Tight paths in fully directed hypergraphs

Richard C. Devine Kevin G. Milans

West Virginia University
AMS Southeastern Sectional Meeting Spring 2023
Georgia Institute of Technology, Atlanta, GA
March 18, 2023

Fully Directed Hypergraphs

- An r-graph is an r-uniform hypergraph.

Fully Directed Hypergraphs

- An r-graph is an r-uniform hypergraph.
- In a fully directed r-graph, each edge is a tuple $\left(u_{1}, \ldots, u_{r}\right)$ of r distinct vertices.

Fully Directed Hypergraphs

- An r-graph is an r-uniform hypergraph.
- In a fully directed r-graph, each edge is a tuple $\left(u_{1}, \ldots, u_{r}\right)$ of r distinct vertices.
- Example: $V(G)=\{a, b, c, d\}, E(G)=\{(a, b, d),(d, b, c)\}$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{rrrrrr}
\bullet \rightarrow \tag{1,2,3,4}\\
1 & 2 & 3 & 4 & 5 & \dot{6} \\
\hline
\end{array}
$$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
(2,3,4,5)
$$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$(3,4,5,6)$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$(4,5,6,7)$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
(5,6,7,8)
$$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{2} & \dot{3} & \dot{4} & \dot{5} & \dot{6} & \dot{7} & \dot{8}
\end{array}
$$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{2} & \dot{3} & \dot{4} & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{2} & \dot{3} & \dot{4} & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
1 & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
1 & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
1 & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

Paths and Cycles

- The tight path, denoted by $P_{n}^{(r)}$, is given by:

$$
\begin{aligned}
& V\left(P_{n}^{(r)}\right)=\{1, \ldots, n\} \\
& E\left(P_{n}^{(r)}\right)=\{(i+1, \ldots, i+r): 0 \leq i \leq n-r\}
\end{aligned}
$$

- Example $P_{8}^{(4)}$:

$$
\begin{array}{llllllll}
\dot{1} & \dot{0} & \dot{3} & 4 & 5 & \dot{5} & 7 & \dot{8}
\end{array}
$$

- The tight cycle, denoted by $C_{n}^{(r)}$, is given by:

$$
V\left(C_{n}^{(r)}\right)=\mathbb{Z}_{n} \quad E\left(C_{n}^{(r)}\right)=\left\{(i+1, \ldots, i+r): i \in \mathbb{Z}_{n}\right\}
$$

- Example $C_{8}^{(4)}$:

The extremal function $f(n, r, k)$

- For $0 \leq k \leq r$!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the r ! orderings of the vertices in e are edges in G.

The extremal function $f(n, r, k)$

- For $0 \leq k \leq r$!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the r ! orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.

The extremal function $f(n, r, k)$

- For $0 \leq k \leq r$!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the r ! orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a $(2,1)$-tournament is just an ordinary tournament.

The extremal function $f(n, r, k)$

- For $0 \leq k \leq r$!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the r ! orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a $(2,1)$-tournament is just an ordinary tournament.
- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.

The extremal function $f(n, r, k)$

- For $0 \leq k \leq r$!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each $e \in E(H)$, exactly k of the r ! orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a $(2,1)$-tournament is just an ordinary tournament.
- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- Every tournament has a spanning path: $f(n, 2,1)=n$

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.
- So $\left(x_{i-1}, u, x_{i}, \ldots, x_{i+r-3}\right) \in E(G)$.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.
- So $\left(x_{i-1}, u, x_{i}, \ldots, x_{i+r-3}\right) \in E(G)$.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.
- So $\left(x_{i-1}, u, x_{i}, \ldots, x_{i+r-3}\right) \in E(G)$.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.
- So $\left(x_{i-1}, u, x_{i}, \ldots, x_{i+r-3}\right) \in E(G)$.
- We may insert u before x_{i}.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

```
\mp@subsup{\dot{x}}{1}{}
```

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.
- So $\left(x_{i-1}, u, x_{i}, \ldots, x_{i+r-3}\right) \in E(G)$.
- We may insert u before x_{i}.
- If no such i exists, then append u at the end.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.
- So $\left(x_{i-1}, u, x_{i}, \ldots, x_{i+r-3}\right) \in E(G)$.
- We may insert u before x_{i}.
- If no such i exists, then append u at the end.

