First-Fit chain partitions in partially ordered sets

Kevin G. Milans (milans@math.wvu.edu)

Michael C. Wigal

West Virginia University

2018 International Workshop on Graph Theory
Ewha Womans University
Seoul, Korea
January 4, 2018

Chain Partitions

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.

Chain Partitions

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.

Chain Partitions

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.

Chain Partitions

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

Chain Partitions

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

Theorem (Dilworth's Theorem)
The minimum size of a chain partition of P equals the width of P.

Chain Partitions

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

Theorem (Dilworth's Theorem)
The minimum size of a chain partition of P equals the width of P.

- A Dilworth partition of is a chain partition of minimum size.

Chain Partitions

- In a poset, a chain is a set of pairwise comparable points, and an antichain is a set of pairwise incomparable points.
- The height of a poset is the maximum size of a chain, and the width is the maximum size of an antichain.

Theorem (Dilworth's Theorem)
The minimum size of a chain partition of P equals the width of P.

- A Dilworth partition of is a chain partition of minimum size.

The First-Fit Algorithm

- The First-Fit Algorithm produces a chain partition of P in a greedy way.

The First-Fit Algorithm

- The First-Fit Algorithm produces a chain partition of P in a greedy way.
- The points of P are processed in some order.

The First-Fit Algorithm

- The First-Fit Algorithm produces a chain partition of P in a greedy way.
- The points of P are processed in some order.
- When processing x, First-Fit assigns x to the first chain in which x fits, introducing a new chain if necessary.

The First-Fit Algorithm

- The First-Fit Algorithm produces a chain partition of P in a greedy way.
- The points of P are processed in some order.
- When processing x, First-Fit assigns x to the first chain in which x fits, introducing a new chain if necessary.
- In terms of the width w, how many chains can First-Fit use?

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

Kierstead's First-Fit Example

First-Fit on restricted poset families

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.

First-Fit on restricted poset families

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- A poset Q is an subposet of P if Q can be obtained from P by deleting points.

First-Fit on restricted poset families

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- A poset P is Q-free if P does not contain Q as a subposet.

First-Fit on restricted poset families

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- A poset P is Q-free if P does not contain Q as a subposet.

Definition

Let $\mathrm{FF}(w, Q)$ be the maximum number of chains used by First-Fit on a Q-free poset of width w.

First-Fit on restricted poset families

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- A poset P is Q-free if P does not contain Q as a subposet.

Definition

Let $\mathrm{FF}(w, Q)$ be the maximum number of chains used by First-Fit on a Q-free poset of width w.

- Kierstead's example: $\mathrm{FF}(w, Q)$ is unbounded when Q has an antichain of size 3.

First-Fit on restricted poset families

- Kierstead's example shows that First-Fit can use arbitrarily many chains, even on posets of width 2.
- A poset Q is an subposet of P if Q can be obtained from P by deleting points.
- A poset P is Q-free if P does not contain Q as a subposet.

Definition

Let $\mathrm{FF}(w, Q)$ be the maximum number of chains used by First-Fit on a Q-free poset of width w.

- Kierstead's example: $\mathrm{FF}(w, Q)$ is unbounded when Q has an antichain of size 3.

Theorem (Bosek-Krawczyk-Matecki (2011))
If Q has width at most 2 , then $\operatorname{FF}(w, Q)$ is bounded.

Prior Work

- Let k be the chain of size k.

Prior Work

- Let \underline{k} be the chain of size k.
- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.

Prior Work

- Let \underline{k} be the chain of size k.
- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.
- $\operatorname{FF}(w, \mathfrak{l} / \mathfrak{l})=w$ (Folklore)

Prior Work

- Let k be the chain of size k.

- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.
- $\operatorname{FF}(w, \mathfrak{l} / \mathfrak{i})=w$ (Folklore)
- $(5-o(1)) w \leq \mathrm{FF}(w, \underline{2}+\underline{2}) \leq 8 w$

Prior Work

- Let k be the chain of size k.

- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.
- $\operatorname{FF}(w, \mathfrak{l} / \mathfrak{i})=w$ (Folklore)
- $(5-o(1)) w \leq \mathrm{FF}(w, \underline{2}+\underline{2}) \leq 8 w$
(Lower bound: Kierstead-D. Smith-Trotter 2010)

Prior Work

- Let \underline{k} be the chain of size k.

- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.
- $\operatorname{FF}(w, \mathfrak{l} / \mathfrak{i})=w$ (Folklore)
- $(5-o(1)) w \leq \mathrm{FF}(w, \underline{2}+\underline{2}) \leq 8 w$
(Lower bound: Kierstead-D. Smith-Trotter 2010)
(Upper bound: Narayanaswamy-Babu 2008)

Prior Work

- Let \underline{k} be the chain of size k.
- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.
- $\mathrm{FF}(w, \mathfrak{l} / \mathrm{i} \mathrm{i})=w$ (Folklore)
- $(5-o(1)) w \leq \mathrm{FF}(w, \underline{2}+\underline{2}) \leq 8 w$
(Lower bound: Kierstead-D. Smith-Trotter 2010)
(Upper bound: Narayanaswamy-Babu 2008)
- $\mathrm{FF}(w, \underline{k}+\underline{k}) \leq 16 k w$ (Dujmović-Joret-Wood 2011)

Prior Work

- Let \underline{k} be the chain of size k.
- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.
- $\mathrm{FF}(w, \mathfrak{l} / \mathrm{i} \mathrm{i})=w$ (Folklore)
- $(5-o(1)) w \leq \mathrm{FF}(w, \underline{2}+\underline{2}) \leq 8 w$
(Lower bound: Kierstead-D. Smith-Trotter 2010)
(Upper bound: Narayanaswamy-Babu 2008)
- $\mathrm{FF}(w, \underline{k}+\underline{k}) \leq 16 k w$ (Dujmović-Joret-Wood 2011)
- $\operatorname{FF}\left(w, \frac{1}{\prime}\right)=w^{2}$ (Kierstead-M. Smith 2013)

Prior Work

- Let \underline{k} be the chain of size k.

- Let $P_{1}+P_{2}$ be the poset with disjoint copies of P_{1} and P_{2}.
- $\mathrm{FF}(w, \mathfrak{l} / \mathrm{i} \mathrm{i})=w$ (Folklore)
- $(5-o(1)) w \leq \mathrm{FF}(w, \underline{2}+\underline{2}) \leq 8 w$
(Lower bound: Kierstead-D. Smith-Trotter 2010)
(Upper bound: Narayanaswamy-Babu 2008)
- $\mathrm{FF}(w, \underline{k}+\underline{k}) \leq 16 k w$ (Dujmović-Joret-Wood 2011)
- $\operatorname{FF}\left(w, \frac{1}{\prime}\right)=w^{2}$ (Kierstead-M. Smith 2013)

Main Question
What properties of Q determine the behavior of $\operatorname{FF}(w, Q)$?

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead -M . Smith (2013))

- A P-wall is an ordered chain partition $\left(W_{1}, \ldots, W_{t}\right)$ of P produced by First-Fit.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- A P-wall is an ordered chain partition $\left(W_{1}, \ldots, W_{t}\right)$ of P produced by First-Fit.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

L_{2}

$W_{1} \quad W_{2} \quad W_{3} \quad W_{4} \quad W_{5}$

- A P-wall is an ordered chain partition $\left(W_{1}, \ldots, W_{t}\right)$ of P produced by First-Fit.
- Note: if $y \in W_{j}$, then each chain W_{i} with $i \leq j$ contains a point x that is incomparable to y.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead -M . Smith (2013))

- A P-wall is an ordered chain partition $\left(W_{1}, \ldots, W_{t}\right)$ of P produced by First-Fit.
- Note: if $y \in W_{j}$, then each chain W_{i} with $i \leq j$ contains a point x that is incomparable to y.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- A P-wall is an ordered chain partition $\left(W_{1}, \ldots, W_{t}\right)$ of P produced by First-Fit.
- Note: if $y \in W_{j}$, then each chain W_{i} with $i \leq j$ contains a point x that is incomparable to y.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Let P be a L_{2}-free poset of width 2 .

