Tight paths in fully directed hypergraphs

Richard C. Devine Kevin G. Milans

West Virginia University

AMS Southeastern Sectional Meeting Spring 2023
Georgia Institute of Technology, Atlanta, GA
March 18, 2023
Fully Directed Hypergraphs

- An r-graph is an r-uniform hypergraph.
An r-graph is an r-uniform hypergraph.

In a fully directed r-graph, each edge is a tuple (u_1, \ldots, u_r) of r distinct vertices.
An \(r \)-graph is an \(r \)-uniform hypergraph.

In a fully directed \(r \)-graph, each edge is a tuple \((u_1, \ldots, u_r)\) of \(r \) distinct vertices.

Example: \(V(G) = \{a, b, c, d\} \), \(E(G) = \{(a, b, d), (d, b, c)\} \)
The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \ldots, n\}$$

$$E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:

 $V(P_n^{(r)}) = \{1, \ldots, n\}$

 $E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$

- Example $P_8^{(4)}$:

\[
\begin{align*}
V(P_8^{(4)}) &= \{1, 2, 3, 4, 5, 6, 7, 0\} \\
E(P_8^{(4)}) &= \{(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6), (4, 5, 6, 7), (5, 6, 7, 0), (6, 7, 0, 1), (7, 0, 1, 2)\}
\end{align*}
\]
The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \ldots, n\}$$

$$E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$

Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

$(1, 2, 3, 4)$
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:

 \[V(P_n^{(r)}) = \{1, \ldots, n\} \]
 \[E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\} \]

- Example $P_8^{(4)}$:

 \begin{align*}
 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 & \quad 8 \quad (2, 3, 4, 5)
 \end{align*}
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:

 \[V(P_n^{(r)}) = \{1, \ldots, n\} \]

 \[E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\} \]

- Example $P_8^{(4)}$:

 \[
 \begin{array}{cccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \end{array}
 \]

 \[(3, 4, 5, 6)\]
Paths and Cycles

The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \ldots, n\}$$

$$E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$

Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

(4, 5, 6, 7)
Paths and Cycles

The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \ldots, n\}$$

$$E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$

Example $P_8^{(4)}$:

![Diagram of $P_8^{(4)}$ with vertices labeled 1 to 8 and edges indicated by arrows]

$(5, 6, 7, 8)$
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:

 $$V(P_n^{(r)}) = \{1, \ldots, n\}$$

 $$E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$

- Example $P_8^{(4)}$:
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:

 $$V(P_n^{(r)}) = \{1, \ldots, n\}$$

 $$E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$

 Example $P_8^{(4)}$:

 1 2 3 4 5 6 7 8

- The tight cycle, denoted by $C_n^{(r)}$, is given by:

 $$V(C_n^{(r)}) = \mathbb{Z}_n$$

 $$E(C_n^{(r)}) = \{(i + 1, \ldots, i + r): i \in \mathbb{Z}_n\}$$
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:
 \[V(P_n^{(r)}) = \{1, \ldots, n\} \]
 \[E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\} \]

- Example $P_8^{(4)}$:
 \[
 \begin{array}{cccccccc}
 \bullet & \bullet \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \end{array}
 \]

- The tight cycle, denoted by $C_n^{(r)}$, is given by:
 \[V(C_n^{(r)}) = \mathbb{Z}_n \]
 \[E(C_n^{(r)}) = \{(i + 1, \ldots, i + r): i \in \mathbb{Z}_n\} \]

- Example $C_8^{(4)}$:
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:

 $V(P_n^{(r)}) = \{1, \ldots, n\}$

 $E(P_n^{(r)}) = \{(i + 1, \ldots, i + r) : 0 \leq i \leq n - r\}$

- Example $P_8^{(4)}$:

 1 2 3 4 5 6 7 8

- The tight cycle, denoted by $C_n^{(r)}$, is given by:

 $V(C_n^{(r)}) = \mathbb{Z}_n$

 $E(C_n^{(r)}) = \{(i + 1, \ldots, i + r) : i \in \mathbb{Z}_n\}$

- Example $C_8^{(4)}$:

 ![Diagram of a tight cycle]

 (0, 1, 2, 3)
Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:
 \[
 V(P_{n}^{(r)}) = \{1, \ldots, n\} \\
 E(P_{n}^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}
 \]

- Example $P_{8}^{(4)}$:
 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \end{array}
 \]

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:
 \[
 V(C_{n}^{(r)}) = \mathbb{Z}_{n} \\
 E(C_{n}^{(r)}) = \{(i + 1, \ldots, i + r): i \in \mathbb{Z}_{n}\}
 \]

- Example $C_{8}^{(4)}$:
Paths and Cycles

The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \ldots, n\}$$

$$E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$

Example $P_8^{(4)}$:

```
\begin{align*}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{align*}
```

The tight cycle, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n$$

$$E(C_n^{(r)}) = \{(i + 1, \ldots, i + r): i \in \mathbb{Z}_n\}$$

Example $C_8^{(4)}$:

```
\begin{tikzpicture}
  \node (0) at (0,0) {0};
  \node (1) at (1,0) {1};
  \node (2) at (1,1) {2};
  \node (3) at (0,1) {3};
  \node (4) at (-1,0) {4};
  \node (5) at (-1,-1) {5};
  \node (6) at (0,-1) {6};
  \node (7) at (1,-1) {7};
  \draw[->] (0) -- (1);
  \draw[->] (1) -- (2);
  \draw[->] (2) -- (3);
  \draw[->] (3) -- (4);
  \draw[->] (4) -- (5);
  \draw[->] (5) -- (6);
  \draw[->] (6) -- (7);
  \draw[->] (7) -- (0);
\end{tikzpicture}
```

