_{1}, \ldots, y_{n-1}\right\}$. Allowing y_{n} to play the role of u completes a copy of P in L_{n}. Next, suppose that P has no maximum element. Let $u=\max C_{2}$, let $S=\left\{v \in C_{1}: v \| u\right\}$, and let $s=|S|$. Since P has no maximum element, it follows that $s \geq 1$. By induction, $P-S$ can be embedded in the copy of L_{n-s} in L_{n} induced by
$\left\{x_{1}, \ldots, x_{n-s}\right\} \cup\left\{y_{1}, \ldots, y_{n-s}\right\}$. Allowing $\left\{x_{n-s+1}, \ldots, x_{n}\right\}$ to play the role of S completes a copy of P in L_{n}.

The performance of First-Fit on a poset P can be analyzed using a static structure. A wall of a poset P is an ordered chain partition $\left(C_{1}, \ldots, C_{t}\right)$ such that for each element $x \in C_{j}$ and each $i<j$, there exists $y \in C_{i}$ such that $y \| x$. It is clear that every ordered chain partition produced by First-Fit is a wall, and conversely, each wall W of P is output by First-Fit when the elements of P are presented in order according to W. Hence, the worst-case performance of First-Fit on P is equal to the maximum size of a wall in P. A subwall of a wall W is obtained from W by deleting zero or more of the chains in W. Note that if W is a wall of P, then each subwall of W is a wall of the corresponding subposet of P.

For each positive integer k, we construct a poset called the reservoir of width k, denoted R_{k}, and a corresponding wall W_{k} of size $2^{k}-1$. The reservoirs provide an example of a family of posets which are good at avoiding subposets and yet still have exponential FirstFit performance.

Theorem 2. For each $k \geq 1$, the reservoir R_{k} has width k and a wall W_{k} of size $2^{k}-1$.
Proof. Let R_{1} be the 1-element poset, and let W_{1} be the chain partition of R_{1}. For $k \geq 2$, we first construct R_{k} using R_{k-1} and W_{k-1}. Then, we give a presentation order for R_{k} which forces First-Fit to use at least $2^{k}-1$ chains. Let $W_{k-1}=\left(C_{1}, \ldots, C_{m}\right)$ where $m=2^{k-1}-1$, and for $0 \leq i \leq m$, let \hat{S}_{i} be the subwall $\left(C_{1}, \ldots, C_{i}\right)$ with corresponding subposet S_{i}. (Although S_{0} and \hat{S}_{0} are empty, they are convenient for describing R_{k}.) Let S be the series composition of disjoint copies of $S_{m}, S_{m-1}, \ldots, S_{0}$, and R_{k-1} in this order, so that $S=S_{m} \otimes S_{m-1} \otimes \cdots \otimes S_{0} \otimes R_{k-1}$. The poset R_{k} consists of a copy of S and a chain X where $X=\left\{x_{m+1}<\cdots<x_{1}\right\}$ and each x_{i} satisfies $A\left(x_{i}\right) \cap S=\varnothing$ and $B\left(x_{i}\right) \cap S=S_{i} \cup \cdots \cup S_{m}$. See Figure 1 .

Note that since S is a series composition of posets of width at most $k-1$, it follows that S has width at most $k-1$. Adding X increases the width by at most 1 , and so R_{k} has width at most k. An antichain in the top copy of R_{k-1} of size $k-1$ and x_{1} form an antichain in R_{k} of size k.

It remains to show that First-Fit might use as many as $2^{k}-1$ chains to partition R_{k}. Consider the partial presentation order given by $\hat{S}_{m}, x_{m+1}, \hat{S}_{m-1}, x_{m}, \ldots, \hat{S}_{1}, x_{2}, \hat{S}_{0}, x_{1}$. We claim that First-Fit assigns color j to x_{j} for $1 \leq j \leq m+1$. Indeed, when \hat{S}_{j-1} is presented, the points in S_{j-1} are above all previously presented points except $\left\{x_{j+1}, \ldots, x_{m+1}\right\}$, which have already been assigned colors larger than j. It follows that First-Fit uses colors $\{1, \ldots, j-$ $1\}$ on S_{j-1}. Next, x_{j} is presented; since x_{j} is above all previously presented points except those in S_{j-1}, it follows that First-Fit assigns color j to x_{j}.

In the final stage, we present the top copy of R_{k-1} in order given by W_{k-1}. This copy of R_{k-1} is incomparable to each point in X and it follows that First-Fit uses m new colors on these points. In total, First-Fit uses $(m+1)+m$ colors, and $2 m+1=2^{k}-1$.

If Q is a poset such that $\operatorname{FF}(w, Q)$ is subexponential in w, then Theorem 2 implies that Q is a subposet of a sufficiently large reservoir R_{k}. These posets have a nice description.

Figure 1: Reservoir Construction

Definition 3. Let \mathcal{Q} be the minimal poset family which contains the ladder-like posets and is closed under series composition.

Our next lemma shows that \mathcal{Q} characterizes the posets of width 2 that appear in reservoirs.

Lemma 4. Let Q be a poset of width 2. Some reservoir R_{k} contains Q as a subposet if and only if $Q \in \mathcal{Q}$.

Proof. If Q is ladder-like and has t elements, then Q is a subposet of L_{t} by Lemma 1, and L_{t} is a subposet of a sufficiently large reservoir. Suppose that $Q=Q_{1} \otimes Q_{2}$ for some $Q_{1}, Q_{2} \in \mathcal{Q}$ with $\left|Q_{1}\right|,\left|Q_{2}\right|<|Q|$. By induction, Q_{1} and Q_{2} are subposets of R_{k} for some k. Since R_{k+1} contains the series composition of two copies of R_{k}, it follows that Q is a subposet of R_{k+1}.

