Tight paths in fully directed hypergraphs

Richard C. Devine Kevin G. Milans

West Virginia University

AMS Southeastern Sectional Meeting Spring 2023 Georgia Institute of Technology, Atlanta, GA March 18, 2023

Fully Directed Hypergraphs

An *r*-graph is an *r*-uniform hypergraph.

Fully Directed Hypergraphs

- An *r*-graph is an *r*-uniform hypergraph.
- In a fully directed *r*-graph, each edge is a tuple (u₁,..., u_r) of *r* distinct vertices.

Fully Directed Hypergraphs

- An *r*-graph is an *r*-uniform hypergraph.
- In a fully directed *r*-graph, each edge is a tuple (u₁,..., u_r) of *r* distinct vertices.
- Example: $V(G) = \{a, b, c, d\}, E(G) = \{(a, b, d), (d, b, c)\}$

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$
$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$
mpla $P^{(4)}$.

Example $P_8^{(4)}$:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$
• Example $P_8^{(4)}$:
$$\underbrace{\xrightarrow{n}{1}}_{2} \underbrace{\xrightarrow{n}{3}}_{3} \underbrace{\xrightarrow{n}{4}}_{5} \underbrace{\xrightarrow{n}{6}}_{6} \underbrace{\xrightarrow{n}{7}}_{8} \underbrace{(1, 2, 3, 4)}_{6}$$

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$
• Example $P_8^{(4)}$:
1 2 3 4 5 6 7 8 (2, 3, 4, 5)

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$
• Example $P_8^{(4)}$:
1 2 3 4 5 6 7 8 (3, 4, 5, 6)

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:
 $\begin{array}{c} & & & & \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$
(5, 6, 7, 8)

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$
$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$
$$\blacktriangleright \text{ Example } P_8^{(4)}:$$

1 2 3 4 5 6 7 8

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

• The tight cycle, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1,\ldots,i+r): i \in \mathbb{Z}_n\}$$

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

• Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

► The tight cycle, denoted by $C_n^{(r)}$, is given by: $V(C_n^{(r)}) = \mathbb{Z}_n$ $E(C_n^{(r)}) = \{(i+1,\ldots,i+r): i \in \mathbb{Z}_n\}$

• Example $C_8^{(4)}$:

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:

► The tight cycle, denoted by $C_n^{(r)}$, is given by: $V(C_n^{(r)}) = \mathbb{Z}_n$ $E(C_n^{(r)}) = \{(i+1,...,i+r): i \in \mathbb{Z}_n\}$

• Example $C_8^{(4)}$:

(0, 1, 2, 3)

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

• The tight cycle, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n$$
 $E(C_n^{(r)}) = \{(i+1,...,i+r): i \in \mathbb{Z}_n\}$
Example $C_8^{(4)}$:

(1, 2, 3, 4)

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

• Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8 The tight cycle, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n \quad E(C_n^{(r)}) = \{(i+1,...,i+r): i \in \mathbb{Z}_n\}$$

Example $C_8^{(4)}$:

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

• Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

• The tight cycle, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n$$
 $E(C_n^{(r)}) = \{(i+1,...,i+r): i \in \mathbb{Z}_n\}$
Example $C_8^{(4)}$:

(3, 4, 5, 6)

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

• The tight cycle, denoted by $C_n^{(r)}$, is given by:

$$V(C_n^{(r)}) = \mathbb{Z}_n$$
 $E(C_n^{(r)}) = \{(i+1,...,i+r): i \in \mathbb{Z}_n\}$
• Example $C_8^{(4)}$:

(4, 5, 6, 7)

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:

The tight cycle, denoted by C_n^(r), is given by:
 V(C_n^(r)) = Z_n E(C_n^(r)) = {(i + 1,...,i + r): i ∈ Z_n}
 Example C₈⁽⁴⁾:

$$3$$
, 2 , 1
 4 , 0 , $(5, 6, 7, 0)$
 5 , 6 , 7 , 0

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:

1 2 3 4 5 6 7 8

► The tight cycle, denoted by $C_n^{(r)}$, is given by: $V(C_n^{(r)}) = \mathbb{Z}_n$ $E(C_n^{(r)}) = \{(i+1,...,i+r): i \in \mathbb{Z}_n\}$

• Example $C_8^{(4)}$:

(6, 7, 0, 1)