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Let P be a L_{2}-free poset of width 2 .
- Let $\left(W_{1}, \ldots, W_{t}\right)$ be a P-wall.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Let P be a L_{2}-free poset of width 2 .
- Let $\left(W_{1}, \ldots, W_{t}\right)$ be a P-wall.
- We show $t \leq w^{2}$.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Let P be a L_{2}-free poset of width 2 .
- Let $\left(W_{1}, \ldots, W_{t}\right)$ be a P-wall.
- We show $t \leq w^{2}$.
- Let $\left\{C_{1}, \ldots, C_{w}\right\}$ be a Dilworth partition of P.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead -M . Smith (2013))

L_{2}

$W_{1} \quad W_{2} \quad W_{3} \quad W_{4} \quad W_{5}$

- Let P be a L_{2}-free poset of width 2 .
- Let $\left(W_{1}, \ldots, W_{t}\right)$ be a P-wall.
- We show $t \leq w^{2}$.
- Let $\left\{C_{1}, \ldots, C_{w}\right\}$ be a Dilworth partition of P.
- The signature of W_{i} is the pair $(\alpha, \beta) \in[w]^{2}$ such that

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

L_{2}

$W_{1} \quad W_{2} \quad W_{3} \quad W_{4} \quad W_{5}$

- Let P be a L_{2}-free poset of width 2 .
- Let $\left(W_{1}, \ldots, W_{t}\right)$ be a P-wall.
- We show $t \leq w^{2}$.
- Let $\left\{C_{1}, \ldots, C_{w}\right\}$ be a Dilworth partition of P.
- The signature of W_{i} is the pair $(\alpha, \beta) \in[w]^{2}$ such that
- $\min W_{i} \in C_{\alpha}$ and

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

L_{2}

$\begin{array}{lllll}W_{1} & W_{2} & W_{3} & W_{4} & W_{5}\end{array}$

- Let P be a L_{2}-free poset of width 2 .
- Let $\left(W_{1}, \ldots, W_{t}\right)$ be a P-wall.
- We show $t \leq w^{2}$.
- Let $\left\{C_{1}, \ldots, C_{w}\right\}$ be a Dilworth partition of P.
- The signature of W_{i} is the pair $(\alpha, \beta) \in[w]^{2}$ such that
- $\min W_{i} \in C_{\alpha}$ and
- $\max W_{i} \in C_{\beta}$.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.
- Suppose not.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.
- Suppose not.
- Since $\min W_{i}, \min W_{j} \in C_{\alpha}$, they are comparable.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.
- Suppose not.
- Since $\min W_{i}, \min W_{j} \in C_{\alpha}$, they are comparable.
- Since $i<j$ we have $\min W_{i}<\min W_{j}$.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

L_{2}

W_{i}
W_{j}

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.
- Suppose not.
- Since $\min W_{i}, \min W_{j} \in C_{\alpha}$, they are comparable.
- Since $i<j$ we have $\min W_{i}<\min W_{j}$.
- Similarly $\max W_{i}>\min W_{j}$.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead -M . Smith (2013))

L_{2}

$W_{i} \quad W_{j}$

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.
- Suppose not.
- Since $\min W_{i}, \min W_{j} \in C_{\alpha}$, they are comparable.
- Since $i<j$ we have $\min W_{i}<\min W_{j}$.
- Similarly $\max W_{i}>\min W_{j}$.
- Let $y \in W_{j}$

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead -M . Smith (2013))

L_{2}

$W_{i} \quad W_{j}$

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.
- Suppose not.
- Since $\min W_{i}, \min W_{j} \in C_{\alpha}$, they are comparable.
- Since $i<j$ we have $\min W_{i}<\min W_{j}$.
- Similarly $\max W_{i}>\min W_{j}$.
- Let $y \in W_{j}$, and let $x \in W_{i}$ be incomparable to y.

Warmup: $\mathrm{FF}\left(w, L_{2}\right) \leq w^{2}($ Kierstead-M. Smith (2013))

L_{2}

$W_{i} \quad W_{j}$

- Claim: if $i<j$, then W_{i} and W_{j} have distinct signatures.
- Suppose not.
- Since $\min W_{i}, \min W_{j} \in C_{\alpha}$, they are comparable.
- Since $i<j$ we have $\min W_{i}<\min W_{j}$.
- Similarly $\max W_{i}>\min W_{j}$.
- Let $y \in W_{j}$, and let $x \in W_{i}$ be incomparable to y.
- Note $\min W_{i}<x, y<\max W_{i}$, completing a copy of L_{2}.