$(2, 3, 4, 5)$
Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:

 \[V(P_n^{(r)}) = \{1, \ldots, n\} \]
 \[E(P_n^{(r)}) = \{(i + 1, \ldots, i + r) : 0 \leq i \leq n - r\} \]

- Example $P_8^{(4)}$:

- The tight cycle, denoted by $C_n^{(r)}$, is given by:

 \[V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i + 1, \ldots, i + r) : i \in \mathbb{Z}_n\} \]

- Example $C_8^{(4)}$:
Paths and Cycles

- **The tight path**, denoted by \(P_n^{(r)} \), is given by:

 \[
 V(P_n^{(r)}) = \{1, \ldots, n\} \\
 E(P_n^{(r)}) = \{(i + 1, \ldots, i + r) : 0 \leq i \leq n - r\}
 \]

- **Example** \(P_8^{(4)} \):

 \[
 \begin{array}{cccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \end{array}
 \]

- **The tight cycle**, denoted by \(C_n^{(r)} \), is given by:

 \[
 V(C_n^{(r)}) = \mathbb{Z}_n \\
 E(C_n^{(r)}) = \{(i + 1, \ldots, i + r) : i \in \mathbb{Z}_n\}
 \]

- **Example** \(C_8^{(4)} \):

 \[
 \begin{array}{cccccccc}
 3 & 2 & 1 \\
 4 & 0 & \end{array}
 \]

 \[
 (4, 5, 6, 7)
 \]

Paths and Cycles

- The tight path, denoted by $P_n^{(r)}$, is given by:
 \[V(P_n^{(r)}) = \{1, \ldots, n\} \]
 \[E(P_n^{(r)}) = \{(i + 1, \ldots, i + r) : 0 \leq i \leq n - r\} \]

- Example $P_8^{(4)}$:

- The tight cycle, denoted by $C_n^{(r)}$, is given by:
 \[V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i + 1, \ldots, i + r) : i \in \mathbb{Z}_n\} \]

- Example $C_8^{(4)}$:
Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

 $$V(P_{n}^{(r)}) = \{1, \ldots, n\}$$

 $$E(P_{n}^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}$$

- Example $P_{8}^{(4)}$:

 ![Diagram](image)

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

 $$V(C_{n}^{(r)}) = \mathbb{Z}_n$$

 $$E(C_{n}^{(r)}) = \{(i + 1, \ldots, i + r): i \in \mathbb{Z}_n\}$$

- Example $C_{8}^{(4)}$:

 ![Diagram](image)
Paths and Cycles

The tight path, denoted by $P_n^{(r)}$, is given by:

\[
V(P_n^{(r)}) = \{1, \ldots, n\}
\]
\[
E(P_n^{(r)}) = \{(i + 1, \ldots, i + r): 0 \leq i \leq n - r\}
\]

Example $P_8^{(4)}$:

```
1 2 3 4 5 6 7 8
```

The tight cycle, denoted by $C_n^{(r)}$, is given by:

\[
V(C_n^{(r)}) = \mathbb{Z}_n
\]
\[
E(C_n^{(r)}) = \{(i + 1, \ldots, i + r): i \in \mathbb{Z}_n\}
\]

Example $C_8^{(4)}$:

```
3 2 1 0 4 5 6 7
```

(7, 0, 1, 2)
The extremal function $f(n, r, k)$

- For $0 \leq k \leq r!$, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G.

- An (r, k)-tournament is a k-orientation of a complete r-graph.

- Note: a $(2, 1)$-tournament is just an ordinary tournament.

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P(r)$.
The extremal function $f(n, r, k)$

- For $0 \leq k \leq r!$, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G.

- An (r, k)-tournament is a k-orientation of a complete r-graph.
The extremal function $f(n, r, k)$

- For $0 \leq k \leq r!$, a \textit{k-orientation} of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a $(2, 1)$-tournament is just an ordinary tournament.
The extremal function $f(n, r, k)$

- For $0 \leq k \leq r!$, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the $r!$ orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a $(2, 1)$-tournament is just an ordinary tournament.
- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.
The extremal function \(f(n, r, k) \)

- For \(0 \leq k \leq r! \), a \(k \)-orientation of an \(r \)-graph \(H \) is a fully directed \(r \)-graph \(G \) such that for each \(e \in E(H) \), exactly \(k \) of the \(r! \) orderings of the vertices in \(e \) are edges in \(G \).
- An \((r, k) \)-tournament is a \(k \)-orientation of a complete \(r \)-graph.
- Note: a \((2, 1) \)-tournament is just an ordinary tournament.
- Let \(f(n, r, k) \) be the max integer \(s \) such that every \(n \)-vertex \((r, k) \)-tournament contains a copy of \(P_s^{(r)} \).
- Every tournament has a spanning path: \(f(n, 2, 1) = n \).
Warmup: \(f(n, r, r! - 1) = n \)

- Let \(2 \leq r \leq n \) and let \(G \) be an \(n \)-vertex \((r, r! - 1)\)-tournament.
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.