• The tight path, denoted by $P_n^{(r)}$, is given by:

$$V(P_n^{(r)}) = \{1, \dots, n\}$$

$$E(P_n^{(r)}) = \{(i+1, \dots, i+r): 0 \le i \le n-r\}$$

Example $P_8^{(4)}$:

► The tight cycle, denoted by $C_n^{(r)}$, is given by: $V(C_n^{(r)}) = \mathbb{Z}_n$ $E(C_n^{(r)}) = \{(i+1,\ldots,i+r): i \in \mathbb{Z}_n\}$

• Example $C_8^{(4)}$:

(7, 0, 1, 2)

For 0 ≤ k ≤ r!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each e ∈ E(H), exactly k of the r! orderings of the vertices in e are edges in G.

For 0 ≤ k ≤ r!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each e ∈ E(H), exactly k of the r! orderings of the vertices in e are edges in G.

An (r, k)-tournament is a k-orientation of a complete r-graph.

- For 0 ≤ k ≤ r!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each e ∈ E(H), exactly k of the r! orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a (2,1)-tournament is just an ordinary tournament.

- For 0 ≤ k ≤ r!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each e ∈ E(H), exactly k of the r! orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a (2,1)-tournament is just an ordinary tournament.
- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).

- For 0 ≤ k ≤ r!, a k-orientation of an r-graph H is a fully directed r-graph G such that for each e ∈ E(H), exactly k of the r! orderings of the vertices in e are edges in G.
- An (r, k)-tournament is a k-orientation of a complete r-graph.
- Note: a (2,1)-tournament is just an ordinary tournament.
- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- Every tournament has a spanning path: f(n, 2, 1) = n

• Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! - 1)-tournament.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- ► For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃ x₁₄ x₁₅

Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let u ∈ V(G) and apply induction to obtain a spanning path x₁ ··· x_{n-1} in G − u.

Let i be the least such integer.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

$$U$$

$$\vdots$$

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9 \quad x_{10} \quad x_{11} \quad x_{12} \quad x_{13} \quad x_{14} \quad x_{15}$$

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.
- Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let u ∈ V(G) and apply induction to obtain a spanning path x₁ ··· x_{n-1} in G − u.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.
- Let i be the least such integer.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let u ∈ V(G) and apply induction to obtain a spanning path x₁ ··· x_{n-1} in G − u.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.
- Let i be the least such integer.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.
- Let i be the least such integer.
- Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
- So $(x_{i-1}, u, x_i, ..., x_{i+r-3}) \in E(G)$.
- We may insert u before x_i.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.
- Let i be the least such integer.
- Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
- So $(x_{i-1}, u, x_i, ..., x_{i+r-3}) \in E(G)$.
- We may insert u before x_i .
- ▶ If no such *i* exists, then append *u* at the end.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.
- Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
- So $(x_{i-1}, u, x_i, ..., x_{i+r-3}) \in E(G)$.
- We may insert u before x_i.
- ▶ If no such *i* exists, then append *u* at the end.

- Let $2 \le r \le n$ and let G be an *n*-vertex (r, r! 1)-tournament.
- For each set S of r vertices in G, just one ordering of S is absent in E(G).
- Let $u \in V(G)$ and apply induction to obtain a spanning path $x_1 \cdots x_{n-1}$ in G u.

- Suppose $(u, x_i, \ldots, x_{i+r-2}) \in E(G)$ for some *i*.
- Let i be the least such integer.
- ▶ Note $(u, x_{i-1}, \ldots, x_{i+r-3}) \notin E(G)$.
- So $(x_{i-1}, u, x_i, ..., x_{i+r-3}) \in E(G)$.
- We may insert u before x_i.
- ▶ If no such *i* exists, then append *u* at the end.

Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).

- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- ► As k increases from 0 to r!, longer paths are forced.

- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- ▶ As k increases from 0 to r!, longer paths are forced.
- Fix r. What is the min. k such that f(n, r, k):

- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- ▶ As k increases from 0 to r!, longer paths are forced.
- Fix r. What is the min. k such that f(n, r, k):

grows with n?

- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- ▶ As k increases from 0 to r!, longer paths are forced.
- Fix r. What is the min. k such that f(n, r, k):
 - ▶ grows with *n*?
 - ▶ is polynomial in *n*?

- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- ▶ As k increases from 0 to r!, longer paths are forced.
- Fix r. What is the min. k such that f(n, r, k):
 - grows with n?
 - ▶ is polynomial in *n*?
 - ▶ is linear in *n*?

- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- ▶ As k increases from 0 to r!, longer paths are forced.
- Fix r. What is the min. k such that f(n, r, k):
 - grows with n?
 - ▶ is polynomial in *n*?
 - is linear in n?
 - equals n?

- Let f(n, r, k) be the max integer s such that every n-vertex (r, k)-tournament contains a copy of P_s^(r).
- ▶ As k increases from 0 to r!, longer paths are forced.
- Fix r. What is the min. k such that f(n, r, k):
 - grows with n?
 - is polynomial in n?
 - is linear in n?
 - equals n?
- ► All but the first are open for general *r*.

Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- ► The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

 PSG_3

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- ► The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- ► The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- ► The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- ► The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

- Tuples (a₁,..., a_t) and (b₁,..., b_t) pattern-match if, for all i, j, we have a_i < a_j iff b_i < b_j.
- ► The pattern shift graph, denoted PSG_r, is the directed graph on the permutations of [r] with u adjacent to v iff the last r-1 entries in u and the first r-1 entries in v pattern-match.

▶ Note: {132,231} is a max. acyclic set in PSG₃.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}.$$

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}$$

If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.

Theorem

► If

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\text{PSG}_r) \\ \omega(1) & \text{if } k > a(\text{PSG}_r) \end{cases}$$
$$k \leq a(\text{PSG}_r), \text{ then } f(n, r, k) \leq r + k - 1.$$

• Let A be an acyclic set in PSG_r of size k.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

- Let A be an acyclic set in PSG_r of size k.
- ▶ Construct an (*r*, *k*)-tournament *G* on {1,..., *n*}:

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

• If $k \leq a(\text{PSG}_r)$, then $f(n, r, k) \leq r + k - 1$.

• Let A be an acyclic set in PSG_r of size k.

- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put (u₁,..., u_r) ∈ E(G) iff (u₁,..., u_r) pattern-matches some permutation in S.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

- Let A be an acyclic set in PSG_r of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put (u₁,..., u_r) ∈ E(G) iff (u₁,..., u_r) pattern-matches some permutation in S.
- ▶ $P_s^{(r)} \subseteq G$ implies $\operatorname{PSG}_r[A]$ has a walk of size s (r 1).

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

- Let A be an acyclic set in PSG_r of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put (u₁,..., u_r) ∈ E(G) iff (u₁,..., u_r) pattern-matches some permutation in S.
- ▶ $P_s^{(r)} \subseteq G$ implies $\operatorname{PSG}_r[A]$ has a walk of size s (r 1).
- A is acyclic, so every walk in $PSG_r[A]$ has size at most |A|.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

- Let A be an acyclic set in PSG_r of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put (u₁,..., u_r) ∈ E(G) iff (u₁,..., u_r) pattern-matches some permutation in S.
- ▶ $P_s^{(r)} \subseteq G$ implies $\operatorname{PSG}_r[A]$ has a walk of size s (r 1).
- A is acyclic, so every walk in $PSG_r[A]$ has size at most |A|.
- ▶ So $s (r 1) \le |A|$, giving $s \le |A| + r 1 = k + r 1$.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n, r, k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

- Let A be an acyclic set in PSG_r of size k.
- Construct an (r, k)-tournament G on $\{1, \ldots, n\}$:
 - Put (u₁,..., u_r) ∈ E(G) iff (u₁,..., u_r) pattern-matches some permutation in S.
- ▶ $P_s^{(r)} \subseteq G$ implies $\operatorname{PSG}_r[A]$ has a walk of size s (r 1).
- A is acyclic, so every walk in $PSG_r[A]$ has size at most |A|.
- ▶ So $s (r 1) \le |A|$, giving $s \le |A| + r 1 = k + r 1$.
- ▶ If $k > a(PSG_r)$ and $n \ge R^{(r)}(n'; \binom{r!}{k})$, then $f(n, r, k) \ge n'$.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight)\leq a(\mathrm{PSG}_r)\leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight).$$

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight)\leq a(\mathrm{PSG}_r)\leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight).$$

• Prop: if $k \ge r!(1 - \frac{1}{e(2r-1)})$, then f(n, r, k) = n.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight) \leq a(\mathrm{PSG}_r) \leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight)$$

• Prop: if
$$k \ge r!(1 - \frac{1}{e(2r-1)})$$
, then $f(n, r, k) = n$.