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.
- Analysis of $\mathrm{FF}\left(w, L_{m}\right)$ plays an important role in the recent breakthrough by Bosek and Krawczyk, giving a subexponential online chain partitioning algorithm.

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.
- Analysis of $\mathrm{FF}\left(w, L_{m}\right)$ plays an important role in the recent breakthrough by Bosek and Krawczyk, giving a subexponential online chain partitioning algorithm.
- Bosek-Krawczyk (2015): if $\mathrm{FF}\left(w, L_{m}\right)$ is polynomial in w and m, then there is a polynomial online chain partitioning algorithm.

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.

Theorem

$$
\frac{1}{m-1} w^{\lg (m-1)} \leq \mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.

Theorem

$$
\frac{1}{m-1} w^{\lg (m-1)} \leq \mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

- UB: Kierstead-M. Smith (2013)

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.

Theorem

$$
\frac{1}{m-1} w^{\lg (m-1)} \leq \mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

- UB: Kierstead-M. Smith (2013)
- LB: Bosek-Kierstead-Krawczyk-Matecki-M. Smith (2014+)

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.

Theorem

$$
\frac{1}{m-1} w^{\lg (m-1)} \leq \mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

- Note: for each fixed m, the lower bound is polynomial in w.

Ladders

- The ladder poset, denoted L_{m}, has two chains $x_{1}<\ldots<x_{m}$ and $y_{1}<\ldots<y_{m}$ with $x_{i} \leq y_{j}$ if and only if $i \leq j$.

Theorem

$$
\frac{1}{m-1} w^{\lg (m-1)} \leq \mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

- Note: for each fixed m, the lower bound is polynomial in w.
- The upper bound is superpolynomial but subexponential.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.
- Define a family of posets \mathcal{Q} recursively:

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.
- Define a family of posets \mathcal{Q} recursively:

1. If Q is ladder-like, then $Q \in \mathcal{Q}$.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.
- Define a family of posets \mathcal{Q} recursively:

1. If Q is ladder-like, then $Q \in \mathcal{Q}$.
2. If $Q_{1}, Q_{2} \in \mathcal{Q}$, then $Q_{1} \otimes Q_{2} \in \mathcal{Q}$.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.
- Define a family of posets \mathcal{Q} recursively:

1. If Q is ladder-like, then $Q \in \mathcal{Q}$.
2. If $Q_{1}, Q_{2} \in \mathcal{Q}$, then $Q_{1} \otimes Q_{2} \in \mathcal{Q}$.

Theorem (First-Fit Dichotomy)

- If $Q \in \mathcal{Q}$, then $\mathrm{FF}(w, Q) \leq w^{c_{Q} \log w}$ for some constant c_{Q}.

Our results

Definition

- A poset Q is ladder-like if Q can be partitioned into two chains X and Y such that if $x \in X$, $y \in Y$, and x is comparable to y, then $x \leq y$.
- Let $Q_{1} \otimes Q_{2}$ be the poset obtained by stacking a copy of Q_{2} on top of a copy of Q_{1}.
- Define a family of posets \mathcal{Q} recursively:

1. If Q is ladder-like, then $Q \in \mathcal{Q}$.
2. If $Q_{1}, Q_{2} \in \mathcal{Q}$, then $Q_{1} \otimes Q_{2} \in \mathcal{Q}$.

Theorem (First-Fit Dichotomy)

- If $Q \in \mathcal{Q}$, then $\mathrm{FF}(w, Q) \leq w^{c_{Q} \log w}$ for some constant c_{Q}.
- If $Q \notin \mathcal{Q}$, then $\operatorname{FF}(w, Q) \geq 2^{w}-1$.

First-Fit Dichotomy Theorem, Upper Bound

Proposition
If Q is a ladder-like m-point poset, then Q is a subposet of L_{m}.

First-Fit Dichotomy Theorem, Upper Bound

Proposition
If Q is a ladder-like m-point poset, then Q is a subposet of L_{m}.

First-Fit Dichotomy Theorem, Upper Bound

Proposition
If Q is a ladder-like m-point poset, then Q is a subposet of L_{m}.