Warmup: \(f(n, r, r! - 1) = n \)

- Let \(2 \leq r \leq n \) and let \(G \) be an \(n \)-vertex \((r, r! - 1)\)-tournament.
- For each set \(S \) of \(r \) vertices in \(G \), just one ordering of \(S \) is absent in \(E(G) \).
- Let \(u \in V(G) \) and apply induction to obtain a spanning path \(x_1 \cdots x_{n-1} \) in \(G - u \).
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

\[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9 \quad x_{10} \quad x_{11} \quad x_{12} \quad x_{13} \quad x_{14} \quad x_{15} \]
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some i.
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some i.
- Let i be the least such integer.
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

\begin{itemize}
 \item Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some i.
 \item Let i be the least such integer.
 \item Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
\end{itemize}
Warmup: \(f(n, r, r! - 1) = n \)

- Let \(2 \leq r \leq n \) and let \(G \) be an \(n \)-vertex \((r, r! - 1)\)-tournament.
- For each set \(S \) of \(r \) vertices in \(G \), just one ordering of \(S \) is absent in \(E(G) \).
- Let \(u \in V(G) \) and apply induction to obtain a spanning path \(x_1 \cdots x_{n-1} \) in \(G - u \).

\[\begin{array}{cccccccccccccccc}
\bullet & \bullet \\
& & & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & & \\
\end{array} \]

- Suppose \((u, x_i, \ldots, x_{i+r-2}) \in E(G)\) for some \(i \).
- Let \(i \) be the least such integer.
- Note \((u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)\).
- So \((x_{i-1}, u, x_i, \ldots, x_{i+r-3}) \in E(G)\).
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
- So $(x_{i-1}, u, x_i, \ldots, x_{i+r-3}) \in E(G)$.
Warmup: \(f(n, r, r! - 1) = n \)

- Let \(2 \leq r \leq n \) and let \(G \) be an \(n \)-vertex \((r, r! - 1) \)-tournament.
- For each set \(S \) of \(r \) vertices in \(G \), just one ordering of \(S \) is absent in \(E(G) \).
- Let \(u \in V(G) \) and apply induction to obtain a spanning path \(x_1 \cdots x_{n-1} \) in \(G - u \).

Suppose \((u, x_i, \ldots, x_{i+r-2}) \in E(G) \) for some \(i \).

- Let \(i \) be the least such integer.
- Note \((u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G) \).
- So \((x_{i-1}, u, x_i, \ldots, x_{i+r-3}) \in E(G) \).
Warmup: \(f(n, r, r! - 1) = n \)

- Let \(2 \leq r \leq n \) and let \(G \) be an \(n \)-vertex \((r, r! - 1)\)-tournament.
- For each set \(S \) of \(r \) vertices in \(G \), just one ordering of \(S \) is absent in \(E(G) \).
- Let \(u \in V(G) \) and apply induction to obtain a spanning path \(x_1 \cdots x_{n-1} \) in \(G - u \).

Suppose \((u, x_i, \ldots, x_{i+r-2}) \in E(G)\) for some \(i \).
- Let \(i \) be the least such integer.
- Note \((u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)\).
- So \((x_{i-1}, u, x_i, \ldots, x_{i+r-3}) \in E(G)\).
- We may insert \(u \) before \(x_i \).
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
- So $(x_{i-1}, u, x_i, \ldots, x_{i+r-3}) \in E(G)$.
- We may insert u before x_i.
- If no such i exists, then append u at the end.
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

![Graph Diagram]

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \not\in E(G)$.
- So $(x_{i-1}, u, x_i, \ldots, x_{i+r-3}) \in E(G)$.
- We may insert u before x_i.
- If no such i exists, then append u at the end.
Warmup: $f(n, r, r! - 1) = n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r! - 1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in $G - u$.

Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
- So $(x_{i-1}, u, x_i, \ldots, x_{i+r-3}) \in E(G)$.
- We may insert u before x_i.
- If no such i exists, then append u at the end.
Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.

As k increases from 0 to $r!$, longer paths are forced.

Fix r. What is the min. k such that $f(n, r, k)$:

- grows with n?
- is polynomial in n?
- is linear in n?
- equals n?

All but the first are open for general r.

Natural Threshold Questions
Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.
- As k increases from 0 to $r!$, longer paths are forced.
Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.
- As k increases from 0 to $r!$, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:
Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.

As k increases from 0 to $r!$, longer paths are forced.

Fix r. What is the min. k such that $f(n, r, k)$:

- grows with n?
Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.

As k increases from 0 to $r!$, longer paths are forced.

Fix r. What is the min. k such that $f(n, r, k)$:
- grows with n?
- is polynomial in n?

All but the first are open for general r.
Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.
- As k increases from 0 to $r!$, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:
 - grows with n?
 - is polynomial in n?
 - is linear in n?
- All but the first are open for general r.
Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_s^{(r)}$.

As k increases from 0 to $r!$, longer paths are forced.

Fix r. What is the min. k such that $f(n, r, k)$:

- grows with n?
- is polynomial in n?
- is linear in n?
- equals n?

All but the first are open for general r.
Natural Threshold Questions

Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.

As k increases from 0 to $r!$, longer paths are forced.

Fix r. What is the min. k such that $f(n, r, k)$:

- grows with n?
- is polynomial in n?
- is linear in n?
- equals n?

All but the first are open for general r.
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).
- The pattern shift graph, denoted \(\text{PSG}_r\), is the directed graph on the permutations of \([r]\) with \(u\) adjacent to \(v\) iff the last \(r - 1\) entries in \(u\) and the first \(r - 1\) entries in \(v\) pattern-match.

\[
\begin{align*}
132 & \rightarrow 312 \\
231 & \rightarrow 321
\end{align*}
\]
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).

