Online coloring blowups of a known graph

Kevin G. Milans (milans@math.wvu.edu)
Michael C. Wigal (mcwigal@mix.wvu.edu)

West Virginia University

AMS Spring Central Sectional Meeting
Indiana University
Bloomington, IN
April 2, 2017
Consider a game between Algorithm and Spoiler.
A motivating problem

Consider a game between Algorithm and Spoiler.

Spoiler selects a point \(x \in \mathbb{R} \). Each open unit interval can have at most \(w \) selected points; we call \(w \) the width of the game.
A motivating problem

Consider a game between Algorithm and Spoiler.

Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.

Algorithm assigns x a color. Colors must be distinct on open unit intervals.
A motivating problem

Consider a game between Algorithm and Spoiler.

- **Spoiler** selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the **width** of the game.

- **Algorithm** assigns x a color. Colors must be distinct on open unit intervals.
Consider a game between Algorithm and Spoiler.

Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.

Algorithm assigns x a color. Colors must be distinct on open unit intervals.
A motivating problem

Consider a game between Algorithm and Spoiler.

Spoiler selects a point \(x \in \mathbb{R} \). Each open unit interval can have at most \(w \) selected points; we call \(w \) the width of the game.

Algorithm assigns \(x \) a color. Colors must be distinct on open unit intervals.
A motivating problem

Consider a game between Algorithm and Spoiler.

- Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.
A motivating problem

Consider a game between Algorithm and Spoiler.

- Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.

- Algorithm assigns x a color. Colors must be distinct on open unit intervals.
A motivating problem

Consider a game between Algorithm and Spoiler.

- **Spoiler** selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.

- **Algorithm** assigns x a color. Colors must be distinct on open unit intervals.
Consider a game between Algorithm and Spoiler.

Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.

Algorithm assigns x a color. Colors must be distinct on open unit intervals.
Consider a game between Algorithm and Spoiler.

Spoiler selects a point \(x \in \mathbb{R} \). Each open unit interval can have at most \(w \) selected points; we call \(w \) the width of the game.

Algorithm assigns \(x \) a color. Colors must be distinct on open unit intervals.
A motivating problem

Consider a game between Algorithm and Spoiler.

Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.

Algorithm assigns x a color. Colors must be distinct on open unit intervals.
A motivating problem

Consider a game between Algorithm and Spoiler.

Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the width of the game.

Algorithm assigns x a color. Colors must be distinct on open unit intervals.
Consider a game between Algorithm and Spoiler.

Spoiler selects a point $x \in \mathbb{R}$. Each open unit interval can have at most w selected points; we call w the **width** of the game.

Algorithm assigns x a color. Colors must be distinct on open unit intervals.

Open: How many colors does Algorithm need?
A motivating problem

Consider a game between Algorithm and Spoiler.

Spoiler selects a point \(x \in \mathbb{R} \). Each open unit interval can have at most \(w \) selected points; we call \(w \) the width of the game.

Algorithm assigns \(x \) a color. Colors must be distinct on open unit intervals.

Open: How many colors does Algorithm need?

The greedy algorithm uses at most \(2w - 1 \) colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least $\left\lfloor \frac{3}{2} w \right\rfloor$ colors.
A motivating problem

\[
\begin{array}{c}
\text{T} \\
\text{k} \\
\text{1}
\end{array}
\]

−1 \hspace{2cm} 0 \hspace{2cm} 1

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2} w \right\rfloor \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least \(\lceil \frac{3}{2} w \rceil \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2}w \right\rfloor \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least \(\lfloor \frac{3}{2} w \rfloor \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2}w \right\rfloor\) colors.

- Spoiler plays \(k\) times at \(-1\), forcing \(k\) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lceil \frac{3}{2} w \right\rceil \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2} w \right\rfloor \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least $\left\lceil \frac{3}{2} w \right\rceil$ colors.

- Spoiler plays k times at -1, forcing k “old” colors.
- Spoiler plays in $[0, 1]$ so that new colors are left of old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2} w \right\rfloor\) colors.

- Spoiler plays \(k\) times at \(-1\), forcing \(k\) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2} w \right\rfloor\) colors.

