Turán and Ramsey Results for Boolean Algebras

Kevin G. Milans (milans@math.wvu.edu)
Joint with L. Lu and J. T. Johnston

West Virginia University

AMS Spring Central Section Meeting
Iowa State University
28 April 2013
Boolean Algebras

- Let \([n] = \{1, \ldots, n\}\).
Boolean Algebras

- Let \([n] = \{1, \ldots, n\}\).
- The \(n\)-dimensional Boolean lattice is the containment order on \(2^{[n]}\).

- The \(n\)-dimensional Boolean lattice is the containment order on \(2^{[n]}\).
Boolean Algebras

- Let \([n] = \{1, \ldots, n\}\).
- The \(n\)-dimensional Boolean lattice is the containment order on \(2^{[n]}\).

Definition

- Given disjoint sets \(X_0, X_1, \ldots, X_d\), with \(X_i \neq \emptyset\) for \(i \geq 1\),
Boolean Algebras

- Let $[n] = \{1, \ldots, n\}$.
- The n-dimensional Boolean lattice is the containment order on $2^{[n]}$.

Definition

- Given disjoint sets X_0, X_1, \ldots, X_d, with $X_i \neq \emptyset$ for $i \geq 1$, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X_0 with 0 or more members of $\{X_1, \ldots, X_d\}$.

Such a family of 2^d sets forms a copy of B^d.

A family is B^d-free if it does not contain a copy of B^d.

Boolean Algebras

- Let \([n] = \{1, \ldots, n\}\).
- The \(n\)-dimensional Boolean lattice is the containment order on \(2^{[n]}\).

Definition

- Given disjoint sets \(X_0, X_1, \ldots, X_d\), with \(X_i \neq \emptyset\) for \(i \geq 1\), the generated \(d\)-dimensional Boolean algebra is the family of all sets formed by the union of \(X_0\) with 0 or more members of \(\{X_1, \ldots, X_d\}\).
- Such a family of \(2^d\) sets forms a copy of \(B_d\).
Let $[n] = \{1, \ldots, n\}$.

The n-dimensional Boolean lattice is the containment order on $2^{[n]}$.

Definition

Given disjoint sets X_0, X_1, \ldots, X_d, with $X_i \neq \emptyset$ for $i \geq 1$, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X_0 with 0 or more members of $\{X_1, \ldots, X_d\}$.

Such a family of 2^d sets forms a copy of \mathcal{B}_d.

A family is \mathcal{B}_d-free if it does not contain a copy of \mathcal{B}_d.
Turán Problem

What is the largest size of a \mathcal{B}_d-free subfamily of $2^{[n]}$?

Prior Work

Theorem $b(n, d) \leq 50 \cdot n - \frac{1}{2}d \cdot 2^n$.
Turán Problem

- What is the largest size of a B_d-free subfamily of $2^{[n]}$?
- Let $b(n, d) = \max \{|F| : F \subseteq 2^{[n]} \text{ and } F \text{ is } B_d \text{-free}\}$.

Prior Work

Theorem

$b(n, d) \leq 50 \cdot n - \frac{1}{2}d \cdot 2^n$.
Turán Problem

- What is the largest size of a \mathcal{B}_d-free subfamily of $2^{[n]}$?
- Let $b(n, d) = \max \{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free}\}$.

Prior Work

- [Sperner] $b(n, 1) = \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$
Turán Problem

- What is the largest size of a B_d-free subfamily of $2^{[n]}$?
- Let $b(n, d) = \max \{|F| : F \subseteq 2^{[n]} \text{ and } F \text{ is } B_d\text{-free}\}$.

Prior Work

- [Sperner] $b(n, 1) = \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$
- [Erdős–Kleitman 1971] For some constants c_1, c_2 and n sufficiently large

$$c_1 \cdot n^{-1/4} \cdot 2^n \leq b(n, 2) \leq c_2 \cdot n^{-1/4} \cdot 2^n.$$
Turán Problem

What is the largest size of a B_d-free subfamily of $2^{[n]}$?

Let $b(n, d) = \max \{|F| : F \subseteq 2^{[n]} \text{ and } F \text{ is } B_d\text{-free}\}$.

Prior Work

[Gunderson–Rödl–Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-\frac{d}{2d+1-2}\left(1-o(1)\right)} \cdot 2^n \leq b(n, d) \leq c_d \cdot n^{-\frac{1}{2^d}} \cdot 2^n.$$
Turán Problem

- What is the largest size of a \mathcal{B}_d-free subfamily of $2^{[n]}$?
- Let $b(n, d) = \max \{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free}\}$.

Prior Work

- [Gunderson–Rödl–Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-\frac{d}{2d+1-2(1-o(1))}} \cdot 2^n \leq b(n, d) \leq c_d \cdot n^{-\frac{1}{2^d}} \cdot 2^n.$$

- Here, $c_d = (10d)^d(1 + o(1))$.