- The pattern shift graph, denoted \(\text{PSG}_r\), is the directed graph on the permutations of \([r]\) with \(u\) adjacent to \(v\) iff the last \(r - 1\) entries in \(u\) and the first \(r - 1\) entries in \(v\) pattern-match.

\[
\text{PSG}_3
\]
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).
- The pattern shift graph, denoted \(\text{PSG}_r\), is the directed graph on the permutations of \([r]\) with \(u\) adjacent to \(v\) iff the last \(r - 1\) entries in \(u\) and the first \(r - 1\) entries in \(v\) pattern-match.

Note: \{132, 231\} is a max. acyclic set in \(\text{PSG}_3\).

\[
\begin{align*}
\text{PSG}_3 \\
123 \\
213 \\
312
\end{align*}
\]
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t) \) and \((b_1, \ldots, b_t) \) pattern-match if, for all \(i, j \), we have \(a_i < a_j \) iff \(b_i < b_j \).
- The pattern shift graph, denoted \(\text{PSG}_r \), is the directed graph on the permutations of \([r]\) with \(u \) adjacent to \(v \) iff the last \(r - 1 \) entries in \(u \) and the first \(r - 1 \) entries in \(v \) pattern-match.

\[
\begin{array}{c c c}
123 & \text{PSG}_3 & 321 \\
213 & & 231 \\
312 & & 132
\end{array}
\]
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).

- The pattern shift graph, denoted \(PSG_r\), is the directed graph on the permutations of \([r]\) with \(u\) adjacent to \(v\) iff the last \(r - 1\) entries in \(u\) and the first \(r - 1\) entries in \(v\) pattern-match.

\[
\begin{align*}
123 & \quad \text{PSG}_3 \\
213 & \quad 321 \\
312 & \quad 231 \\
132 & \quad 213
\end{align*}
\]
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).

- The pattern shift graph, denoted \(\text{PSG}_r\), is the directed graph on the permutations of \([r]\) with \(u\) adjacent to \(v\) iff the last \(r - 1\) entries in \(u\) and the first \(r - 1\) entries in \(v\) pattern-match.

\[
\begin{array}{c}
123 \\
213 \\
312 \\
321 \\
231 \\
132
\end{array}
\]

\(\text{PSG}_3\)
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).
- The pattern shift graph, denoted \(\text{PSG}_r\), is the directed graph on the permutations of \([r]\) with \(u\) adjacent to \(v\) iff the last \(r - 1\) entries in \(u\) and the first \(r - 1\) entries in \(v\) pattern-match.

\[
\begin{align*}
\text{PSG}_3 & = \\
123 & \rightarrow 213, 312 \\
213 & \rightarrow 123, 231 \\
312 & \rightarrow 132, 231 \\
132 & \rightarrow 312, 213 \\
231 & \rightarrow 123, 132
\end{align*}
\]
The Pattern Shift Graph

- Tuples \((a_1, \ldots, a_t)\) and \((b_1, \ldots, b_t)\) pattern-match if, for all \(i, j\), we have \(a_i < a_j\) iff \(b_i < b_j\).

- The pattern shift graph, denoted \(\text{PSG}_r\), is the directed graph on the permutations of \([r]\) with \(u\) adjacent to \(v\) iff the last \(r - 1\) entries in \(u\) and the first \(r - 1\) entries in \(v\) pattern-match.

- Note: \(\{132, 231\}\) is a max. acyclic set in \(\text{PSG}_3\).
Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(PSG_r) \\ \omega(1) & \text{if } k > a(PSG_r) \end{cases}.$$
Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- Let A be an acyclic set in PSG_r of size k.

- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put $(u_1, \ldots, u_r) \in E(G)$ iff (u_1, \ldots, u_r) pattern-matches some permutation in S.
- $P(r)$ implies $\text{PSG}_r[A]$ has a walk of size $s - (r - 1)$.
- A is acyclic, so every walk in $\text{PSG}_r[A]$ has size at most $|A|$.
- So $s - (r - 1) \leq |A|$, giving $s \leq |A| + r - 1 = k + r - 1$.

- If $k > a(\text{PSG}_r)$ and $n \geq R(r)$, then $f(n, r, k) \geq n'$.

Growing paths and spanning paths

Theorem
Let \(k \) and \(r \) be constants, and let \(a(\text{PSG}_r) \) be the maximum size of an acyclic set of vertices in \(\text{PSG}_r \). We have

\[
f(n, r, k) = \begin{cases}
O(1) & \text{if } k \leq a(\text{PSG}_r) \\
\omega(1) & \text{if } k > a(\text{PSG}_r)
\end{cases}
\]

- If \(k \leq a(\text{PSG}_r) \), then \(f(n, r, k) \leq r + k - 1 \).
- Let \(A \) be an acyclic set in \(\text{PSG}_r \) of size \(k \).
- Construct an \((r, k)\)-tournament \(G \) on \(\{1, \ldots, n\} \):
Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

\[
f(n, r, k) = \begin{cases}
O(1) & \text{if } k \leq a(\text{PSG}_r) \\
\omega(1) & \text{if } k > a(\text{PSG}_r)
\end{cases}.
\]

- If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- Let A be an acyclic set in PSG_r of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put $(u_1, \ldots, u_r) \in E(G)$ iff (u_1, \ldots, u_r) pattern-matches some permutation in S.
Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- Let A be an acyclic set in PSG_r of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put $(u_1, \ldots, u_r) \in E(G)$ iff (u_1, \ldots, u_r) pattern-matches some permutation in S.

$P_s^{(r)} \subseteq G$ implies $\text{PSG}_r[A]$ has a walk of size $s - (r - 1)$.