- Spoiler plays \(k\) times at \(-1\), forcing \(k\) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least $\left\lceil \frac{3}{2}w \right\rceil$ colors.

- Spoiler plays k times at -1, forcing k “old” colors.
- Spoiler plays in $[0, 1]$ so that new colors are left of old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2} w \right\rfloor \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
- After at most \(2k \) rounds, Spoiler forces at least \(k \) new colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lfloor \frac{3}{2} w \right\rfloor\) colors.

- Spoiler plays \(k\) times at \(-1\), forcing \(k\) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
- After at most \(2k\) rounds, Spoiler forces at least \(k\) new colors.
- Spoiler plays \(k\) times at a point in \([-1, 0]\) that conflicts with new colors in \([0, 1]\) but is far away from old colors.
Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least $\lceil \frac{3}{2} w \rceil$ colors.

- Spoiler plays k times at -1, forcing k “old” colors.
- Spoiler plays in $[0, 1]$ so that new colors are left of old colors.
- After at most $2k$ rounds, Spoiler forces at least k new colors.
- Spoiler plays k times at a point in $[-1, 0]$ that conflicts with new colors in $[0, 1]$ but is far away from old colors.
A motivating problem

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)
There is a strategy for Spoiler that forces Algorithm to use at least \(\lfloor \frac{3}{2} w \rfloor \) colors.

- Spoiler plays \(k \) times at \(-1\), forcing \(k \) “old” colors.
- Spoiler plays in \([0, 1]\) so that new colors are left of old colors.
- After at most \(2k \) rounds, Spoiler forces at least \(k \) new colors.
- Spoiler plays \(k \) times at a point in \([-1, 0]\) that conflicts with new colors in \([0, 1]\) but is far away from old colors.
A motivating problem

There is a strategy for Spoiler that forces Algorithm to use at least \(\left\lceil \frac{3}{2} w \right\rceil \) colors.

- This forces \(3k \) colors in a game of width \(2k \).
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:

 ▶ Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 ▶ Algorithm assigns x a color.
 ▶ The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
 ▶ Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
 ▶ Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.
 ▶ The value of the game, denoted $f(G;w)$, is the number of colors needed by an optimal strategy for Algorithm.
 ▶ Let G be the graph on \mathbb{R} with $uv \in E(G)$ if and only if $|u-v| < 1$.
 ▶ $\left\lfloor \frac{3}{2}w \right\rfloor \leq f(G;w) \leq 2w - 1$.
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.

- The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.

- The value of the game, denoted $f(G; w)$, is the number of colors needed by an optimal strategy for Algorithm.

- Let G be the graph on \mathbb{R} with $uv \in E(G)$ if and only if $|u - v| < 1$.

- $\lfloor \frac{3}{2}w \rfloor \leq f(G; w) \leq 2w - 1$.
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.

- The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.

- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.

- The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.

- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.

- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.

- The value of the game, denoted $f(G; w)$, is the number of colors needed by an optimal strategy for Algorithm.
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.
- The value of the game, denoted $f(G; w)$, is the number of colors needed by an optimal strategy for Algorithm.
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.
- The value of the game, denoted $f(G; w)$, is the number of colors needed by an optimal strategy for Algorithm.
- Let G be the graph on \mathbb{R} with $uv \in E(G)$ if and only if $|u - v| < 1$.

\[\left\lfloor \frac{3}{2} w \right\rfloor \leq f(G; w) \leq 2w - 1. \]
A generalization to graphs

- For a graph G, the G-coloring game of width w is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.
- The value of the game, denoted $f(G; w)$, is the number of colors needed by an optimal strategy for Algorithm.
- Let G be the graph on \mathbb{R} with $uv \in E(G)$ if and only if $|u - v| < 1$.
- $\left\lfloor \frac{3}{2}w \right\rfloor \leq f(G; w) \leq 2w - 1$.
A graph G is **online-perfect** if $f(G; w) = w$.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition
Every bipartite graph is online-perfect.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition
Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition
Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition
Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

Choose a linear ordering on a set of w colors.

Tokens played at the left part are assigned colors greedily in order.

Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

Choose a linear ordering on a set of w colors.