Let Q be a poset of width 2 that is contained in some reservoir. We show that $Q \in \mathcal{Q}$ by induction on $|Q|$. Let k be the least positive integer such that $Q \subseteq R_{k}$, and let S_{0}, \ldots, S_{m}, S, and X be as in the definition of R_{k}. If $Q \cap S$ is a chain, then $(Q \cap S, Q \cap X)$ is a chain partition witnessing that Q is ladder-like, and so $Q \in \mathcal{Q}$. Let y, z be a maximal incomparable pair in $Q \cap S$, meaning that if $y^{\prime}, z^{\prime} \in Q \cap S, y^{\prime} \geq y, z^{\prime} \geq z$ and $\left(y^{\prime}, z^{\prime}\right) \neq(y, z)$, then y^{\prime} and z^{\prime} are comparable. We claim that if $u \in Q$ and u is above one of $\{y, z\}$, then u is above both y and z. This holds for $u \in Q \cap S$ by maximality of the pair y, z. This holds for $u \in Q \cap X$ since $y \| z$ implies that y and z belong to the same block in S, and all comparison relations between $u \in X$ and elements in S depend only on their block in S.

Since Q has width 2 , it follows that $Q=Q_{1} \otimes Q_{2}$ where $Q_{1}=B[y] \cup B[z]$ and $Q_{2}=$ $A(y) \cup A(z)$. Unless Q_{2} is empty and $Q_{1}=Q$, it follows by induction that $Q_{1}, Q_{2} \in \mathcal{Q}$ and
therefore $Q \in \mathcal{Q}$ also. Suppose that no point in Q is above y or z. Since no point in X is below a point in S, it follows that $Q \cap X=\varnothing$, or else a point in $Q \cap X$ would complete an antichain of size 3 with $\{y, z\}$.

Therefore $Q \subseteq S$. Note that Q is not contained in one of the blocks in S by minimality of k since each such block is a subposet of R_{k-1}. It follows that $Q=Q_{1} \otimes Q_{2}$ for posets Q_{1} and Q_{2} with $\left|Q_{1}\right|,\left|Q_{2}\right|<|Q|$. By induction, $Q_{1}, Q_{2} \in \mathcal{Q}$ and so $Q \in \mathcal{Q}$ also.

As a consequence of Lemma 4 and Theorem 2, it follows that $\mathrm{FF}(w, Q) \geq 2^{w}-1$ when $Q \notin \mathcal{Q}$. It turns out that the performance of First-Fit is subexponential when $Q \in \mathcal{Q}$. Our next theorem shows how upper bounds on $\operatorname{FF}\left(w, Q_{1}\right)$ and $\operatorname{FF}\left(w, Q_{2}\right)$ can be used to obtain an upper bound on $\mathrm{FF}\left(w, Q_{1} \otimes Q_{2}\right)$. A Dilworth coloring of a poset P of width w is a function $\varphi: P \rightarrow[w]$, where $[w]=\{1, \ldots, w\}$ such that the preimages of φ form a Dilworth partition.

Theorem 5. Let Q_{1} and Q_{2} be posets, let w, s, and t be integers such that $\mathrm{FF}\left(w, Q_{1}\right)<s$ and $\mathrm{FF}\left(w, Q_{2}\right)<t$, and let $Q=Q_{1} \otimes Q_{2}$. We have $\mathrm{FF}(w, Q) \leq s t w^{2}+(s+t) w$.

Proof. For an ordered chain partition \mathcal{C} of a poset P, an ascending \mathcal{C}-chain is a chain $x_{1}<\cdots<x_{k}$ such that the chain in \mathcal{C} containing x_{i} precedes the chain containing x_{j} for $i<j$. Similarly, a descending \mathcal{C}-chain is a chain $x_{1}>\cdots>x_{k}$ such that the chain in \mathcal{C} containing x_{i} precedes the chain containing x_{j} for $i<j$. The \mathcal{C}-depth of a point x, denoted $d_{\mathcal{C}}(x)$, is the size of a maximum ascending \mathcal{C}-chain with bottom element x and the \mathcal{C}-height of a point x, denoted $h_{\mathcal{C}}(x)$, is the size of a maximum descending \mathcal{C}-chain with top element x.

Let P be a Q-free poset of width at most w, and let \mathcal{C} be a wall of P. We show that $|\mathcal{C}| \leq s t w^{2}+(s+t) w$. We claim that for each $x \in P$, at least one of the inequalities $h_{\mathcal{C}}(x) \leq s, d_{\mathcal{C}}(x) \leq t$ holds. Otherwise, if $h_{\mathcal{C}}(x) \geq s+1$ and $d_{\mathcal{C}}(x) \geq t+1$, then we obtain a copy of Q in P as follows. Let $x>y_{1}>y_{2}>\cdots>y_{s}$ be a descending \mathcal{C}-chain and let $x<z_{1}<z_{2}<\cdots<z_{t}$ be an ascending \mathcal{C}-chain. Let P_{1} be the subposet of P consisting of all $u \in P$ such that for some y_{i}, the points u and y_{i} share a chain in \mathcal{C} and $u \leq y_{i}$. Let \mathcal{C}_{1} be the restriction of \mathcal{C} to P_{1} and observe that \mathcal{C}_{1} is a wall of P_{1}. Indeed, suppose that $C, C^{\prime} \in \mathcal{C}_{1}$ where C precedes C^{\prime}, and let $\left(y_{i}, y_{j}\right)=\left(\max C, \max C^{\prime}\right)$. Let $v \in C^{\prime}$ and note that v and y_{j} share a chain in \mathcal{C}. Let u be a point in P such that u belongs to the same chain in \mathcal{C} as y_{i} and $u \| v$. Note that $u \leq y_{i}$, since otherwise $u>y_{i}>y_{j} \geq v$, contradicting $u \| v$. Therefore $u \in P_{1}$ and $u \in C$. Since \mathcal{C}_{1} is a wall of P_{1} of size s and $s>\operatorname{FF}\left(w, Q_{1}\right)$, it follows that P_{1} contains a copy of Q_{1}. Similarly, we let P_{2} be the subposet of P consisting of all $u \in P$ such that for some z_{i}, the points u and z_{i} share a chain in \mathcal{C} and $u \geq z_{i}$. Restricting \mathcal{C} to P_{2} gives a wall \mathcal{C}_{2} of size t analogously, and since $t>\operatorname{FF}\left(w, Q_{2}\right)$, it follows that P_{2} contains a copy of Q_{2}. Since every element in P_{1} is less than x and x is less than every element in P_{2}, it follows that P contains a copy of Q.