Turán Problem

▶ What is the largest size of a B_d-free subfamily of 2^n?
▶ Let $b(n, d) = \max \{|F| : F \subseteq 2^n \text{ and } F \text{ is } B_d\text{-free}\}$.

Prior Work

▶ [Gunderson–Rödl–Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-\frac{d}{2d+1-2(1-o(1))}} \cdot 2^n \leq b(n, d) \leq c_d \cdot n^{-\frac{1}{2d}} \cdot 2^n.$$

▶ Here, $c_d = (10d)^d(1+o(1))$.

Theorem

$$b(n, d) \leq 50 \cdot n^{-\frac{1}{2d}} \cdot 2^n.$$
A useful sequence of functions

Definition

- Let \(\alpha_0(n) = 0 \).
A useful sequence of functions

Definition

- Let \(\alpha_0(n) = 0 \).
- For \(d \geq 1 \), define
 \[
 \alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{1}{4}}.
 \]
A useful sequence of functions

Definition

- Let $\alpha_0(n) = 0$.
- For $d \geq 1$, define $\alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{1}{4}}$.

Facts

- For $d \geq 1$, the bounds $(2n)^{1 - \frac{2}{2^d}} \leq \alpha_d(n) \leq (4n)^{1 - \frac{2}{2^d}}$ hold.
A useful sequence of functions

Definition

- Let $\alpha_0(n) = 0$.
- For $d \geq 1$, define $\alpha_d(n) = \frac{1}{2} + \sqrt{2n \alpha_{d-1}(n)} + \frac{1}{4}$.

Facts

- For $d \geq 1$, the bounds $(2n)^{1-\frac{2}{2d}} \leq \alpha_d(n) \leq (4n)^{1-\frac{2}{2d}}$ hold.
- For fixed d, we have $\alpha_d(n) = (1 + o(1))(2n)^{1-\frac{2}{2d}}$.
A useful sequence of functions

Definition

- Let $\alpha_0(n) = 0$.
- For $d \geq 1$, define $\alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{1}{4}}$.

Facts

- For $d \geq 1$, the bounds $(2n)^{1 - \frac{2}{2^d}} \leq \alpha_d(n) \leq (4n)^{1 - \frac{2}{2^d}}$ hold.
- For fixed d, we have $\alpha_d(n) = (1 + o(1))(2n)^{1 - \frac{2}{2^d}}$.
- For $d \geq 1$, we have $\left(\frac{\alpha_d(n)}{2}\right)/n = \alpha_{d-1}(n)$.
Szemerédi’s Cube Lemma

- Given x_0, x_1, \ldots, x_d with $x_0 \geq 0$ and $x_i \geq 1$ for $i \geq 1$, the generated affine d-cube is the set of all integers obtained by adding x_0 to the sum of 0 or more members of \{x_1, \ldots, x_d\}.
Szemerédi’s Cube Lemma

- Given \(x_0, x_1, \ldots, x_d \) with \(x_0 \geq 0 \) and \(x_i \geq 1 \) for \(i \geq 1 \), the generated affine \(d \)-cube is the set of all integers obtained by adding \(x_0 \) to the sum of 0 or more members of \(\{ x_1, \ldots, x_d \} \).
Szemerédi’s Cube Lemma

Given x_0, x_1, \ldots, x_d with $x_0 \geq 0$ and $x_i \geq 1$ for $i \geq 1$, the generated affine d-cube is the set of all integers obtained by adding x_0 to the sum of 0 or more members of $\{x_1, \ldots, x_d\}$.

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.
Szemerédi’s Cube Lemma

- Given x_0, x_1, \ldots, x_d with $x_0 \geq 0$ and $x_i \geq 1$ for $i \geq 1$, the generated affine d-cube is the set of all integers obtained by adding x_0 to the sum of 0 or more members of $\{x_1, \ldots, x_d\}$.

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
Szemerédi’s Cube Lemma

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
Szemerédi’s Cube Lemma

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
Szemerédi’s Cube Lemma

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.

Szemerédi’s Cube Lemma

Lemma (Szemerédi 1969)
If \(A \subseteq [0, n] \) and \(|A| > \alpha_d(n) \), then \(A \) contains an affine \(d \)-cube.

Proof.

- By induction on \(d \); case \(d = 0 \) is easy. Let \(d \geq 1 \) and \(A \subseteq [0, n] \) with \(|A| > \alpha_d(n) \).
- For each \(k \in [n] \), let \(A_k = \{a \in A: a + k \in A\} \).
- \(\sum_{k=1}^{n} |A_k| = \left(\frac{|A|}{2} \right) \).
Szemerédi’s Cube Lemma

Lemma (Szemerédi 1969)
If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = \binom{|A|}{2}$. Find k with $|A_k| \geq \binom{|A|}{2}/n > \alpha_{d-1}(n)$.
Szemerédi’s Cube Lemma

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = \binom{|A|}{2}$. Find k with $|A_k| \geq \binom{|A|}{2}/n > \alpha_{d-1}(n)$.
- Induction: A_k has an affine cube generated by x_0, \ldots, x_{d-1}.
Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = \binom{|A|}{2}$. Find k with $|A_k| \geq \binom{|A|}{2}/n > \alpha_{d-1}(n)$.
- Induction: A_k has an affine cube generated by x_0, \ldots, x_{d-1}.
Lemma (Szemerédi 1969)

If \(A \subseteq [0, n] \) and \(|A| > \alpha_d(n) \), then \(A \) contains an affine \(d \)-cube.