Tokens played at the left part are assigned colors greedily in order.

Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

▶ A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

▶ Choose a linear ordering on a set of w colors.

▶ Tokens played at the left part are assigned colors greedily in order.

▶ Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

- A graph G is **online-perfect** if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

- A graph G is \textit{online-perfect} if $f(G; w) = w$.

Proposition
Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition
Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
Bipartite graphs

- A graph G is online-perfect if $f(G; w) = w$.

Proposition

Every bipartite graph is online-perfect.

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
- A conflict would imply the token graph has a clique on more than w vertices.
Twins

Vertices \(u \) and \(u' \) are **twins** in \(G \) if they have the same neighborhood in \(G - \{u, u'\} \).
Vertices u and u' are twins in G if they have the same neighborhood in $G - \{u, u'\}$.

Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.
Twins

- Vertices u and u' are twins in G if they have the same neighborhood in $G - \{u, u'\}$.
- Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.
- Given $u \in V(G)$, we may clone u to produce a new graph G' with an additional vertex u' that is a twin of G.
Twins

- Vertices u and u' are **twins** in G if they have the same neighborhood in $G - \{u, u'\}$.
- Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.
- Given $u \in V(G)$, we may **clone** u to produce a new graph G' with an additional vertex u' that is a twin of G.

![Diagram of twin vertices with shared neighborhood]
Twins

- Vertices u and u' are **twins** in G if they have the same neighborhood in $G - \{u, u'\}$.
- Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.
- Given $u \in V(G)$, we may **clone** u to produce a new graph G' with an additional vertex u' that is a twin of G.
- Fact: a graph G is P_4-free if and only if G is obtainable from a single vertex by cloning.
Proposition

If G' is obtained from G by cloning u, then $f(G'; w) = f(G; w)$.
Proposition

If G' is obtained from G by cloning u, then $f(G'; w) = f(G; w)$.

- $f(G; w) \leq f(G'; w)$: clear since G' has an induced copy of G.

Corollary

If G is obtainable from a bipartite graph by cloning, then G is online-perfect.
Twins

\[f(G; w) \leq f(G'; w) \]: clear since \(G' \) has an induced copy of \(G \).

\[f(G'; w) \leq f(G; w) \]: adapt an optimal strategy for \(G \).
Proposition

If G' is obtained from G by cloning u, then $f(G'; w) = f(G; w)$.

- $f(G; w) \leq f(G'; w)$: clear since G' has an induced copy of G.
- $f(G'; w) \leq f(G; w)$: adapt an optimal strategy for G.

Corollary

If G is obtainable from a bipartite graph by cloning, then G is online-perfect.
Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.
Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2.$
Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:
 - C_n for odd n at least 5
 - C_5^+
 - P_5^2
 - The bull

\[C_n \text{ for odd } n \text{ at least } 5 \]
Characterization of online-perfect graphs

Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:
 \begin{align*}
 C_n & \text{ for odd } n \text{ at least } 5 \\
 C_5^+ & \\
 P_5^2 & \\
 \text{The bull} &
 \end{align*}
4. G is obtainable from a bipartite graph by cloning vertices.
Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:
 - C_n for odd n at least 5
 - C_5^+
 - P_5^2
 - The bull
4. G is obtainable from a bipartite graph by cloning vertices.

▶ $(1) \rightarrow (2)$: clear
Characterization of online-perfect graphs

Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:
 - C_n for odd n at least 5
 - C_5^+
 - P_5^2
 - The bull
4. G is obtainable from a bipartite graph by cloning vertices.

- (1) \rightarrow (2): clear
- (2) \rightarrow (3): Spoiler Lemma
Characterization of online-perfect graphs

Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:

 C_n for odd n at least 5
 C_5^+
 P_5^2
 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

- (1) \rightarrow (2): clear
- (2) \rightarrow (3): Spoiler Lemma
- (3) \rightarrow (4): roughly a page of structural graph theory.
Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:
 - C_n for odd n at least 5
 - C_5^+
 - P_5^2
 - The bull
4. G is obtainable from a bipartite graph by cloning vertices.