The lower part of P, denoted by L, is $\left\{x \in P: h_{\mathcal{C}}(x) \leq s\right\}$ and the upper part of P, denoted by U, is $P-L$. Note that $\{L, U\}$ is a partition of P, that $h_{\mathcal{C}}(x) \leq s$ for $x \in L$, and that $d_{\mathcal{C}}(x) \leq t$ for $x \in U$. Let \mathcal{C}_{U} be the subwall of \mathcal{C} consisting of all chains that are contained in U, and let $\mathcal{C}_{U, j}$ be the subwall of \mathcal{C}_{U} consisting of the chains $C \in \mathcal{C}_{U}$ such that
$d_{\mathcal{C}}(\min C)=j$. We claim that the minimum elements of the chains in $\mathcal{C}_{U, j}$ form an antichain. Suppose that $C, C^{\prime} \in \mathcal{C}_{U, j}$ and that C precedes C^{\prime}. Since C precedes C^{\prime}, it is not possible for $\min C>\min C^{\prime}$. Therefore if $\min C$ and $\min C^{\prime}$ are comparable, then it must be that $\min C<\min C^{\prime}$, and it would follow that $d_{\mathcal{C}}(\min C)>d_{\mathcal{C}}\left(\min C^{\prime}\right)$. Hence $\left|\mathcal{C}_{U, j}\right| \leq w$ for $1 \leq j \leq t$ and so $\left|\mathcal{C}_{U}\right| \leq t w$. A symmetric argument shows that the sublist \mathcal{C}_{L} consisting of all chains that are contained in L satisfies $\left|\mathcal{C}_{L}\right| \leq s w$.

It remains to bound the number of chains in \mathcal{C} that contain points in both U and L. Let $\mathcal{C}_{L U}$ be the sublist of \mathcal{C} consisting of these chains. Note that for each $C \in \mathcal{C}$, we have that $y, z \in C$ and $y<z$ implies that $h_{\mathcal{C}}(y) \leq h_{\mathcal{C}}(z)$ and $d_{\mathcal{C}}(y) \geq d_{\mathcal{C}}(z)$. It follows that each point in $C \cap L$ is less than each point in $C \cap U$. Let $\varphi: P \rightarrow[w]$ be a Dilworth coloring. For each $C \in \mathcal{C}_{L U}$ with $y=\max (C \cap L)$ and $z=\min (C \cap U)$, we assign to C the signature $\left(\varphi(y), h_{\mathcal{C}}(y), \varphi(z), d_{\mathcal{C}}(z)\right)$. We claim that the signatures are distinct. Suppose that $C, C^{\prime} \in \mathcal{C}_{L U}$ have the same signature and that C precedes C^{\prime}. Let $y=\max (C \cap L)$, $z=\min (C \cap U), y^{\prime}=\max \left(C^{\prime} \cap L\right)$, and $z^{\prime}=\min \left(C^{\prime} \cap U\right)$. Note that $y<z$ is a cover relation in C and $y^{\prime}<z^{\prime}$ is a cover relation in C^{\prime}. Since $\varphi(y)=\varphi\left(y^{\prime}\right)$, it follows that y and y^{\prime} are comparable. Since $h_{\mathcal{C}}(y)=h_{\mathcal{C}}\left(y^{\prime}\right)$, it must be that $y<y^{\prime}$. Since $\varphi(z)=\varphi\left(z^{\prime}\right)$, it follows that z^{\prime} and z are comparable. Since $d_{\mathcal{C}}\left(z^{\prime}\right)=d_{\mathcal{C}}(z)$, it must be that $z^{\prime}<z$. We now have that $y<z$ is a cover relation in C but $y<y^{\prime}<z^{\prime}<z$ for points z^{\prime}, y^{\prime} that appear in a chain C^{\prime} that follows C, contradicting that \mathcal{C} is a wall.

Since the assigned signatures are distinct, we have that $\left|\mathcal{C}_{L U}\right| \leq s t w^{2}$. It follows that $|\mathcal{C}| \leq\left|\mathcal{C}_{L U}\right|+\left|\mathcal{C}_{L}\right|+\left|\mathcal{C}_{U}\right| \leq s t w^{2}+s w+t w$.

Corollary 6. Let $Q=Q_{1} \otimes \cdots \otimes Q_{k}$. If $\operatorname{FF}\left(w, Q_{i}\right) \leq 2^{c_{i}(\lg w)^{2}}$ for $1 \leq i \leq k$, then $\mathrm{FF}(w, Q) \leq 2^{(c+6 k)(\lg w)^{2}}$, where $c=\sum_{i=1}^{k} c_{i}$.