Growing paths and spanning paths

Theorem

Let \(k \) and \(r \) be constants, and let \(a(\text{PSG}_r) \) be the maximum size of an acyclic set of vertices in \(\text{PSG}_r \). We have

\[
f(n, r, k) = \begin{cases}
O(1) & \text{if } k \leq a(\text{PSG}_r) \\
\omega(1) & \text{if } k > a(\text{PSG}_r)
\end{cases}
\]

- If \(k \leq a(\text{PSG}_r) \), then \(f(n, r, k) \leq r + k - 1 \).
- Let \(A \) be an acyclic set in \(\text{PSG}_r \) of size \(k \).
- Construct an \((r, k)\)-tournament \(G \) on \(\{1, \ldots, n\} \):
 - Put \((u_1, \ldots, u_r) \in E(G)\) iff \((u_1, \ldots, u_r)\) pattern-matches some permutation in \(S \).
- \(P_s^{(r)} \subseteq G \) implies \(\text{PSG}_r[A] \) has a walk of size \(s - (r - 1) \).
- \(A \) is acyclic, so every walk in \(\text{PSG}_r[A] \) has size at most \(|A|\).
Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

- If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.
- Let A be an acyclic set in PSG_r of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put $(u_1, \ldots, u_r) \in E(G)$ iff (u_1, \ldots, u_r) pattern-matches some permutation in S.
- $P_{s}^{(r)} \subseteq G$ implies $\text{PSG}_r[A]$ has a walk of size $s - (r - 1)$.
- A is acyclic, so every walk in $\text{PSG}_r[A]$ has size at most $|A|$.
- So $s - (r - 1) \leq |A|$, giving $s \leq |A| + r - 1 = k + r - 1$.
Growing paths and spanning paths

Theorem
Let \(k \) and \(r \) be constants, and let \(a(\text{PSG}_r) \) be the maximum size of an acyclic set of vertices in \(\text{PSG}_r \). We have

\[
f(n, r, k) = \begin{cases}
O(1) & \text{if } k \leq a(\text{PSG}_r) \\
\omega(1) & \text{if } k > a(\text{PSG}_r)
\end{cases}.
\]

- If \(k \leq a(\text{PSG}_r) \), then \(f(n, r, k) \leq r + k - 1 \).
- Let \(A \) be an acyclic set in \(\text{PSG}_r \) of size \(k \).
- Construct an \((r, k)\)-tournament \(G \) on \(\{1, \ldots, n\} \):
 - Put \((u_1, \ldots, u_r) \in E(G) \) iff \((u_1, \ldots, u_r)\) pattern-matches some permutation in \(S \).
- \(P_s^{(r)} \subseteq G \) implies \(\text{PSG}_r[A] \) has a walk of size \(s - (r - 1) \).
- \(A \) is acyclic, so every walk in \(\text{PSG}_r[A] \) has size at most \(|A| \).
- So \(s - (r - 1) \leq |A| \), giving \(s \leq |A| + r - 1 = k + r - 1 \).
- If \(k > a(\text{PSG}_r) \) and \(n \geq R^{(r)}(n'; \binom{r}{k}) \), then \(f(n, r, k) \geq n' \).
Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(PSG_r) \\ \omega(1) & \text{if } k > a(PSG_r) \end{cases}.$$

Theorem
For $r \geq 3$, there is a constant c such that

$$r! \left(1 - \frac{c(\ln r)^3}{r}\right) \leq a(PSG_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!}\right).$$
Growing paths and spanning paths

Theorem
Let \(k \) and \(r \) be constants, and let \(a(\text{PSG}_r) \) be the maximum size of an acyclic set of vertices in \(\text{PSG}_r \). We have

\[
f(n, r, k) = \begin{cases}
O(1) & \text{if } k \leq a(\text{PSG}_r) \\
\omega(1) & \text{if } k > a(\text{PSG}_r)
\end{cases}
\]

Theorem
For \(r \geq 3 \), there is a constant \(c \) such that

\[
r! \left(1 - \frac{c(\ln r)^3}{r}\right) \leq a(\text{PSG}_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!}\right).
\]

▶ Prop: if \(k \geq r!(1 - \frac{1}{e(2r-1)}) \), then \(f(n, r, k) = n \).
Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem
For $r \geq 3$, there is a constant c such that

$$r! \left(1 - \frac{c(\ln r)^3}{r}\right) \leq a(\text{PSG}_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!}\right).$$

Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

$$\frac{k}{r!}$$
Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem
For $r \geq 3$, there is a constant c such that

$$r! \left(1 - \frac{c \ln r^3}{r} \right) \leq a(\text{PSG}_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!} \right).$$

Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.
Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r! \left(1 - \frac{c(\ln r)^3}{r}\right) \leq a(\text{PSG}_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!}\right).$$

▶ **Prop:** if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

![Diagram](k/r! a(PSG_r)/r! 1 - 1/e(2r-1) 1)
Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem
For $r \geq 3$, there is a constant c such that

$$r! \left(1 - \frac{c(\ln r)^3}{r}\right) \leq a(\text{PSG}_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!}\right).$$

Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

![Diagram showing the relationship between constant paths and spanning paths](image)
Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG$_r$. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem
For $r \geq 3$, there is a constant c such that

$$r! \left(1 - \frac{c(\ln r)^3}{r}\right) \leq a(\text{PSG}_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!}\right).$$

Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

![Diagram showing constant, growing, and spanning paths](chart.png)
Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(\text{PSG}_r)$ be the maximum size of an acyclic set of vertices in PSG_r. We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}.$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r! \left(1 - \frac{c(\ln r)^3}{r}\right) \leq a(\text{PSG}_r) \leq r! \left(1 - \frac{1}{r} - \frac{2}{r!}\right).$$

Prop: if $k \geq r!(1 - \frac{1}{e(2r-1)})$, then $f(n, r, k) = n$.

\[
\begin{array}{cccc}
\frac{k}{r!} & \text{const. paths} & \frac{c(\ln n)^3}{r} & \frac{a(\text{PSG}_r)}{r!} & \frac{1}{r} & \frac{1}{r!} & 1 - \frac{1}{e(2r-1)} & 1
\end{array}
\]
The case $r = 3$

- Recall: $a(\text{PSG}_3) = 2$.