First-Fit Dichotomy Theorem, Upper Bound

> Proposition
> If Q is a ladder-like m-point poset, then Q is a subposet of L_{m}.

Theorem (Kierstead-M. Smith (2013))

$$
\mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

First-Fit Dichotomy Theorem, Upper Bound

Proposition

If Q is a ladder-like m-point poset, then Q is a subposet of L_{m}.

Theorem (Kierstead-M. Smith (2013))

$$
\mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

Lemma (Series Construction)
$\operatorname{FF}\left(w, Q_{1} \otimes Q_{2}\right)<3\left(1+\operatorname{FF}\left(w, Q_{1}\right)\right)\left(1+\mathrm{FF}\left(w, Q_{2}\right)\right) w^{2}$

First-Fit Dichotomy Theorem, Upper Bound

> Proposition
> If Q is a ladder-like m-point poset, then Q is a subposet of L_{m}.

Theorem (Kierstead-M. Smith (2013))

$$
\mathrm{FF}\left(w, L_{m}\right) \leq w^{2.5 \lg 2 w+2 \lg m}
$$

Lemma (Series Construction)

$$
\mathrm{FF}\left(w, Q_{1} \otimes Q_{2}\right)<3\left(1+\mathrm{FF}\left(w, Q_{1}\right)\right)\left(1+\mathrm{FF}\left(w, Q_{2}\right)\right) w^{2}
$$

- Therefore $\operatorname{FF}(w, Q) \leq w^{c} Q^{\log w}$ when $Q \in \mathcal{Q}$.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=\underline{1}$.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

```
W(s-1)
```

$W(s)$

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.
$W(s-2)$

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=\underline{1}$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall
$W(s-2)$

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=\underline{1}$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall

$$
W(s-2)
$$

 containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

$$
W(s-2)
$$

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=1$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.
- First-Fit uses $2 s+1$ colors, and $2 s+1=2^{w}-1$.

First-Fit Dichotomy Theorem: Lower Bound

First-Fit Dichotomy Theorem: Lower Bound

- We construct a width-w poset R_{w} and show that First-Fit can use $2^{w}-1$ colors on R_{w}.
- Base case: $R_{1}=\underline{1}$.
- Suppose $w \geq 2$. Obtain R_{w-1} and a R_{w-1}-wall W of size s, where $s=2^{w-1}-1$.
- For $1 \leq j \leq s$, let $W(j)$ be the subwall containing the first j chains of W.
- First-Fit uses $2 s+1$ colors, and $2 s+1=2^{w}-1$.
- Prop: a poset Q of width 2 is in \mathcal{Q} if and only if Q is a subposet of some R_{w}.
- So, if $Q \notin \mathcal{Q}$, then $\operatorname{FF}(w, Q) \geq 2^{w}-1$.

Butterfly Poset

Skewed butterfly \widehat{B}

- The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.

Butterfly Poset

Skewed butterfly \widehat{B}

- The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- Clearly $\operatorname{FF}(w, \overline{2})=1$.

Butterfly Poset

Skewed butterfly \widehat{B}

- The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- Clearly $\operatorname{FF}(w, \overline{2})=1$.
- $\mathrm{FF}\left(w, Q_{1} \otimes Q_{2}\right)<3\left(1+\mathrm{FF}\left(w, Q_{1}\right)\right)\left(1+\mathrm{FF}\left(w, Q_{2}\right)\right) w^{2}$ implies $\mathrm{FF}(w, B) \leq 12 w^{2}$.

Butterfly Poset

Skewed butterfly \widehat{B}

- The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- Clearly $\operatorname{FF}(w, \overline{2})=1$.
- $\mathrm{FF}\left(w, Q_{1} \otimes Q_{2}\right)<3\left(1+\mathrm{FF}\left(w, Q_{1}\right)\right)\left(1+\mathrm{FF}\left(w, Q_{2}\right)\right) w^{2}$ implies $\mathrm{FF}(w, B) \leq 12 w^{2}$.