Proof. By induction on k. For $k=1$, the claim is clear. Suppose $k \geq 2$. Since $\mathrm{FF}(1, Q) \leq 1$, we may assume $w \geq 2$. Let $R=Q_{1} \otimes \cdots \otimes Q_{k-1}$. By induction, $\mathrm{FF}(w, R) \leq 2^{\left(c^{\prime}+6(k-1)\right)(\lg w)^{2}}$, where $c^{\prime}=\sum_{i=1}^{k-1} c_{i}$. By Theorem 5 with $s \leq 1+2^{\left(c^{\prime}+6(k-1)\right)(\lg w)^{2}}$ and $t \leq 1+2^{c_{k}(\lg w)^{2}}$, we have $\mathrm{FF}(w, Q) \leq s t w^{2}+(s+t) w \leq 3 s t w^{2}<2^{2} \cdot 2^{\left(c^{\prime}+6(k-1)\right)(\lg w)^{2}+1} \cdot 2^{c_{k}(\lg w)^{2}+1} \cdot 2^{2 \lg w}$. It follows that $\lg [\mathrm{FF}(w, Q)]<\left(c^{\prime}+c_{k}+6(k-1)\right)(\lg w)^{2}+4+2 \lg w \leq(c+6 k)(\lg w)^{2}$.

The following key result due to Kierstead and M. Smith [12] shows that First-Fit uses a subexponential number of chains on ladder-free posets. We follow with the characterization of posets Q for which $\operatorname{FF}(w, Q)$ is subexponential.

Theorem 7 (Kierstead-M. Smith [12]). For some constant γ, we have $\operatorname{FF}\left(w, L_{n}\right) \leq w^{\gamma(\lg (w)+\lg (n))}$.
Theorem 8 (Dichotomy Theorem). Let Q be an n-element poset of width 2 . If $Q \in \mathcal{Q}$, then there exists a constant C (depending only on Q) such that $\mathrm{FF}(w, Q) \leq 2^{C(\lg w)^{2}}$; in fact, $C=O(n)$ suffices. If $Q \notin \mathcal{Q}$, then $\mathrm{FF}(w, Q) \geq 2^{w}-1$.

Proof. Suppose $Q \notin \mathcal{Q}$. By Theorem 2 and Lemma 4, we have $\operatorname{FF}(w, Q) \geq 2^{w}-1$. Suppose that $Q \in \mathcal{Q}$. Since $\operatorname{FF}(1, Q) \leq 1$, we may assume $w \geq 2$. Since $Q \in \mathcal{Q}$, it follows that $Q=Q_{1} \otimes \cdots \otimes Q_{k}$ for some ladder-like posets Q_{1}, \ldots, Q_{k}. For $1 \leq i \leq k$, let $n_{i}=\left|Q_{i}\right|$. Since Q_{i} is ladder-like, Theorem 7 implies that $\mathrm{FF}\left(w, Q_{i}\right) \leq 2^{c_{i}(\lg w)^{2}}$ where $c_{i}=\gamma\left(1+\frac{\lg \left(n_{i}\right)}{\lg (w)}\right) \leq \gamma(1+$
$\lg n_{i}$). By Corollary 6, it follows that $\mathrm{FF}(w, Q) \leq 2^{(c+6 k)(\lg w)^{2}}$, where $c=\sum_{i=1}^{k} c_{i}$. Hence, it suffices to take $C=6 k+c=6 k+\sum_{i=1}^{k} c_{i} \leq(6+\gamma) k+\gamma \sum_{i=1}^{k} \lg n_{i}$. Since $\sum_{i=1}^{k} n_{i}=n$, it follows by convexity that $\sum_{i=1}^{k} \lg n_{i} \leq k \lg (n / k) \leq(n / e) \lg e$, where e is the base of the natural logarithm. Using $k \leq n$, we conclude $C \leq(6+\gamma) n+\gamma(n / e) \lg e=O(n)$.

Theorem 8 provides a large separation in the behavior of First-Fit on Q-free posets according to whether or not $Q \in \mathcal{Q}$. It may be that even stronger results are possible. Theorem 5 shows that if $\operatorname{FF}\left(w, Q_{1}\right)$ and $\operatorname{FF}\left(w, Q_{2}\right)$ are polynomial in w, then so is $\mathrm{FF}\left(w, Q_{1} \otimes\right.$ $\left.Q_{2}\right)$. For large n, the best known lower bound on $\operatorname{FF}\left(w, L_{n}\right)$ is $w^{\lg (n-1)} /(n-1)$, due to Bosek, Kierstead, Krawczyk, Matecki, and M. Smith [3]. This leaves open the possibility that $\mathrm{FF}\left(w, L_{n}\right)$ is polynomial in w for each fixed n. If so, then the separation provided by the Dichotomy Theorem would improve, yielding that $\operatorname{FF}(w, Q)$ is polynomial when $Q \in \mathcal{Q}$ and exponential when $Q \notin \mathcal{Q}$.

Question 9. Is it true for each fixed n that $\operatorname{FF}\left(w, L_{n}\right)$ is bounded by a polynomial in w ?
It is clear that $\mathrm{FF}\left(w, L_{1}\right)=w$ and Kierstead and M. Smith [12] proved that $\mathrm{FF}\left(w, L_{2}\right)=$ w^{2}. Note that $L_{3}=Q_{1} \otimes Q_{2} \otimes Q_{3}$ where Q_{1} and Q_{3} are 1-element posets and Q_{2} is the N poset. Since $\operatorname{FF}\left(w, Q_{1}\right)=\operatorname{FF}\left(w, Q_{3}\right)=0$ and $\operatorname{FF}\left(w, Q_{2}\right)=w$, it follows from Theorem 5 that $\operatorname{FF}\left(w, L_{3}\right)$ is polynomial in w. A more careful analysis, along the lines of Kierstead and M. Smith's proof of $\operatorname{FF}\left(w, L_{2}\right)=w^{2}$, shows that $\operatorname{FF}\left(w, L_{3}\right) \leq w^{2}(w+1)$. Question 9 is open for $n \geq 4$.