- $(1) \rightarrow (2)$: clear
- $(2) \rightarrow (3)$: Spoiler Lemma
- $(3) \rightarrow (4)$: roughly a page of structural graph theory.
- $(4) \rightarrow (1)$: previous corollary
Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:
 \[C_n \text{ for odd } n \text{ at least } 5 \]
 \[C_5^+ \]
 \[P_5^2 \]
 \[\text{The bull} \]
4. G is obtainable from a bipartite graph by cloning vertices.

Cor: P_4-free graphs \subset online-perfect graphs \subset perfect graphs
Characterization of online-perfect graphs

Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. $f(G; 2) = 2$.
3. G does not have an induced copy of any of the following:
 - C_n for odd n at least 5
 - C_5^+
 - P_5^2
 - The bull

4. G is obtainable from a bipartite graph by cloning vertices.

- Cor: P_4-free graphs $⊊$ online-perfect graphs $⊊$ perfect graphs
- 4’: G is online-perfect if and only if it the result of replacing each vertex in a bipartite graph with a P_4-free graph.
A Spoiler strategy

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[U \cup \{x, y\}]$ is bipartite, and
2. For each i, there is a common neighbor z_i of u_i and u_i+1 such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2})w$.

\[u_1 \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \ u_t \]
A Spoiler strategy

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
A Spoiler strategy

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and

2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.
A Spoiler strategy

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and

2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2t})w$.

![Diagram]

$u_1 \quad \cdots \quad \cdots \quad u_t$

z_i
Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and

2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2t})w$.

Corollary

If n is odd and $n \geq 5$ and w is even, then $f(C_n; w) \geq \frac{n}{n-1}w$.

C_n
Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2t})w$.

Corollary

If n is odd and $n \geq 5$ and w is even, then $f(C_n; w) \geq \frac{n}{n-1}w$.

- Apply Spoiler Lemma with $t = (n-1)/2$.
Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2t})w$.

Corollary

If $G \in \{C^+_5, P^2_5\}$ and w is even, then $f(G; w) \geq \frac{5}{4}w$.
Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and

2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2t})w$.

Corollary

If $G \in \{C_5^+, P_5^2\}$ and w is even, then $f(G; w) \geq \frac{5}{4}w$.

Apply Spoiler Lemma with $t = 2$.
Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and

2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2t})w$.

Corollary

If G is the bull graph and w is even, then $f(G; w) \geq \frac{7}{6}w$.
Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

1. There are vertices x and y such that u_1xyu_t is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
2. For each i, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \geq (1 + \frac{1}{2t})w$.

Corollary

If G is the bull graph and w is even, then $f(G; w) \geq \frac{7}{6}w$.

- Apply Spoiler Lemma with $t = 3$.

![Graph Diagram]
Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq \left(\frac{1}{2} \chi_f(G) + o(1) \right) w$.
Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If \(G \) has a \((p, q)\)-coloring, then \(f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil \). In particular, \(f(G; w) \leq \left(\frac{1}{2} \chi_f(G) + o(1) \right) w \).

Corollary
If \(n \) is odd, then \(f(C_n; w) \leq \left(\frac{n}{n-1} + o(1) \right) w \).
Proposition (Fractional Coloring Strategy)
If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq \left(\frac{1}{2} \chi_f(G) + o(1) \right)w$.

Corollary
If n is odd, then $f(C_n; w) \leq \left(\frac{n}{n-1} + o(1) \right)w$.

- Apply Prop. with $\chi_f(C_n) = \frac{2n}{n-1}$.

C_n
Proposition (Fractional Coloring Strategy)
If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq \left(\frac{1}{2} \chi_f(G) + o(1)\right)w$.

Corollary
If $G \in \{C_5^+, P_5^2\}$, then $f(G; w) \leq \left(\frac{3}{2} + o(1)\right)w$.
Proposition (Fractional Coloring Strategy)
If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq (\frac{1}{2} \chi_f(G) + o(1))w$.

Corollary
If $G \in \{C_5^+, P_5^2\}$, then $f(G; w) \leq (\frac{3}{2} + o(1))w$.

- Apply Prop. with $\chi_f(G) = \chi(G) = 3$.
Proposition (Fractional Coloring Strategy)
If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq (\frac{1}{2} \chi_f(G) + o(1))w$.

