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Fully Directed Hypergraphs

▶ An r -graph is an r -uniform hypergraph.

▶ In a fully directed r -graph, each edge is a tuple (u1, . . . , ur ) of
r distinct vertices.

▶ Example: V (G ) = {a, b, c , d}, E (G ) = {(a, b, d), (d , b, c)}
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Paths and Cycles
▶ The tight path, denoted by P

(r)
n , is given by:

V (P
(r)
n ) = {1, . . . , n}

E (P
(r)
n ) = {(i + 1, . . . , i + r) : 0 ≤ i ≤ n − r}

▶ Example P
(4)
8 :

1 2 3 4 5 6 7 8

(1, 2, 3, 4)(2, 3, 4, 5)(3, 4, 5, 6)(4, 5, 6, 7)(5, 6, 7, 8)

▶ The tight cycle, denoted by C
(r)
n , is given by:

V (C
(r)
n ) = Zn E (C

(r)
n ) = {(i + 1, . . . , i + r) : i ∈ Zn}

▶ Example C
(4)
8 :

0

1
2

3

4

5
6

7

(0, 1, 2, 3)(1, 2, 3, 4)(2, 3, 4, 5)(3, 4, 5, 6)(4, 5, 6, 7)(5, 6, 7, 0)(6, 7, 0, 1)(7, 0, 1, 2)
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The extremal function f (n, r , k)

▶ For 0 ≤ k ≤ r !, a k-orientation of an r -graph H is a fully
directed r -graph G such that for each e ∈ E (H), exactly k of
the r ! orderings of the vertices in e are edges in G .

▶ An (r , k)-tournament is a k-orientation of a complete r -graph.

▶ Note: a (2, 1)-tournament is just an ordinary tournament.

▶ Let f (n, r , k) be the max integer s such that every n-vertex

(r , k)-tournament contains a copy of P
(r)
s .

▶ Every tournament has a spanning path: f (n, 2, 1) = n
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Warmup: f (n, r , r !− 1) = n
▶ Let 2 ≤ r ≤ n and let G be an n-vertex (r , r !− 1)-tournament.

▶ For each set S of r vertices in G , just one ordering of S is
absent in E (G ).

▶ Let u ∈ V (G ) and apply induction to obtain a spanning path
x1 · · · xn−1 in G − u.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

u u

▶ Suppose (u, xi , . . . , xi+r−2) ∈ E (G ) for some i .

▶ Let i be the least such integer.

▶ Note (u, xi−1, . . . , xi+r−3) ̸∈ E (G ).

▶ So (xi−1, u, xi , . . . , xi+r−3) ∈ E (G ).

▶ We may insert u before xi .

▶ If no such i exists, then append u at the end.
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Natural Threshold Questions

▶ Let f (n, r , k) be the max integer s such that every n-vertex

(r , k)-tournament contains a copy of P
(r)
s .

▶ As k increases from 0 to r !, longer paths are forced.
▶ Fix r . What is the min. k such that f (n, r , k):

▶ grows with n?
▶ is polynomial in n?
▶ is linear in n?
▶ equals n?

▶ All but the first are open for general r .
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The Pattern Shift Graph

▶ Tuples (a1, . . . , at) and (b1, . . . , bt) pattern-match if, for all
i , j , we have ai < aj iff bi < bj .

▶ The pattern shift graph, denoted PSGr , is the directed graph
on the permutations of [r ] with u adjacent to v iff the last
r −1 entries in u and the first r −1 entries in v pattern-match.
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▶ Note: {132, 231} is a max. acyclic set in PSG3.
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Growing paths and spanning paths

Theorem
Let k and r be constants, and let a(PSGr ) be the maximum size
of an acyclic set of vertices in PSGr . We have

f (n, r , k) =

{
O(1) if k ≤ a(PSGr )

ω(1) if k > a(PSGr )
.
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▶ Let A be an acyclic set in PSGr of size k .
▶ Construct an (r , k)-tournament G on {1, . . . , n}:

▶ Put (u1, . . . , ur ) ∈ E (G ) iff (u1, . . . , ur ) pattern-matches some
permutation in S .