Warmup:

- $f(n, 3, 5) = f(n, 3, 6) = n$.

Interesting cases:

- $k = 3$ and $k = 4$.

Theorem:

$$\Omega(\log n \log \log n) \leq f(n, 3, 3) \leq O(\log n).$$

Theorem:

$$f(n, 3, 4) \geq \Omega(n^{1/5}).$$
The case $r = 3$

- Recall: $a(\text{PSG}_3) = 2$.
- So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.

"span. const. polylog $\geq \Omega(n^{1/5})"
The case \(r = 3 \)

- Recall: \(a(\text{PSG}_3) = 2 \).
- So \(f(n, 3, 2) = O(1) \) and \(f(n, 3, 3) = \omega(1) \).
- In fact, we get \(f(n, 3, 2) \leq 3 \) and \(f(n, 3, 3) \geq \Omega(\log \log n) \).
The case $r = 3$

- Recall: $a(\text{PSG}_3) = 2$.
- So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
The case $r = 3$

- Recall: $a(PSG_3) = 2$.
- So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
- Interesting cases: $k = 3$ and $k = 4$.
The case $r = 3$

- Recall: $a(\text{PSG}_3) = 2$.
- So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
- Interesting cases: $k = 3$ and $k = 4$.

Theorem

$$
\Omega \left(\left(\frac{\log n}{\log \log n} \right)^{1/4} \right) \leq f(n, 3, 3) \leq O(\log n).
$$
The case $r = 3$

- Recall: $a(\text{PSG}_3) = 2$.
- So $f(n, 3, 2) = O(1)$ and $f(n, 3, 3) = \omega(1)$.
- In fact, we get $f(n, 3, 2) \leq 3$ and $f(n, 3, 3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3, 5) = f(n, 3, 6) = n$.
- Interesting cases: $k = 3$ and $k = 4$.

Theorem

$$\Omega \left(\left(\frac{\log n}{\log \log n} \right)^{1/4} \right) \leq f(n, 3, 3) \leq O(\log n).$$

Theorem

$$f(n, 3, 4) \geq \Omega(n^{1/5}).$$
The case \(r = 3 \)

- Recall: \(a(\text{PSG}_3) = 2 \).
- So \(f(n, 3, 2) = O(1) \) and \(f(n, 3, 3) = \omega(1) \).
- In fact, we get \(f(n, 3, 2) \leq 3 \) and \(f(n, 3, 3) \geq \Omega(\log \log n) \).
- Warmup: \(f(n, 3, 5) = f(n, 3, 6) = n \).
- Interesting cases: \(k = 3 \) and \(k = 4 \).

Theorem

\[
\Omega \left(\left(\frac{\log n}{\log \log n} \right)^{1/4} \right) \leq f(n, 3, 3) \leq O(\log n).
\]

Theorem

\[f(n, 3, 4) \geq \Omega(n^{1/5}) \]
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- Let \(G \) be an \(n \)-vertex \((3, 4)\)-tournament.
- Each triple \(\{u, v, w\} \) has 4 orderings in \(E(G) \) and omits 2.
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- Let \(G \) be an \(n \)-vertex \((3, 4)\)-tournament.
- Each triple \(\{u, v, w\} \) has 4 orderings in \(E(G) \) and omits 2.
- Let \(s \) be the max. integer such that \(P_s^{(3)} \subseteq G \).
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- Let \(G \) be an \(n \)-vertex \((3, 4)\)-tournament.
- Each triple \(\{u, v, w\} \) has 4 orderings in \(E(G) \) and omits 2.
- Let \(s \) be the max. integer such that \(P_s^{(3)} \subseteq G \).
- For each \((u, v) \), let \(P(uv) \) be a max. path ending \(uv \).

\[s \geq \frac{n}{2} \]

\[t \geq \Omega(n^{1/5}) \]

Let \(T \) be a max. set of vertices in \(G \) not containing a good triple, and let \(t = |T| \).

\[m \geq \frac{n^3}{t^2} \geq \frac{n^3}{n^2/2} \geq \frac{n^2}{2} \]

\[s \geq m \geq \frac{n^2}{2} \]