It would also be interesting to better understand the behavior of First-Fit on Q-free posets when $Q \notin \mathcal{Q}$. The smallest poset of width 2 that is not in \mathcal{Q} is the skewed butterfly, denoted \hat{B}, which consists of the chains $x_{1}<x_{2}<x_{3}$ and $y_{1}<y_{2}$ with relations $x_{1}<y_{2}$ and $y_{1}<x_{3}$. What is $\operatorname{FF}(w, \hat{B})$?

3 First-Fit on Butterfly-Free Posets

The butterfly poset, denoted B, is $Q \otimes Q$, where Q is the 2-element antichain. In this section, we obtain the asymptotics of $\operatorname{FF}(w, B)$. The performance of First-Fit on butterfly-free posets is strongly related to the bipartite Turán number for C_{4}. Kövari, Sós, Turán [15] showed that the maximum number of edges in a subgraph of $K_{n, n}$ that excludes C_{4} is $(1+o(1)) n^{3 / 2}$.

Lemma 10 (Kövari-Sós-Turán [15]). Let q be a prime power, and let $n=q^{2}+q+1$. There exists $a(q+1)$-regular spanning subgraph of $K_{n, n}$ that has no 4-cycle.

We also need a standard result about the density of primes.
Theorem 11 (Hoheisel [9]). There exists a real number θ with $\theta<1$ such that for all sufficiently large real numbers x, there is a prime in the interval $\left[x-x^{\theta}, x\right]$.

Since the result of Hoheisel [9], many research groups have improved the bound on θ; see Baker and Harman [1] for the history. The current best bound is $\theta=0.525$, due to Baker, Harman, and Pintz [2].

Theorem 12. $\mathrm{FF}(w, B) \geq(1-o(1)) w^{3 / 2}$.
Proof. By Theorem 11 and standard asymptotic arguments, we may assume that w has the form $q^{2}+q+1$, where q is prime. By Lemma 10 , there exists a $(q+1)$-regular (X, Y)-bigraph G with parts of size w that has no 4-cycle. Since G is a regular bipartite graph, it follows from Hall's Theorem that G has a perfect matching M. Let $G^{\prime}=G-M$, and let L be an ordering of $E\left(G^{\prime}\right)$.

Using G^{\prime}, we construct a B-free poset P of width w and a wall of P size $|E(G)|$. It will then follow that $\operatorname{FF}(w, B) \geq|E(G)|=(q+1) w=(1-o(1)) w^{3 / 2}$. Let I_{X} be the set of all pairs (x, e) such that $x \in X, e \in E\left(G^{\prime}\right)$, and e is incident to x. Similarly, let I_{Y} be the set of all pairs (y, e) such that $y \in Y, e \in E\left(G^{\prime}\right)$ and e is incident to y. We construct P so that M is a maximum antichain, $B(M)=I_{X}$, and $A(M)=I_{Y}$. The subposet induced by $I_{X} \cup M$ consists of w incomparable chains, indexed by M. For $x_{i} y_{i} \in M$ with $x_{i} \in X$ and $y_{i} \in Y$, the chain associated with $x_{i} y_{i}$ consists of all pairs $\left(x_{i}, e\right) \in I_{X}$ in order according to L followed by top element $x_{i} y_{i}$. The subposet induced by $M \cup I_{Y}$ also consists of w incomparable chains, indexed by M. For $x_{i} y_{i} \in M$ with $x_{i} \in X$ and $y_{i} \in Y$, the chain associated with $x_{i} y_{i}$ in the subposet induced by $M \cup I_{y}$ consists of bottom element $x_{i} y_{i}$ followed by all pairs $\left(y_{i}, e\right) \in I_{Y}$ in reverse order according to L. Note that if e is the first edge in L and $e=x y$, then (x, e) is minimal in P and (y, e) is maximal. The chains in $I_{X} \cup M$ and the chains in $M \cup I_{Y}$ combine to form a Dilworth partition of P of size w; let D_{i} be the Dilworth chain containing $x_{i} y_{i}$. It remains to describe the relations between points in I_{X} and points in I_{Y}. For $\left(x, e_{1}\right) \in I_{X}$ and $\left(y, e_{2}\right) \in I_{Y}$, we have that $\left(x, e_{1}\right)$ is covered by $\left(y, e_{2}\right)$ if and only if $e_{1}=e_{2}=x y \in E\left(G^{\prime}\right)$.

We claim that P is B-free. For each element $z \in I_{X} \cup M$, we have that $B(z)$ is a chain. Hence, a maximal element in a copy of B must belong to I_{Y}. Similarly, since $A(z)$ is a chain when $z \in M \cup I_{Y}$, a minimal element in a copy of B must belong to I_{X}. In a chain of cover relations from $\left(x, e_{1}\right) \in I_{X}$ up to $\left(y, e_{2}\right) \in I_{Y}$, either all points stay in the same Dilworth chain D_{i}, implying that $x y=x_{i} y_{i} \in M$, or there is a cover relation from a point in D_{i} to a point in D_{j}, that implying $x y=x_{i} y_{j}$ with $x_{i} y_{j} \in E\left(G^{\prime}\right)$. In both cases, $\left(x, e_{1}\right) \leq\left(y, e_{2}\right)$ implies that $x y \in E(G)$, and it follows that a copy of B in P corresponds to a 4 -cycle in G, a contradiction.