Theorem
$\mathrm{FF}(w, B)=(1+o(1)) w^{3 / 2}$

Butterfly Poset

Skewed butterfly \widehat{B}

- The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- Clearly $\operatorname{FF}(w, \overline{2})=1$.
- $\mathrm{FF}\left(w, Q_{1} \otimes Q_{2}\right)<3\left(1+\mathrm{FF}\left(w, Q_{1}\right)\right)\left(1+\mathrm{FF}\left(w, Q_{2}\right)\right) w^{2}$ implies $\mathrm{FF}(w, B) \leq 12 w^{2}$.

Theorem
$\mathrm{FF}(w, B)=(1+o(1)) w^{3 / 2}$

- Both bounds use the Turán number of C_{4}.

Butterfly Poset

Skewed butterfly \widehat{B}

- The butterfly poset B has the form $\overline{2} \otimes \overline{2}$ where $\overline{2}$ is the 2-element antichain.
- Clearly $\operatorname{FF}(w, \overline{2})=1$.
- $\mathrm{FF}\left(w, Q_{1} \otimes Q_{2}\right)<3\left(1+\mathrm{FF}\left(w, Q_{1}\right)\right)\left(1+\mathrm{FF}\left(w, Q_{2}\right)\right) w^{2}$ implies $\mathrm{FF}(w, B) \leq 12 w^{2}$.

Theorem
$\mathrm{FF}(w, B)=(1+o(1)) w^{3 / 2}$

- Both bounds use the Turán number of C_{4}.
- On the other hand, $\widehat{B} \notin \mathcal{Q}$ and so $\mathrm{FF}(w, \widehat{B}) \geq 2^{w}-1$.

Open Problems

- Find sharp bounds on $\operatorname{FF}(w, \widehat{B})$.

Open Problems

- Find sharp bounds on $\mathrm{FF}(w, \widehat{B})$.
- For fixed m, is $\operatorname{FF}\left(w, L_{m}\right)$ polynomial in w ?

Open Problems

Skewed butterfly \widehat{B}

- Find sharp bounds on $\mathrm{FF}(w, \widehat{B})$.
- For fixed m, is $\mathrm{FF}\left(w, L_{m}\right)$ polynomial in w ?
- If yes, then the Dichotomy Theorem becomes stronger:

Open Problems

Skewed butterfly \widehat{B}

- Find sharp bounds on $\operatorname{FF}(w, \widehat{B})$.
- For fixed m, is $\operatorname{FF}\left(w, L_{m}\right)$ polynomial in w ?
- If yes, then the Dichotomy Theorem becomes stronger:
- If $Q \in \mathcal{Q}$, then $\operatorname{FF}(w, Q)$ is polynomial.

Open Problems

Skewed butterfly \widehat{B}

- Find sharp bounds on $\operatorname{FF}(w, \widehat{B})$.
- For fixed m, is $\operatorname{FF}\left(w, L_{m}\right)$ polynomial in w ?
- If yes, then the Dichotomy Theorem becomes stronger:
- If $Q \in \mathcal{Q}$, then $\operatorname{FF}(w, Q)$ is polynomial.
- Otherwise $\operatorname{FF}(w, Q)$ is at least exponential.

Open Problems

Skewed butterfly \widehat{B}

- Find sharp bounds on $\operatorname{FF}(w, \widehat{B})$.
- For fixed m, is $\operatorname{FF}\left(w, L_{m}\right)$ polynomial in w ?
- If yes, then the Dichotomy Theorem becomes stronger:
- If $Q \in \mathcal{Q}$, then $\mathrm{FF}(w, Q)$ is polynomial.
- Otherwise $\mathrm{FF}(w, Q)$ is at least exponential.
- If no, then characterize the posets Q such that $\mathrm{FF}(w, Q)$ is polynomial.

Open Problems

Skewed butterfly \widehat{B}

- Find sharp bounds on $\operatorname{FF}(w, \widehat{B})$.
- For fixed m, is $\operatorname{FF}\left(w, L_{m}\right)$ polynomial in w ?
- If yes, then the Dichotomy Theorem becomes stronger:
- If $Q \in \mathcal{Q}$, then $\operatorname{FF}(w, Q)$ is polynomial.
- Otherwise $\operatorname{FF}(w, Q)$ is at least exponential.
- If no, then characterize the posets Q such that $\mathrm{FF}(w, Q)$ is polynomial.

Thank You.