\[t \geq \Omega(n^{1/5}) \]
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- Let G be an n-vertex $(3, 4)$-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let $P(uv)$ be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- Let \(G \) be an \(n \)-vertex \((3, 4)\)-tournament.
- Each triple \(\{u, v, w\} \) has 4 orderings in \(E(G) \) and omits 2.
- Let \(s \) be the max. integer such that \(P_s^{(3)} \subseteq G \).
- For each \((u, v) \), let \(P(uv) \) be a max. path ending \(uv \).
- Let \(s_{uv} = |V(P(uv))| \).
- Note: if \(uvw \in E(G) \) then either \(w \in V(P(uv)) \) or \(s_{vw} > s_{uv} \).
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- Let \(G \) be an \(n \)-vertex \((3, 4)\)-tournament.
- Each triple \(\{u, v, w\} \) has 4 orderings in \(E(G) \) and omits 2.
- Let \(s \) be the max. integer such that \(P_s^{(3)} \subseteq G \).
- For each \((u, v) \), let \(P(uv) \) be a max. path ending \(uv \).
- Let \(s_{uv} = |V(P(uv))| \).
- Note: if \(uvw \in E(G) \) then either \(w \in V(P(uv)) \) or \(s_{vw} > s_{uv} \).
- Say \((u, v, w) \) is **good** if \(w \in V(P(uv)) \). Say \(\{u, v, w\} \) is **good** if at least one of its orderings is good.
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- Let G be an n-vertex $(3, 4)$-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let $P(uv)$ be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- Say (u, v, w) is good if $w \in V(P(uv))$. Say $\{u, v, w\}$ is good if at least one of its orderings is good.
- Let m be num. of good triples in G. Note $s \geq \frac{m}{n^2}$.
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- Let \(G \) be an \(n \)-vertex \((3, 4)\)-tournament.
- Each triple \(\{u, v, w\} \) has 4 orderings in \(E(G) \) and omits 2.
- Let \(s \) be the max. integer such that \(P_{s}^{(3)} \subseteq G \).
- For each \((u, v)\), let \(P(uv) \) be a max. path ending \(uv \).
- Let \(s_{uv} = |V(P(uv))| \).
- Note: if \(uvw \in E(G) \) then either \(w \in V(P(uv)) \) or \(s_{vw} > s_{uv} \).
- Say \((u, v, w)\) is good if \(w \in V(P(uv)) \). Say \(\{u, v, w\} \) is good if at least one of its orderings is good.
- Let \(m \) be num. of good triples in \(G \). Note \(s \geq \frac{m}{n^2} \).
- Let \(T \) be a max. set of vertices in \(G \) not containing a good triple, and let \(t = |T| \).
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- Let \(G \) be an \(n \)-vertex \((3, 4)\)-tournament.
- Each triple \(\{u, v, w\} \) has 4 orderings in \(E(G) \) and omits 2.
- Let \(s \) be the max. integer such that \(P_s^{(3)} \subseteq G \).
- For each \((u, v) \), let \(P(uv) \) be a max. path ending \(uv \).
- Let \(s_{uv} = |V(P(uv))| \).
- Note: if \(uvw \in E(G) \) then either \(w \in V(P(uv)) \) or \(s_{vw} > s_{uv} \).
- Say \((u, v, w) \) is good if \(w \in V(P(uv)) \). Say \(\{u, v, w\} \) is good if at least one of its orderings is good.
- Let \(m \) be num. of good triples in \(G \). Note \(s \geq \frac{m}{n^2} \).
- Let \(T \) be a max. set of vertices in \(G \) not containing a good triple, and let \(t = |T| \).
- deCaen: \(m \geq \binom{n}{3} \geq \frac{(n-2)^3}{3t^2} \).
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- Let G be an n-vertex $(3, 4)$-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let $P(uv)$ be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- Say (u, v, w) is good if $w \in V(P(uv))$. Say $\{u, v, w\}$ is good if at least one of its orderings is good.
- Let m be num. of good triples in G. Note $s \geq \frac{m}{n^2}$.
- Let T be a max. set of vertices in G not containing a good triple, and let $t = |T|$.
- deCaen: $m \geq \binom{n}{3} \geq \binom{n-2}{3} \geq \frac{(n-2)^3}{3t^2}$.
- $sn^2 \geq m \geq \frac{(n-2)^3}{3t^2}$ and so $t \geq \Omega((n/s)^{1/2})$.
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

\[|T| \geq \Omega((n/s)^{1/2}) \text{ and } T \text{ has no good triple.} \]
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.

![Diagram of a graph G with a subgraph T containing vertices u, v, and w. The edge uvw is included in $E(G[T])$.](image-url)
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- \(|T| \geq \Omega((n/s)^{1/2}) \) and \(T \) has no good triple.
- Suppose \(uvw \in E(G[T]) \).
- Since \(w \not\in V(P(uv)) \), the edge \(uvw \) extends \(P(uv) \).
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- \(|T| \geq \Omega((n/s)^{1/2}) \) and \(T \) has no good triple.
- Suppose \(uvw \in E(G[T]) \).
- Since \(w \not\in V(P(uv)) \), the edge \(uvw \) extends \(P(uv) \).
- So \(s_{vw} > s_{uv} \). Thus \(G[T] \) is acyclic.
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.
- Since $w \not\in V(P(uv))$, the edge uvw extends $P(uv)$.
- So $s_{vw} > s_{uv}$. Thus $G[T]$ is acyclic.
- Lemma: The maximum paths in a $(3, 4)$-tournament with no $C_3^{(3)}$ are pairwise intersecting.
Outline: $f(n, 3, 4) \geq \Omega(n^{1/5})$

- $|T| \geq \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.
- Since $w \notin V(P(uv))$, the edge uvw extends $P(uv)$.
- So $s_{vw} > s_{uv}$. Thus $G[T]$ is acyclic.
- Lemma: The maximum paths in a $(3, 4)$-tournament with no $C_3^{(3)}$ are pairwise intersecting.
- This implies $G[T]$ contains a tight path on $\left\lceil \sqrt{|T|} \right\rceil$ vertices.
Outline: \(f(n, 3, 4) \geq \Omega(n^{1/5}) \)