 $\frac{k}{r!}$

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight) \leq a(\mathrm{PSG}_r) \leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight)$$

▶ Prop: if
$$k \ge r!(1 - \frac{1}{e(2r-1)})$$
, then $f(n, r, k) = n$.

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight) \leq a(\mathrm{PSG}_r) \leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight)$$

• Prop: if
$$k \ge r!(1 - \frac{1}{e(2r-1)})$$
, then $f(n, r, k) = n$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight) \leq a(\mathrm{PSG}_r) \leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight)$$

• Prop: if
$$k \ge r!(1 - \frac{1}{e(2r-1)})$$
, then $f(n, r, k) = n$.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight)\leq a(\mathrm{PSG}_r)\leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight)$$

▶ Prop: if $k \ge r!(1 - \frac{1}{e(2r-1)})$, then f(n, r, k) = n.

Growing paths and spanning paths

Theorem

Let k and r be constants, and let $a(PSG_r)$ be the maximum size of an acyclic set of vertices in PSG_r . We have

$$f(n,r,k) = \begin{cases} O(1) & \text{if } k \leq a(\mathrm{PSG}_r) \\ \omega(1) & \text{if } k > a(\mathrm{PSG}_r) \end{cases}$$

Theorem

For $r \geq 3$, there is a constant c such that

$$r!\left(1-rac{c(\ln r)^3}{r}
ight)\leq a(\mathrm{PSG}_r)\leq r!\left(1-rac{1}{r}-rac{2}{r!}
ight)$$

• Prop: if $k \ge r!(1 - \frac{1}{e(2r-1)})$, then f(n, r, k) = n.

▶ Recall: $a(PSG_3) = 2$.

$$\blacktriangleright \text{ Recall: } a(\text{PSG}_3) = 2.$$

• So
$$f(n,3,2) = O(1)$$
 and $f(n,3,3) = \omega(1)$.

• Recall:
$$a(PSG_3) = 2$$
.

• So
$$f(n,3,2) = O(1)$$
 and $f(n,3,3) = \omega(1)$.

► In fact, we get $f(n,3,2) \leq 3$ and $f(n,3,3) \geq \Omega(\log \log n)$.

• Recall:
$$a(PSG_3) = 2$$
.

- So f(n,3,2) = O(1) and $f(n,3,3) = \omega(1)$.
- ln fact, we get $f(n,3,2) \leq 3$ and $f(n,3,3) \geq \Omega(\log \log n)$.
- Warmup: f(n, 3, 5) = f(n, 3, 6) = n.

- ▶ Recall: $a(PSG_3) = 2$.
- So f(n,3,2) = O(1) and $f(n,3,3) = \omega(1)$.
- ln fact, we get $f(n,3,2) \leq 3$ and $f(n,3,3) \geq \Omega(\log \log n)$.
- Warmup: f(n, 3, 5) = f(n, 3, 6) = n.
- Interesting cases: k = 3 and k = 4.

• Recall:
$$a(PSG_3) = 2$$
.

- So f(n,3,2) = O(1) and $f(n,3,3) = \omega(1)$.
- ► In fact, we get $f(n,3,2) \leq 3$ and $f(n,3,3) \geq \Omega(\log \log n)$.
- Warmup: f(n, 3, 5) = f(n, 3, 6) = n.
- Interesting cases: k = 3 and k = 4.

Theorem

$$\Omega\left(\left(\frac{\log n}{\log\log n}\right)^{1/4}\right) \leq f(n,3,3) \leq O(\log n).$$

• Recall:
$$a(PSG_3) = 2$$
.

- So f(n,3,2) = O(1) and $f(n,3,3) = \omega(1)$.
- ln fact, we get $f(n,3,2) \leq 3$ and $f(n,3,3) \geq \Omega(\log \log n)$.
- Warmup: f(n, 3, 5) = f(n, 3, 6) = n.
- Interesting cases: k = 3 and k = 4.