It remains to construct a wall W of P of size $|E(G)|$. The wall contains $\left|E\left(G^{\prime}\right)\right|$ chains of size 2 arranged in order according to L, followed by w singleton chains. For $e \in L$ with $e=x y$, the corresponding chain in the wall is $(x, e)<(y, e)$. These chains are followed by w singleton chains, each consisting of a point in M. Let C_{i} and C_{j} be chains in W with $i<j$, and let $z \in C_{j}$. We show that z is incomparable to some point in C_{i}. Since M is an antichain, we may assume that C_{i} is a chain of the form $(x, e)<(y, e)$. If C_{j} is a singleton chain containing only z, then z is incomparable to every element in P outside its Dilworth chain. Since (x, e) and (y, e) are in distinct Dilworth chains, it follows that C_{i} contains a point incomparable to z. Otherwise, C_{j} has the form $\left(x^{\prime}, e^{\prime}\right)<\left(y^{\prime}, e^{\prime}\right)$, and since $i<j$, it follows that e precedes e^{\prime} in L. Suppose that $z=\left(x^{\prime}, e^{\prime}\right)$. If $\left(x^{\prime}, e^{\prime}\right) \|(x, e)$, then (x, e) is the desired point in C_{i}. Otherwise, $\left(x^{\prime}, e^{\prime}\right)$ is comparable to (x, e), implying that (x, e) and $\left(x^{\prime}, e^{\prime}\right)$ are in the same Dilworth chain and $x=x^{\prime}$. Since e precedes e^{\prime} in L, we have $(x, e)<\left(x^{\prime}, e^{\prime}\right)$. If $\left(x^{\prime}, e^{\prime}\right)$ is also comparable to (y, e), it must be that $\left(x^{\prime}, e^{\prime}\right)<(y, e)$.

But now $(x, e)<\left(x^{\prime}, e^{\prime}\right)<(y, e)$ contradicts that (y, e) covers (x, e) in P. The case that $z=\left(y^{\prime}, e^{\prime}\right)$ is analogous.

In a poset P with a set of elements S, an extremal point of S is a minimal or maximal element in S.

Lemma 13. Let C and D be chains in P. If $\min C \| \max D$ and $\max C \| \min D$, then C and D are pairwise incomparable. Consequently if C^{\prime} and D^{\prime} are chains and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ $C^{\prime} \times D^{\prime}$ are incomparable pairs, then $\min \left\{x_{1}, x_{2}\right\} \| \min \left\{y_{1}, y_{2}\right\}$ and $\max \left\{x_{1}, x_{2}\right\} \| \max \left\{y_{1}, y_{2}\right\}$.

Proof. If $u \leq v, u \in C$, and $v \in D$, then $\min C \leq u \leq v \leq \max D$. If $u \leq v, u \in D$, and $v \in C$, then $\min D \leq u \leq v \leq \max C$. For the second part, either the statement is trivial or we apply the first part to the subchains of C^{\prime} and D^{\prime} with extremal points $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$ respectively.

Starting with an arbitrary chain partition \mathcal{C}, iteratively moving elements to earlier chains produces a wall W with $|W| \leq|\mathcal{C}|$. Beginning with a Dilworth partition, it follows that each poset P of width w has a Dilworth wall consisting of w chains. If R and S are sets of points in P, we write $R<S$ if $u<v$ when $(u, v) \in R \times S$.

Theorem 14. $\mathrm{FF}(w, B) \leq(1+o(1)) w^{3 / 2}$.
Proof. Let P be a B-free poset and let \mathcal{D} be Dilworth wall of P with $\mathcal{D}=\left(D_{1}, \ldots, D_{w}\right)$. Let R be the set of points $x \in P$ such that $A(x)$ is a chain. Let $R^{\prime}=P-R$, and note that $B(x)$ is a chain for each $x \in R^{\prime}$ since P is B-free.

Let \mathcal{C} be a wall of P with $\mathcal{C}=\left(C_{1}, \ldots, C_{t}\right)$; we bound $|\mathcal{C}|$. Since $|\mathcal{D}|=w$, at most $2 w$ chains in \mathcal{C} contain an extremal point from a chain in \mathcal{D}. Also, no two chains in \mathcal{C} are contained in the same chain in \mathcal{D}, and so at most w chains in \mathcal{C} are contained in a chain in \mathcal{D}. Let \mathcal{C}^{\prime} be the subwall of \mathcal{C} consisting of all chains $C \in \mathcal{C}$ that do not contain an extremal point of a chain in \mathcal{D} but contain points from at least two chains in \mathcal{D}. We have that $|\mathcal{C}| \leq\left|\mathcal{C}^{\prime}\right|+3 w$. We claim that for each chain $C_{i} \in \mathcal{C}^{\prime}$, we have that $C_{i} \cap R$ is contained in a chain in \mathcal{D}. Suppose that $C_{i} \cap R$ contains elements from at least two chains in \mathcal{D}. Let D_{α} be the Dilworth chain containing $\max C_{i}$, let $x=\max \left(C_{i}-D_{\alpha}\right)$, and let D_{β} be the Dilworth chain containing x. Let $m=\max D_{\beta}$, and note that $C_{i} \in \mathcal{C}^{\prime}$ implies $m \notin C_{i}$. It follows that $m \in C_{j}$ for some $C_{j} \in \mathcal{C}$ with $j \neq i$; since $A(x)$ is a chain and $m>x$, it follows that m is comparable to every element in C_{i} and therefore $j<i$. Let y be the element covering x in C_{i}. Note that $y \in D_{\alpha}$ and y is comparable to everything in D_{β} since $A(x)$ is a chain, and this implies $\alpha<\beta$. Since $m, y \in A(x)$ and $A(x)$ is a chain, either $m<y$ or $m>y$. If $m>y$, then m is comparable to everything in D_{α}, contradicting $m \in D_{\beta}$ and $\alpha<\beta$. Similarly, if $m<y$, then y is comparable to every element in C_{j}, contradicting $y \in C_{i}$ and $j<i$. Therefore $C_{i} \cap R$ is contained in a single chain in \mathcal{D}. By a symmetric argument, $C_{i} \cap R^{\prime}$ is contained in a single chain in \mathcal{D}.