Warmup: $f(n, r, r!-1)=n$

- Let $2 \leq r \leq n$ and let G be an n-vertex $(r, r!-1)$-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in $E(G)$.
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_{1} \cdots x_{n-1}$ in $G-u$.

- Suppose $\left(u, x_{i}, \ldots, x_{i+r-2}\right) \in E(G)$ for some i.
- Let i be the least such integer.
- Note $\left(u, x_{i-1}, \ldots, x_{i+r-3}\right) \notin E(G)$.
- So $\left(x_{i-1}, u, x_{i}, \ldots, x_{i+r-3}\right) \in E(G)$.
- We may insert u before x_{i}.
- If no such i exists, then append u at the end.

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- As k increases from 0 to r !, longer paths are forced.

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- As k increases from 0 to r !, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- As k increases from 0 to r !, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:
- grows with n ?

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- As k increases from 0 to r !, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:
- grows with n ?
- is polynomial in n ?

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- As k increases from 0 to r !, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:
- grows with n ?
- is polynomial in n ?
- is linear in n ?

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- As k increases from 0 to r !, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:
- grows with n ?
- is polynomial in n ?
- is linear in n ?
- equals n ?

Natural Threshold Questions

- Let $f(n, r, k)$ be the max integer s such that every n-vertex (r, k)-tournament contains a copy of $P_{s}^{(r)}$.
- As k increases from 0 to r !, longer paths are forced.
- Fix r. What is the min. k such that $f(n, r, k)$:
- grows with n ?
- is polynomial in n ?
- is linear in n ?
- equals n ?
- All but the first are open for general r.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of $[r$] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of $[r$] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

$$
\mathrm{PSG}_{3}
$$

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of [r] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of [r] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of [r] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of [r] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of [r] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

The Pattern Shift Graph

- Tuples $\left(a_{1}, \ldots, a_{t}\right)$ and $\left(b_{1}, \ldots, b_{t}\right)$ pattern-match if, for all i, j, we have $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
- The pattern shift graph, denoted PSG_{r}, is the directed graph on the permutations of [r] with u adjacent to v iff the last $r-1$ entries in u and the first $r-1$ entries in v pattern-match.

- Note: $\{132,231\}$ is a max. acyclic set in PSG_{3}.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right) .\end{cases}
$$

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.
- Let A be an acyclic set in PSG_{r} of size k.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.
- Let A be an acyclic set in PSG_{r} of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.
- Let A be an acyclic set in PSG_{r} of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
- Put $\left(u_{1}, \ldots, u_{r}\right) \in E(G)$ iff $\left(u_{1}, \ldots, u_{r}\right)$ pattern-matches some permutation in S.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.
- Let A be an acyclic set in PSG_{r} of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
- Put $\left(u_{1}, \ldots, u_{r}\right) \in E(G)$ iff $\left(u_{1}, \ldots, u_{r}\right)$ pattern-matches some permutation in S.
- $P_{s}^{(r)} \subseteq G$ implies $\operatorname{PSG}_{r}[A]$ has a walk of size $s-(r-1)$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.
- Let A be an acyclic set in PSG_{r} of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
- Put $\left(u_{1}, \ldots, u_{r}\right) \in E(G)$ iff $\left(u_{1}, \ldots, u_{r}\right)$ pattern-matches some permutation in S.
- $P_{s}^{(r)} \subseteq G$ implies $\operatorname{PSG}_{r}[A]$ has a walk of size $s-(r-1)$.
- A is acyclic, so every walk in $\operatorname{PSG}_{r}[A]$ has size at most $|A|$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.
- Let A be an acyclic set in PSG_{r} of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
- Put $\left(u_{1}, \ldots, u_{r}\right) \in E(G)$ iff $\left(u_{1}, \ldots, u_{r}\right)$ pattern-matches some permutation in S.
- $P_{s}^{(r)} \subseteq G$ implies $\operatorname{PSG}_{r}[A]$ has a walk of size $s-(r-1)$.
- A is acyclic, so every walk in $\operatorname{PSG}_{r}[A]$ has size at most $|A|$.
- So $s-(r-1) \leq|A|$, giving $s \leq|A|+r-1=k+r-1$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