Theorem

$$\Omega\left(\left(\frac{\log n}{\log\log n}\right)^{1/4}\right) \leq f(n,3,3) \leq O(\log n).$$

Theorem

 $f(n,3,4)\geq \Omega(n^{1/5}).$

• Recall:
$$a(PSG_3) = 2$$
.

- So f(n,3,2) = O(1) and $f(n,3,3) = \omega(1)$.
- ► In fact, we get $f(n,3,2) \leq 3$ and $f(n,3,3) \geq \Omega(\log \log n)$.
- Warmup: f(n, 3, 5) = f(n, 3, 6) = n.
- Interesting cases: k = 3 and k = 4.

Theorem

$$\Omega\left(\left(\frac{\log n}{\log\log n}\right)^{1/4}\right) \leq f(n,3,3) \leq O(\log n).$$

Theorem

$$f(n,3,4)\geq \Omega(n^{1/5}).$$

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- Say (u, v, w) is good if w ∈ V(P(uv)). Say {u, v, w} is good if at least one of its orderings is good.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- Say (u, v, w) is good if w ∈ V(P(uv)). Say {u, v, w} is good if at least one of its orderings is good.
- Let *m* be num. of good triples in *G*. Note $s \ge \frac{m}{n^2}$.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- Say (u, v, w) is good if w ∈ V(P(uv)). Say {u, v, w} is good if at least one of its orderings is good.
- Let *m* be num. of good triples in *G*. Note $s \ge \frac{m}{n^2}$.
- Let T be a max. set of vertices in G not containing a good triple, and let t = |T|.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- Say (u, v, w) is good if w ∈ V(P(uv)). Say {u, v, w} is good if at least one of its orderings is good.
- Let *m* be num. of good triples in *G*. Note $s \ge \frac{m}{n^2}$.
- Let T be a max. set of vertices in G not containing a good triple, and let t = |T|.

• deCaen:
$$m \ge \frac{\binom{n}{3}}{\binom{t}{2}} \ge \frac{(n-2)^3}{3t^2}$$
.

- Let G be an *n*-vertex (3, 4)-tournament.
- Each triple $\{u, v, w\}$ has 4 orderings in E(G) and omits 2.
- Let s be the max. integer such that $P_s^{(3)} \subseteq G$.
- For each (u, v), let P(uv) be a max. path ending uv.
- Let $s_{uv} = |V(P(uv))|$.
- ▶ Note: if $uvw \in E(G)$ then either $w \in V(P(uv))$ or $s_{vw} > s_{uv}$.
- Say (u, v, w) is good if w ∈ V(P(uv)). Say {u, v, w} is good if at least one of its orderings is good.
- Let *m* be num. of good triples in *G*. Note $s \ge \frac{m}{n^2}$.
- Let T be a max. set of vertices in G not containing a good triple, and let t = |T|.

• deCaen:
$$m \ge \frac{\binom{n}{3}}{\binom{t}{2}} \ge \frac{(n-2)^3}{3t^2}$$
.
• $sn^2 \ge m \ge \frac{(n-2)^3}{3t^2}$ and so $t \ge \Omega((n/s)^{1/2})$

• $|T| \ge \Omega((n/s)^{1/2})$ and T has no good triple.

|T| ≥ Ω((n/s)^{1/2}) and T has no good triple.
 Suppose uvw ∈ E(G[T]).

- $|T| \ge \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.
- Since $w \notin V(P(uv))$, the edge *uvw* extends P(uv).

- $|T| \ge \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.
- Since $w \notin V(P(uv))$, the edge uvw extends P(uv).
- So $s_{vw} > s_{uv}$. Thus G[T] is acyclic.

- $|T| \ge \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.
- Since $w \notin V(P(uv))$, the edge *uvw* extends P(uv).
- So $s_{vw} > s_{uv}$. Thus G[T] is acyclic.
- Lemma: The maximum paths in a (3, 4)-tournament with no $C_3^{(3)}$ are pairwise intersecting.

- $|T| \ge \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.
- Since $w \notin V(P(uv))$, the edge uvw extends P(uv).
- So $s_{vw} > s_{uv}$. Thus G[T] is acyclic.
- Lemma: The maximum paths in a (3, 4)-tournament with no $C_3^{(3)}$ are pairwise intersecting.
- This implies G[T] contains a tight path on $\left|\sqrt{|T|}\right|$ vertices.