It remains to bound $\left|\mathcal{C}^{\prime}\right|$. Note that for each $C \in \mathcal{C}^{\prime}$, we have that $C \cap R$ is contained in some Dilworth chain $D_{\alpha} \in \mathcal{D}$ and $C \cap R^{\prime}$ is contained in some Dilworth chain $D_{\gamma} \in \mathcal{D}$, with $\alpha \neq \gamma$; we say that (α, γ) is the signature of $C \in \mathcal{C}^{\prime}$ if $C \cap R \subseteq D_{\alpha}$ and $C \cap R^{\prime} \subseteq D_{\gamma}$. Note
that if $C_{i}, C_{j} \in \mathcal{C}^{\prime}$ with $i<j$, then it is not possible for both C_{i} and C_{j} to have the same signature (α, γ), or else $C_{i} \cap R^{\prime}<C_{j}<C_{i} \cap R$. Since the signatures are distinct, it follows that $\left|\mathcal{C}^{\prime}\right| \leq w^{2}$ and so $\mathrm{FF}(w, B) \leq(1+o(1)) w^{2}$.

Let X and Y be disjoint copies of \mathcal{D}, and let G be the (X, Y)-bigraph in which $D_{\alpha} \in X$ and $D_{\gamma} \in Y$ are adjacent if and only if some chain in \mathcal{C}^{\prime} has signature (α, γ). We claim that G has no 4-cycle, implying $\left|\mathcal{C}^{\prime}\right|=|E(G)| \leq(1+o(1)) w^{3 / 2}$.

Suppose for a contradiction that G has a 4 -cycle on $D_{\alpha}, D_{\beta} \in X$ and $D_{\gamma}, D_{\delta} \in Y$. Let $C_{i}, C_{j}, C_{k}, C_{\ell}$ be chains in \mathcal{C}^{\prime} with signatures $(\alpha, \gamma),(\alpha, \delta),(\beta, \gamma)$, and (β, δ), respectively. Assume, without loss of generality, that C_{i} precedes C_{j} in \mathcal{C}, and let $y_{1} \in C_{j} \cap R^{\prime} \subseteq D_{\delta}$. Since y_{1} is in a later chain, it must be that $x_{1} \| y_{1}$ for some $x_{1} \in C_{i}$. Since $C_{j} \cap R$ and $C_{i} \cap R$ are both contained in D_{α} and $y_{1} \in C_{j} \cap R^{\prime}<C_{j} \cap R<C_{i} \cap R$, it follows that $x_{1} \in C_{i} \cap R^{\prime} \subseteq$ D_{γ}. Therefore there is an incomparable pair $\left(x_{1}, y_{1}\right) \in\left(C_{i} \cap R^{\prime}\right) \times\left(C_{j} \cap R^{\prime}\right)$. A similar argument applied to C_{k} and C_{ℓ} with top parts in D_{β} shows that there is an incomparable pair $\left(x_{2}, y_{2}\right) \in\left(C_{k} \cap R^{\prime}\right) \times\left(C_{\ell} \cap R^{\prime}\right)$. Since $C_{i} \cap R^{\prime}, C_{k} \cap R^{\prime} \subseteq D_{\gamma}$ and $C_{j} \cap R^{\prime}, C_{\ell} \cap R^{\prime} \subseteq D_{\delta}$, it follows from Lemma 13 that there is an incomparable pair $(x, y) \in D_{\gamma} \times D_{\delta}$ with $x \leq$ $\min \left\{\max C_{i} \cap R^{\prime}, \max C_{k} \cap R^{\prime}\right\}$ and $y \leq \min \left\{\max C_{j} \cap R^{\prime}\right.$, max $\left.C_{\ell} \cap R^{\prime}\right\}$. Similarly, there is an incomparable pair $\left(x^{\prime}, y^{\prime}\right) \in D_{\alpha} \times D_{\beta}$ with $x^{\prime} \geq \max \left\{\min C_{i} \cap R, \min C_{j} \cap R\right\}$ and $y^{\prime} \geq \max \left\{\min C_{k} \cap R, \min C_{\ell} \cap R\right\}$. Since $x, y<x^{\prime}, y^{\prime}$, it follows that $\left\{x, y, x^{\prime}, y^{\prime}\right\}$ induces a copy of B in P.

Since $|\mathcal{C}| \leq\left|\mathcal{C}^{\prime}\right|+3 w \leq(1+o(1)) w^{3 / 2}$, the bound on $F F(w, B)$ follows.
Corollary 15. $\mathrm{FF}(w, B)=(1+o(1)) w^{3 / 2}$.
The stacked butterfly of height t, denoted B_{t}, is $Q_{1} \otimes \cdots \otimes Q_{t}$, where each Q_{i} is a 2-element antichain. Note that $B_{2 k}$ is the series composition of k copies of B. A consequence of our results is that $\mathrm{FF}\left(w, B_{t}\right)$ is bounded by a polynomial in w for each fixed t.

Corollary 16. $\mathrm{FF}\left(w, B_{2 k}\right) \leq(1+o(1)) w^{3.5 k-2}$
Proof. From Theorem 5 and Corollary 15 we have that

$$
\mathrm{FF}\left(w, B_{2 k}\right) \leq(1+o(1)) w^{2} \mathrm{FF}\left(w, B_{2(k-1)}\right) \mathrm{FF}\left(w, B_{2}\right)=(1+o(1)) w^{3.5 k-2}
$$

It would be interesting to find lower bounds on $\mathrm{FF}\left(w, B_{2 k}\right)$. In particular, is $\mathrm{FF}\left(w, B_{2 k}\right)$ bounded below by a polynomial in w whose degree grows linearly in k ?