- If $k \leq a\left(\mathrm{PSG}_{r}\right)$, then $f(n, r, k) \leq r+k-1$.
- Let A be an acyclic set in PSG_{r} of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
- Put $\left(u_{1}, \ldots, u_{r}\right) \in E(G)$ iff $\left(u_{1}, \ldots, u_{r}\right)$ pattern-matches some permutation in S.
- $P_{s}^{(r)} \subseteq G$ implies $\operatorname{PSG}_{r}[A]$ has a walk of size $s-(r-1)$.
- A is acyclic, so every walk in $\operatorname{PSG}_{r}[A]$ has size at most $|A|$.
- So $s-(r-1) \leq|A|$, giving $s \leq|A|+r-1=k+r-1$.
- If $k>a\left(\mathrm{PSG}_{r}\right)$ and $n \geq R^{(r)}\left(n^{\prime} ;\binom{r!}{k}\right)$, then $f(n, r, k) \geq n^{\prime}$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

- Prop: if $k \geq r!\left(1-\frac{1}{e(2 r-1)}\right)$, then $f(n, r, k)=n$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

- Prop: if $k \geq r!\left(1-\frac{1}{e(2 r-1)}\right)$, then $f(n, r, k)=n$.
$\frac{k}{r!}$

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

- Prop: if $k \geq r!\left(1-\frac{1}{e(2 r-1)}\right)$, then $f(n, r, k)=n$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

- Prop: if $k \geq r!\left(1-\frac{1}{e(2 r-1)}\right)$, then $f(n, r, k)=n$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

- Prop: if $k \geq r!\left(1-\frac{1}{e(2 r-1)}\right)$, then $f(n, r, k)=n$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

- Prop: if $k \geq r!\left(1-\frac{1}{e(2 r-1)}\right)$, then $f(n, r, k)=n$.

Growing paths and spanning paths

Theorem
Let k and r be constants, and let $a\left(\mathrm{PSG}_{r}\right)$ be the maximum size of an acyclic set of vertices in PSG_{r}. We have

$$
f(n, r, k)= \begin{cases}O(1) & \text { if } k \leq a\left(\mathrm{PSG}_{r}\right) \\ \omega(1) & \text { if } k>a\left(\mathrm{PSG}_{r}\right)\end{cases}
$$

Theorem
For $r \geq 3$, there is a constant c such that

$$
r!\left(1-\frac{c(\ln r)^{3}}{r}\right) \leq a\left(\mathrm{PSG}_{r}\right) \leq r!\left(1-\frac{1}{r}-\frac{2}{r!}\right)
$$

- Prop: if $k \geq r!\left(1-\frac{1}{e(2 r-1)}\right)$, then $f(n, r, k)=n$.

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.
- So $f(n, 3,2)=O(1)$ and $f(n, 3,3)=\omega(1)$.

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.
- So $f(n, 3,2)=O(1)$ and $f(n, 3,3)=\omega(1)$.
- In fact, we get $f(n, 3,2) \leq 3$ and $f(n, 3,3) \geq \Omega(\log \log n)$.

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.
- So $f(n, 3,2)=O(1)$ and $f(n, 3,3)=\omega(1)$.
- In fact, we get $f(n, 3,2) \leq 3$ and $f(n, 3,3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3,5)=f(n, 3,6)=n$.

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.
- So $f(n, 3,2)=O(1)$ and $f(n, 3,3)=\omega(1)$.
- In fact, we get $f(n, 3,2) \leq 3$ and $f(n, 3,3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3,5)=f(n, 3,6)=n$.
- Interesting cases: $k=3$ and $k=4$.

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.
- So $f(n, 3,2)=O(1)$ and $f(n, 3,3)=\omega(1)$.
- In fact, we get $f(n, 3,2) \leq 3$ and $f(n, 3,3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3,5)=f(n, 3,6)=n$.
- Interesting cases: $k=3$ and $k=4$.