- $|T| \ge \Omega((n/s)^{1/2})$ and T has no good triple.
- Suppose $uvw \in E(G[T])$.
- Since $w \notin V(P(uv))$, the edge uvw extends P(uv).
- So $s_{vw} > s_{uv}$. Thus G[T] is acyclic.
- Lemma: The maximum paths in a (3, 4)-tournament with no $C_3^{(3)}$ are pairwise intersecting.
- ▶ This implies G[T] contains a tight path on $\left|\sqrt{|T|}\right|$ vertices.
- So G has a path on at least max $\{s, \Omega((n/s)^{1/4})\}$ vertices.

• Let
$$n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$$
.

• Let
$$n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$$
.

Theorem

For each r and each positive ε , for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

• Let
$$n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$$
.

Theorem

For each r and each positive ε , for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r})n_{(r)}$ contains a path of size s.

• Let
$$n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$$
.

Theorem

For each r and each positive ε , for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r})n_{(r)}$ contains a path of size s.

So (1 − ¹/_r) is the density threshold for growing paths in fully directed *r*-graphs.

• Let
$$n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$$
.

Theorem

For each r and each positive ε , for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r})n_{(r)}$ contains a path of size s.

So $(1 - \frac{1}{r})$ is the density threshold for growing paths in fully directed *r*-graphs.

• With $\frac{k}{r!} = 1 - \frac{1}{r} - \frac{1}{r!}$, (r, k)-tournaments have growing paths.

• Let
$$n_{(r)} = n(n-1)\cdots(n-(r-1)) = (1-o(1))n^r$$
.

Theorem

For each r and each positive ε , for sufficiently large n, there is an n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r} - \varepsilon)n_{(r)}$ such that every path in G has size at most r^3/ε .

Theorem

For each r and each s, for all sufficiently large n, every n-vertex fully directed r-graph G with $|E(G)| \ge (1 - \frac{1}{r})n_{(r)}$ contains a path of size s.

- So (1 − ¹/_r) is the density threshold for growing paths in fully directed *r*-graphs.
- With $\frac{k}{r!} = 1 \frac{1}{r} \frac{1}{r!}$, (r, k)-tournaments have growing paths.
- The even distribution requirement of tournaments forces growing paths at lower densities.

• Improve the bounds $\Omega(n^{1/5}) \leq f(n,3,4) \leq n$.

- Improve the bounds $\Omega(n^{1/5}) \leq f(n,3,4) \leq n$.
- Does every (3, 4)-tournament have a spanning path?

- Improve the bounds $\Omega(n^{1/5}) \leq f(n,3,4) \leq n$.
- Does every (3, 4)-tournament have a spanning path?
- ▶ Improve the bounds $(1 - \frac{c(\ln r)^3}{r})r! \le k = a(PSG_r) \le (1 - \frac{1}{r} - \frac{2}{r!})r!$ on the threshold k for growing paths in (r, k)-tournaments.

- Improve the bounds $\Omega(n^{1/5}) \leq f(n,3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?
- ► Improve the bounds $(1 - \frac{c(\ln r)^3}{r})r! \le k = a(PSG_r) \le (1 - \frac{1}{r} - \frac{2}{r!})r!$ on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold 2/3.

- Improve the bounds $\Omega(n^{1/5}) \leq f(n,3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?
- ▶ Improve the bounds $(1 - \frac{c(\ln r)^3}{r})r! \le k = a(PSG_r) \le (1 - \frac{1}{r} - \frac{2}{r!})r!$ on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold 2/3.
- For r ≥ 4, do fully directed r-graphs at the growing paths density threshold 1 ¹/_r also have polynomial paths?

- Improve the bounds $\Omega(n^{1/5}) \leq f(n,3,4) \leq n$.
- Does every (3,4)-tournament have a spanning path?
- ▶ Improve the bounds $(1 - \frac{c(\ln r)^3}{r})r! \le k = a(PSG_r) \le (1 - \frac{1}{r} - \frac{2}{r!})r!$ on the threshold k for growing paths in (r, k)-tournaments.
- There are polynomial paths in fully directed 3-graphs at the density threshold 2/3.
- For r ≥ 4, do fully directed r-graphs at the growing paths density threshold 1 ¹/_r also have polynomial paths?
- What is the threshold on k for (r, k)-tournaments to have polynomial paths? spanning paths?

Thank You.