4 Conclusions and Open Problems

A consequence of Theorem 8 is that \mathcal{Q} is the family of posets Q such that $\mathrm{FF}(w, Q)$ is subexponential in w. It may be that \mathcal{Q} is also the family of posets Q such that $\mathrm{FF}(w, Q)$ is polynomial in w. This is the case if and only if Question 9 has a positive answer. Alternatively, if Question 9 has a negative answer, then it would be interesting to understand what structural properties of Q lead to polynomial behavior of $\operatorname{FF}(w, Q)$.

Problem 17. Characterize the posets Q for which $\mathrm{FF}(w, Q)$ is bounded above by a polynomial in w.

We have focused on upper bounds for posets in \mathcal{Q} and lower bounds for posets outside \mathcal{Q}. It would be nice to obtain better bounds for posets outside \mathcal{Q}. The smallest poset of width 2 that is outside \mathcal{Q} is the skewed butterfly \hat{B} consisting of disjoint chains $x_{1}<x_{2}<x_{3}$ and $y_{1}<y_{2}$ with the cover relations $x_{1}<y_{2}$ and $y_{1}<x_{3}$. According to Theorem 2, we have $\mathrm{FF}(w, \hat{B}) \geq 2^{w}-1$. What is $\operatorname{FF}(w, \hat{B})$? Although Bosek, Krawczyk, and Matecki [4 provide tower-type upper bounds on $\operatorname{FF}(w, Q)$, there may be room for significant improvement.

Question 18. Is there any poset Q of width 2 for which $\operatorname{FF}(w, Q)$ is superexponential?
We have studied the behavior of First-Fit on families that forbid a single poset Q, but it is also natural to ask about families that forbid a set of posets. If \mathcal{S} is a set of posets, we say that a poset P is \mathcal{S}-free if no poset in \mathcal{S} is a subposet of P. Let $\mathrm{FF}(w, \mathcal{S})$ be the maximum number of chains that First-Fit uses on an \mathcal{S}-free poset of width w.
Problem 19. Characterize the sets \mathcal{S} for which $\operatorname{FF}(w, \mathcal{S})$ is bounded by a polynomial in w.
If \mathcal{P} is a poset family that is closed under taking subposets, then \mathcal{P} is exactly the set of posets that is \mathcal{S}-free, where \mathcal{S} is the set of minimal posets not in \mathcal{P}. A solution to Problem 19 is therefore equivalent to a characterization of all subposet-closed families \mathcal{P} such that FirstFit has polynomial behavior when restricted to \mathcal{P}. We suspect that this is a challenging problem, but the restriction of Problem 19 to $|\mathcal{S}| \leq 2$ is likely more accessible and even partial progress would still be interesting.

References

[1] R. C. Baker and G. Harman. The difference between consecutive primes. Proc. London Math. Soc. (3), 72(2):261-280, 1996.
[2] R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes. II. Proc. London Math. Soc. (3), 83(3):532-562, 2001.
[3] Bartłomiej Bosek, H. A. Kierstead, Tomasz Krawczyk, Grzegorz Matecki, and Matthew E. Smith. An easy subexponential bound for online chain partitioning. Electron. J. Combin., 25(2):Paper 2.28, 23, 2018.
[4] Bartlomiej Bosek, Tomasz Krawczyk, and Grzegorz Matecki. First-fit coloring of incomparability graphs. SIAM J. Discrete Math., 27(1):126-140, 2013.
[5] Bartłomiej Bosek, Tomasz Krawczyk, and Edward Szczypka. First-fit algorithm for the on-line chain partitioning problem. SIAM J. Discrete Math., 23(4):1992-1999, 2009/10.
[6] Vida Dujmović, Gwenaël Joret, and David R. Wood. An improved bound for first-fit on posets without two long incomparable chains. SIAM J. Discrete Math., 26(3):1068-1075, 2012.
[7] Peter C Fishburn. Intransitive indifference with unequal indifference intervals. Journal of Mathematical Psychology, 7(1):144-149, 1970.
[8] A. Gyárfás and J. Lehel. On-line and first fit colorings of graphs. J. Graph Theory, 12(2):217-227, 1988.
[9] Guido Hoheisel. Primzahlprobleme in der analysis. Sitz. Preuss. Akad. Wiss., 33:3-11, 1930.
[10] Gwenaël Joret and Kevin G. Milans. First-fit is linear on posets excluding two long incomparable chains. Order, 28(3):455-464, 2011.
[11] H. A. Kierstead, David A. Smith, and W. T. Trotter. First-fit coloring on interval graphs has performance ratio at least 5. European J. Combin., 51:236-254, 2016.
[12] H. A. Kierstead and Matt Earl Smith. On first-fit coloring of ladder-free posets. European J. Combin., 34(2):474-489, 2013.
[13] Henry A. Kierstead. Recursive ordered sets. In Combinatorics and ordered sets (Arcata, Calif., 1985), volume 57 of Contemp. Math., pages 75-102. Amer. Math. Soc., Providence, RI, 1986.
[14] Henry A. Kierstead, Stephen G. Penrice, and William T. Trotter. On-line and first-fit coloring of graphs that do not induce P_{5}. SIAM J. Discrete Math., 8(4):485-498, 1995.
[15] T. Kövari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloquium Math., 3:50-57, 1954.
[16] N. S. Narayanaswamy and R. Subhash Babu. A note on first-fit coloring of interval graphs. Order, 25(1):49-53, 2008.
[17] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. Buffer minimization using max-coloring. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 562-571. ACM, New York, 2004.