Theorem

$$
\Omega\left(\left(\frac{\log n}{\log \log n}\right)^{1 / 4}\right) \leq f(n, 3,3) \leq O(\log n) .
$$

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.
- So $f(n, 3,2)=O(1)$ and $f(n, 3,3)=\omega(1)$.
- In fact, we get $f(n, 3,2) \leq 3$ and $f(n, 3,3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3,5)=f(n, 3,6)=n$.
- Interesting cases: $k=3$ and $k=4$.

Theorem

$$
\Omega\left(\left(\frac{\log n}{\log \log n}\right)^{1 / 4}\right) \leq f(n, 3,3) \leq O(\log n) .
$$

Theorem

$$
f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right) .
$$

The case $r=3$

- Recall: $a\left(\mathrm{PSG}_{3}\right)=2$.
- So $f(n, 3,2)=O(1)$ and $f(n, 3,3)=\omega(1)$.
- In fact, we get $f(n, 3,2) \leq 3$ and $f(n, 3,3) \geq \Omega(\log \log n)$.
- Warmup: $f(n, 3,5)=f(n, 3,6)=n$.
- Interesting cases: $k=3$ and $k=4$.

Theorem

$$
\Omega\left(\left(\frac{\log n}{\log \log n}\right)^{1 / 4}\right) \leq f(n, 3,3) \leq O(\log n)
$$

Theorem

$$
f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)
$$

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.
- Let $s_{u v}=|V(P(u v))|$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.
- Let $s_{u v}=|V(P(u v))|$.
- Note: if $u v w \in E(G)$ then either $w \in V(P(u v))$ or $s_{v w}>s_{u v}$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.
- Let $s_{u v}=|V(P(u v))|$.
- Note: if $u v w \in E(G)$ then either $w \in V(P(u v))$ or $s_{v w}>s_{u v}$.
- Say (u, v, w) is good if $w \in V(P(u v))$. Say $\{u, v, w\}$ is good if at least one of its orderings is good.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.
- Let $s_{u v}=|V(P(u v))|$.
- Note: if $u v w \in E(G)$ then either $w \in V(P(u v))$ or $s_{v w}>s_{u v}$.
- Say (u, v, w) is good if $w \in V(P(u v))$. Say $\{u, v, w\}$ is good if at least one of its orderings is good.
- Let m be num. of good triples in G. Note $s \geq \frac{m}{n^{2}}$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.
- Let $s_{u v}=|V(P(u v))|$.
- Note: if $u v w \in E(G)$ then either $w \in V(P(u v))$ or $s_{v w}>s_{u v}$.
- Say (u, v, w) is good if $w \in V(P(u v))$. Say $\{u, v, w\}$ is good if at least one of its orderings is good.
- Let m be num. of good triples in G. Note $s \geq \frac{m}{n^{2}}$.
- Let T be a max. set of vertices in G not containing a good triple, and let $t=|T|$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.
- Let $s_{u v}=|V(P(u v))|$.
- Note: if $u v w \in E(G)$ then either $w \in V(P(u v))$ or $s_{v w}>s_{u v}$.
- Say (u, v, w) is good if $w \in V(P(u v))$. Say $\{u, v, w\}$ is good if at least one of its orderings is good.
- Let m be num. of good triples in G. Note $s \geq \frac{m}{n^{2}}$.
- Let T be a max. set of vertices in G not containing a good triple, and let $t=|T|$.
- deCaen: $m \geq \frac{\binom{n}{3}}{\binom{t}{2}} \geq \frac{(n-2)^{3}}{3 t^{2}}$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- Let G be an n-vertex (3,4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in $E(G)$ and omits 2 .
- Let s be the max. integer such that $P_{s}^{(3)} \subseteq G$.
- For each (u, v), let $P(u v)$ be a max. path ending $u v$.
- Let $s_{u v}=|V(P(u v))|$.
- Note: if $u v w \in E(G)$ then either $w \in V(P(u v))$ or $s_{v w}>s_{u v}$.
- Say (u, v, w) is good if $w \in V(P(u v))$. Say $\{u, v, w\}$ is good if at least one of its orderings is good.
- Let m be num. of good triples in G. Note $s \geq \frac{m}{n^{2}}$.
- Let T be a max. set of vertices in G not containing a good triple, and let $t=|T|$.
- deCaen: $m \geq \frac{\binom{n}{3}}{\binom{t}{2}} \geq \frac{(n-2)^{3}}{3 t^{2}}$.
- $s n^{2} \geq m \geq \frac{(n-2)^{3}}{3 t^{2}}$ and so $t \geq \Omega\left((n / s)^{1 / 2}\right)$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- $|T| \geq \Omega\left((n / s)^{1 / 2}\right)$ and T has no good triple.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- $|T| \geq \Omega\left((n / s)^{1 / 2}\right)$ and T has no good triple.
- Suppose $u v w \in E(G[T])$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- $|T| \geq \Omega\left((n / s)^{1 / 2}\right)$ and T has no good triple.
- Suppose $u v w \in E(G[T])$.
- Since $w \notin V(P(u v))$, the edge $u v w$ extends $P(u v)$.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- $|T| \geq \Omega\left((n / s)^{1 / 2}\right)$ and T has no good triple.
- Suppose $u v w \in E(G[T])$.
- Since $w \notin V(P(u v))$, the edge $u v w$ extends $P(u v)$.
- So $s_{v w}>s_{u v}$. Thus $G[T]$ is acyclic.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- $|T| \geq \Omega\left((n / s)^{1 / 2}\right)$ and T has no good triple.
- Suppose $u v w \in E(G[T])$.
- Since $w \notin V(P(u v))$, the edge $u v w$ extends $P(u v)$.
- So $s_{v w}>s_{u v}$. Thus $G[T]$ is acyclic.
- Lemma: The maximum paths in a (3, 4)-tournament with no $C_{3}^{(3)}$ are pairwise intersecting.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- $|T| \geq \Omega\left((n / s)^{1 / 2}\right)$ and T has no good triple.
- Suppose $u v w \in E(G[T])$.
- Since $w \notin V(P(u v))$, the edge $u v w$ extends $P(u v)$.
- So $s_{v w}>s_{u v}$. Thus $G[T]$ is acyclic.
- Lemma: The maximum paths in a (3, 4)-tournament with no $C_{3}^{(3)}$ are pairwise intersecting.
- This implies $G[T]$ contains a tight path on $\lfloor\sqrt{|T|} \mid$ vertices.