Corollary
If G is the bull graph and w is even, then $f(G; w) \leq (\frac{3}{2} + o(1))w$.
Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq \left(\frac{1}{2} \chi_f(G) + o(1) \right)w$.

Corollary
If G is the bull graph and w is even, then $f(G; w) \leq \left(\frac{3}{2} + o(1) \right)w$.

- Apply Prop. with $\chi_f(G) = \chi(G) = 3$.
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C_5^+
- P_5^2
- The bull

Open Problems

Determine the asymptotics of $f(C_n^+; w)$, $f(P_5^2; w)$, $f(G; w)$.

Thank You.
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

\[C_n \text{ for odd } n \geq 5 \quad \quad C_5^+ \quad \quad P_5^2 \quad \quad \text{The bull} \]

- For odd \(n \) and \(n \geq 5 \), we have \(f(C_n; w) = \left(\frac{n}{n-1} + o(1) \right)w \).
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C_5^+
- P_5^2
- The bull

For odd n and $n \geq 5$, we have $f(C_n; w) = \left(\frac{n}{n-1} + o(1) \right)w$.

$(\frac{5}{4} - o(1))w \leq f(C_5^+; w) \leq (\frac{3}{2} + o(1))w.$
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C_5^+
- P_5^2
- The bull

For odd n and $n \geq 5$, we have $f(C_n; w) = \left(\frac{n}{n-1} + o(1) \right)w$.

$(\frac{5}{4} - o(1))w \leq f(C_5^+; w) \leq (\frac{3}{2} + o(1))w$.

Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w$.
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C_5^+
- P_5^2
- The bull

- For odd n and $n \geq 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.
- $(\frac{5}{4} - o(1))w \leq f(C_5^+; w) \leq (\frac{3}{2} + o(1))w$.
- Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w$.
- For the bull B: $(\frac{7}{6} - o(1))w \leq f(B; w) \leq (\frac{3}{2} + o(1))w$.
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C_5^+
- P_5^2
- The bull

- For odd n and $n \geq 5$, we have $f(C_n; w) = \left(\frac{n}{n-1} + o(1)\right)w$.
- $(\frac{5}{4} - o(1))w \leq f(C_5^+; w) \leq (\frac{3}{2} + o(1))w$.
- Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w$.
- For the bull B: $(\frac{7}{6} - o(1))w \leq f(B; w) \leq (\frac{3}{2} + o(1))w$.

Open Problems

Determine the asymptotics of $f(C_5^+; w)$,
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C_5^+
- P_5^2
- The bull

- For odd n and $n \geq 5$, we have $f(C_n; w) = \left(\frac{n}{n-1} + o(1)\right)w.$
- $(\frac{5}{4} - o(1))w \leq f(C_5^+; w) \leq (\frac{3}{2} + o(1))w.$
- Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w.$
- For the bull B: $(\frac{7}{6} - o(1))w \leq f(B; w) \leq (\frac{3}{2} + o(1))w.$

Open Problems

Determine the asymptotics of $f(C_5^+; w)$, $f(B; w)$,
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C^+_5
- P^2_5
- The bull

- For odd n and $n \geq 5$, we have $f(C_n; w) = \left(\frac{n}{n+1} + o(1)\right)w$.
- $(\frac{5}{4} - o(1))w \leq f(C^+_5; w) \leq (\frac{3}{2} + o(1))w$.
- Thm: $f(P^2_5; w) = (\frac{5}{4} + o(1))w$.
- For the bull B: $(\frac{7}{6} - o(1))w \leq f(B; w) \leq (\frac{3}{2} + o(1))w$.

Open Problems

Determine the asymptotics of $f(C^+_5; w)$, $f(B; w)$, $f(G; w)$.
Summary

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- C_n for odd n at least 5
- C^+_5
- P^2_5
- The bull

For odd n and $n \geq 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.

For the bull B: $(\frac{7}{6} - o(1))w \leq f(B; w) \leq (\frac{3}{2} + o(1))w$.

Open Problems

Determine the asymptotics of $f(C^+_5; w)$, $f(B; w)$, $f(G; w)$.

Thank You.