▶ P
(r)
s ⊆ G implies PSGr [A] has a walk of size s − (r − 1).

▶ A is acyclic, so every walk in PSGr [A] has size at most |A|.
▶ So s − (r − 1) ≤ |A|, giving s ≤ |A|+ r − 1 = k + r − 1.

▶ If k > a(PSGr ) and n ≥ R(r)(n′;
(r !
k

)
), then f (n, r , k) ≥ n′.
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The case r = 3
▶ Recall: a(PSG3) = 2.

▶ So f (n, 3, 2) = O(1) and f (n, 3, 3) = ω(1).
▶ In fact, we get f (n, 3, 2) ≤ 3 and f (n, 3, 3) ≥ Ω(log log n).
▶ Warmup: f (n, 3, 5) = f (n, 3, 6) = n.
▶ Interesting cases: k = 3 and k = 4.

Theorem

Ω

((
log n

log log n

)1/4
)

≤ f (n, 3, 3) ≤ O(log n).

Theorem

f (n, 3, 4) ≥ Ω(n1/5).

span.const. polylog ≥ Ω(n1/5)

0 1 2 3 4 5 6

k
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Outline: f (n, 3, 4) ≥ Ω(n1/5)

▶ Let G be an n-vertex (3, 4)-tournament.

▶ Each triple {u, v ,w} has 4 orderings in E (G ) and omits 2.

▶ Let s be the max. integer such that P
(3)
s ⊆ G .

▶ For each (u, v), let P(uv) be a max. path ending uv .

▶ Let suv = |V (P(uv))|.
▶ Note: if uvw ∈ E (G ) then either w ∈ V (P(uv)) or svw > suv .

▶ Say (u, v ,w) is good if w ∈ V (P(uv)). Say {u, v ,w} is good
if at least one of its orderings is good.

▶ Let m be num. of good triples in G . Note s ≥ m
n2
.

▶ Let T be a max. set of vertices in G not containing a good
triple, and let t = |T |.

▶ deCaen: m ≥ (n3)
(t2)

≥ (n−2)3

3t2
.

▶ sn2 ≥ m ≥ (n−2)3

3t2
and so t ≥ Ω((n/s)1/2).
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G

T u

v

w

5

8

▶ |T | ≥ Ω((n/s)1/2) and T has no good triple.

▶ Suppose uvw ∈ E (G [T ]).

▶ Since w ̸∈ V (P(uv)), the edge uvw extends P(uv).

▶ So svw > suv . Thus G [T ] is acyclic.

▶ Lemma: The maximum paths in a (3, 4)-tournament with no

C
(3)
3 are pairwise intersecting.
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Growing paths in general fully directed r -graphs

▶ Let n(r) = n(n − 1) · · · (n − (r − 1)) = (1− o(1))nr .

Theorem
For each r and each positive ε, for sufficiently large n, there is an
n-vertex fully directed r -graph G with |E (G )| ≥ (1− 1

r − ε)n(r)
such that every path in G has size at most r3/ε.

Theorem
For each r and each s, for all sufficiently large n, every n-vertex
fully directed r -graph G with |E (G )| ≥ (1− 1

r )n(r) contains a path
of size s.

▶ So (1− 1
r ) is the density threshold for growing paths in fully

directed r -graphs.

▶ With k
r ! = 1− 1

r −
1
r ! , (r , k)-tournaments have growing paths.

▶ The even distribution requirement of tournaments forces
growing paths at lower densities.
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Open Problems

▶ Improve the bounds Ω(n1/5) ≤ f (n, 3, 4) ≤ n.

▶ Does every (3, 4)-tournament have a spanning path?

▶ Improve the bounds

(1− c(ln r)3

r )r ! ≤ k = a(PSGr ) ≤ (1− 1
r −

2
r !)r ! on the

threshold k for growing paths in (r , k)-tournaments.

▶ There are polynomial paths in fully directed 3-graphs at the
density threshold 2/3.

▶ For r ≥ 4, do fully directed r -graphs at the growing paths
density threshold 1− 1

r also have polynomial paths?

▶ What is the threshold on k for (r , k)-tournaments to have
polynomial paths? spanning paths?

Thank You.
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