Outline: $f(n, 3,4) \geq \Omega\left(n^{1 / 5}\right)$

- $|T| \geq \Omega\left((n / s)^{1 / 2}\right)$ and T has no good triple.
- Suppose $u v w \in E(G[T])$.
- Since $w \notin V(P(u v))$, the edge $u v w$ extends $P(u v)$.
- So $s_{v w}>s_{u v}$. Thus $G[T]$ is acyclic.
- Lemma: The maximum paths in a (3, 4)-tournament with no $C_{3}^{(3)}$ are pairwise intersecting.
- This implies $G[T]$ contains a tight path on $\lfloor\sqrt{|T|} \mid$ vertices.
- So G has a path on at least $\max \left\{s, \Omega\left((n / s)^{1 / 4}\right)\right\}$ vertices.

Growing paths in general fully directed r-graphs

- Let $n_{(r)}=n(n-1) \cdots(n-(r-1))=(1-o(1)) n^{r}$.

Growing paths in general fully directed r-graphs

- Let $n_{(r)}=n(n-1) \cdots(n-(r-1))=(1-o(1)) n^{r}$.

Theorem
For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}-\varepsilon\right) n_{(r)}$ such that every path in G has size at most r^{3} / ε.

Growing paths in general fully directed r-graphs

- Let $n_{(r)}=n(n-1) \cdots(n-(r-1))=(1-o(1)) n^{r}$.

Theorem

For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}-\varepsilon\right) n_{(r)}$ such that every path in G has size at most r^{3} / ε.