- \(|T| \geq \Omega((n/s)^{1/2}) \) and \(T \) has no good triple.
- Suppose \(uvw \in E(G[T]) \).
- Since \(w \notin V(P(uv)) \), the edge \(uvw \) extends \(P(uv) \).
- So \(s_{vw} > s_{uv} \). Thus \(G[T] \) is acyclic.
- Lemma: The maximum paths in a \((3, 4)\)-tournament with no \(C_3^{(3)} \) are pairwise intersecting.
- This implies \(G[T] \) contains a tight path on \(\lceil \sqrt{|T|} \rceil \) vertices.
- So \(G \) has a path on at least \(\max\{s, \Omega((n/s)^{1/4})\} \) vertices.
Growing paths in general fully directed r-graphs

Let $n(r) = n(n-1) \cdots (n-(r-1)) = (1 - o(1))n^r$.

So $(1 - 1/r)$ is the density threshold for growing paths in fully directed r-graphs.

With $k! = 1 - 1/r - 1/r!$, (r, k)-tournaments have growing paths.

The even distribution requirement of tournaments forces growing paths at lower densities.
Growing paths in general fully directed r-graphs

Let $n(r) = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1)) n^r$.

Theorem
For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon) n(r)$ such that every path in G has size at most r^3 / ε.
Growing paths in general fully directed r-graphs

Let $n_{(r)} = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1))n^r$.

Theorem

For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{n} - \varepsilon) n_{(r)}$ such that every path in G has size at most r^3/ε.

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{n}) n_{(r)}$ contains a path of size s.
Growing paths in general fully directed r-graphs

Let $n(r) = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1))n^r$.

Theorem

For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n(r)$ such that every path in G has size at most r^3/ε.

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{r})n(r)$ contains a path of size s.

So $(1 - \frac{1}{r})$ is the density threshold for growing paths in fully directed r-graphs.
Growing paths in general fully directed r-graphs

Let $n(r) = n(n-1)\cdots(n-(r-1)) = (1 - o(1))n^r$.

Theorem

For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n(r)$ such that every path in G has size at most r^3/ε.

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{r})n(r)$ contains a path of size s.

So $(1 - \frac{1}{r})$ is the density threshold for growing paths in fully directed r-graphs.

With $\frac{k}{r!} = 1 - \frac{1}{r} - \frac{1}{r!}$, (r, k)-tournaments have growing paths.
Growing paths in general fully directed r-graphs

Let $n(r) = n(n - 1) \cdots (n - (r - 1)) = (1 - o(1))n^r$.

Theorem
For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{r} - \varepsilon)n(r)$ such that every path in G has size at most r^3/ε.

Theorem
For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq (1 - \frac{1}{r})n(r)$ contains a path of size s.

So $(1 - \frac{1}{r})$ is the density threshold for growing paths in fully directed r-graphs.

With $\frac{k}{r!} = 1 - \frac{1}{r} - \frac{1}{r!}$, (r, k)-tournaments have growing paths.

The even distribution requirement of tournaments forces growing paths at lower densities.
Open Problems

- Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.

- Does every $(3, 4)$-tournament have a spanning path?

- Improve the bounds $(1 - c (\ln r)^{3/r}) r! \leq k = a(PSG_r) \leq (1 - 1/r - 2/r!) r!$ on the threshold k for growing paths in (r, k)-tournaments.

- There are polynomial paths in fully directed 3-graphs at the density threshold $2/3$.

- For $r \geq 4$, do fully directed r-graphs at the growing paths density threshold $1 - 1/r$ also have polynomial paths?

- What is the threshold on k for (r, k)-tournaments to have polynomial paths?
Open Problems

- Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- Does every (3, 4)-tournament have a spanning path?
Open Problems

- Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- Does every $(3, 4)$-tournament have a spanning path?
- Improve the bounds
 \[
 (1 - \frac{c(\ln r)^3}{r})r! \leq k = a(PSG_r) \leq (1 - \frac{1}{r} - \frac{2}{r!})r! \]
 on the threshold k for growing paths in (r, k)-tournaments.
Open Problems

- Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- Does every $(3, 4)$-tournament have a spanning path?
- Improve the bounds $\left(1 - \frac{c(\ln r)^3}{r}\right)r! \leq k = a(PSG_r) \leq \left(1 - \frac{1}{r} - \frac{2}{r!}\right)r!$ on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold $2/3$.
Open Problems

- Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- Does every $(3, 4)$-tournament have a spanning path?
- Improve the bounds

 \[
 (1 - \frac{c(\ln r)^3}{r})r! \leq k = a(PSG_r) \leq (1 - \frac{1}{r} - \frac{2}{r!})r!
 \]
 on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold $2/3$.
- For $r \geq 4$, do fully directed r-graphs at the growing paths density threshold $1 - \frac{1}{r}$ also have polynomial paths?
Open Problems

- Improve the bounds $\Omega(n^{1/5}) \leq f(n, 3, 4) \leq n$.
- Does every $(3, 4)$-tournament have a spanning path?
- Improve the bounds
 $$(1 - \frac{c(\ln r)^3}{r})r! \leq k = a(PSG_r) \leq (1 - \frac{1}{r} - \frac{2}{r^2})r!$$
on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold $2/3$.
- For $r \geq 4$, do fully directed r-graphs at the growing paths density threshold $1 - \frac{1}{r}$ also have polynomial paths?
- What is the threshold on k for (r, k)-tournaments to have polynomial paths? spanning paths?

Thank You.