Theorem
For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}\right) n_{(r)}$ contains a path of size s.

Growing paths in general fully directed r-graphs

- Let $n_{(r)}=n(n-1) \cdots(n-(r-1))=(1-o(1)) n^{r}$.

Theorem

For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}-\varepsilon\right) n_{(r)}$ such that every path in G has size at most r^{3} / ε.

Theorem
For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}\right) n_{(r)}$ contains a path of size s.

- So $\left(1-\frac{1}{r}\right)$ is the density threshold for growing paths in fully directed r-graphs.

Growing paths in general fully directed r-graphs

- Let $n_{(r)}=n(n-1) \cdots(n-(r-1))=(1-o(1)) n^{r}$.

Theorem

For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}-\varepsilon\right) n_{(r)}$ such that every path in G has size at most r^{3} / ε.

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}\right) n_{(r)}$ contains a path of size s.

- So $\left(1-\frac{1}{r}\right)$ is the density threshold for growing paths in fully directed r-graphs.
- With $\frac{k}{r!}=1-\frac{1}{r}-\frac{1}{r!},(r, k)$-tournaments have growing paths.

Growing paths in general fully directed r-graphs

- Let $n_{(r)}=n(n-1) \cdots(n-(r-1))=(1-o(1)) n^{r}$.

Theorem

For each r and each positive ε, for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}-\varepsilon\right) n_{(r)}$ such that every path in G has size at most r^{3} / ε.

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \geq\left(1-\frac{1}{r}\right) n_{(r)}$ contains a path of size s.

- So $\left(1-\frac{1}{r}\right)$ is the density threshold for growing paths in fully directed r-graphs.
- With $\frac{k}{r!}=1-\frac{1}{r}-\frac{1}{r!},(r, k)$-tournaments have growing paths.
- The even distribution requirement of tournaments forces growing paths at lower densities.

Open Problems

- Improve the bounds $\Omega\left(n^{1 / 5}\right) \leq f(n, 3,4) \leq n$.

Open Problems

- Improve the bounds $\Omega\left(n^{1 / 5}\right) \leq f(n, 3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?

Open Problems

- Improve the bounds $\Omega\left(n^{1 / 5}\right) \leq f(n, 3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?
- Improve the bounds
$\left(1-\frac{c(\ln r)^{3}}{r}\right) r!\leq k=a\left(\mathrm{PSG}_{r}\right) \leq\left(1-\frac{1}{r}-\frac{2}{r!}\right) r!$ on the threshold k for growing paths in (r, k)-tournaments.

Open Problems

- Improve the bounds $\Omega\left(n^{1 / 5}\right) \leq f(n, 3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?
- Improve the bounds
$\left(1-\frac{c(\ln r)^{3}}{r}\right) r!\leq k=a\left(\mathrm{PSG}_{r}\right) \leq\left(1-\frac{1}{r}-\frac{2}{r!}\right) r!$ on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold 2/3.

Open Problems

- Improve the bounds $\Omega\left(n^{1 / 5}\right) \leq f(n, 3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?
- Improve the bounds
$\left(1-\frac{c(\ln r)^{3}}{r}\right) r!\leq k=a\left(\mathrm{PSG}_{r}\right) \leq\left(1-\frac{1}{r}-\frac{2}{r!}\right) r!$ on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold $2 / 3$.
- For $r \geq 4$, do fully directed r-graphs at the growing paths density threshold $1-\frac{1}{r}$ also have polynomial paths?

Open Problems

- Improve the bounds $\Omega\left(n^{1 / 5}\right) \leq f(n, 3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?
- Improve the bounds
$\left(1-\frac{c(\ln r)^{3}}{r}\right) r!\leq k=a\left(\mathrm{PSG}_{r}\right) \leq\left(1-\frac{1}{r}-\frac{2}{r!}\right) r!$ on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold $2 / 3$.
- For $r \geq 4$, do fully directed r-graphs at the growing paths density threshold $1-\frac{1}{r}$ also have polynomial paths?
- What is the threshold on k for (r, k)-tournaments to have polynomial paths? spanning paths?

Thank You.