Proof.

- By induction on \(d \); case \(d = 0 \) is easy. Let \(d \geq 1 \) and \(A \subseteq [0, n] \) with \(|A| > \alpha_d(n) \).
- For each \(k \in [n] \), let \(A_k = \{a \in A: a + k \in A\} \).
- \(\sum_{k=1}^n |A_k| = \binom{|A|}{2} \). Find \(k \) with \(|A_k| \geq \binom{|A|}{2}/n > \alpha_{d-1}(n) \).
- Induction: \(A_k \) has an affine cube generated by \(x_0, \ldots, x_{d-1} \).
- \(A \) has an affine cube generated by \(x_0, \ldots, x_d \) with \(x_d = k \).
Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

- By induction on d; case $d = 0$ is easy. Let $d \geq 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- For each $k \in [n]$, let $A_k = \{a \in A: a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = \left(\frac{|A|}{2}\right)$. Find k with $|A_k| \geq \left(\frac{|A|}{2}\right)/n > \alpha_{d-1}(n)$.
- Induction: A_k has an affine cube generated by x_0, \ldots, x_{d-1}.
- A has an affine cube generated by x_0, \ldots, x_d with $x_d = k$.
Szemerédi’s Cube Lemma

Lemma (Szemerédi 1969)
If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- Using $\alpha_d(n) \leq (4n)^{1-\frac{2}{2d}} < 4n^{1-\frac{2}{2d}}$, we obtain:

Corollary
If $A \subseteq [0, n]$ and $|A| \geq 4n^{1-\frac{2}{2d}}$, then A contains an affine d-cube.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}. The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$. Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n+1$.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$.

Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.
Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}. The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$. Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$. Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.

$\mathcal{F} \subseteq 2^{[n]}$ means \mathcal{F} is a subset of the powerset of $\{1, 2, \ldots, n\}$. A full chain is a sequence of elements from $[n]$ that are all in \mathcal{F}. The expectation $E[X]$ calculates the average number of full chains that meet \mathcal{F}. The Lubell function $h_n(\mathcal{F})$ quantifies this measure.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$.

Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n+1$.
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$.

Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.

The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $h_{n}(\mathcal{F})$, is $E[X].$
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

- The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$.

- Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
The Lubell Function

Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

- The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $\mathbb{E}[X]$.

- Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.
Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$. The Lubell function of \mathcal{F} is a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.

The Lubell Function

$[n]$

\emptyset
The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.
- $\mathbb{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{n/|A|}$

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $\mathbb{E}[X]$. Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n+1$.
The Lubell Function

- Given \(\mathcal{F} \subseteq 2^{[n]} \), let \(X \) be the number of times a random full chain meets \(\mathcal{F} \).
- \(\mathbb{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}} \)
- The **Lubell function** of \(\mathcal{F} \), denoted \(h_n(\mathcal{F}) \), is \(\mathbb{E}[X] \).
Given $\mathcal{F} \subseteq 2^{[n]}$, let X be the number of times a random full chain meets \mathcal{F}.

- $E[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$

The Lubell function of \mathcal{F}, denoted $h_n(\mathcal{F})$, is $E[X]$.

Think of $h_n(\mathcal{F})$ as a measure of the size of \mathcal{F}, with $0 \leq h_n(\mathcal{F}) \leq n + 1$.

The Lubell Function
The Second Moment

- $\binom{X}{2}$ also gives useful information.
The Second Moment

- J_2 also gives useful information.
- For each ordered pair (A, B) of distinct elements in \mathcal{F} with $A \subsetneq B$, let $Y_{A,B}$ be the indicator r.v. for the full chain containing A and B.

\[E[J_2] = \sum_{A,B} E[Y_{A,B}] = \sum_{A,B} 1^{(n|A|, |B|−|A|, n−|B|)} \]

where \mathcal{F}_S is the set of all $A \in \mathcal{F}$ that are disjoint from S with $A \cup S \in \mathcal{F}$.

\[\begin{array}{c}
\text{[n]} \\
\text{∅}
\end{array} \]

\[B \]

\[A \]
The Second Moment

- \(\binom{X}{2} \) also gives useful information.
- For each ordered pair \((A, B)\) of distinct elements in \(\mathcal{F}\) with \(A \subsetneq B\), let \(Y_{A,B}\) be the indicator r.v. for the full chain containing \(A\) and \(B\).

\[
\mathbb{E}[\binom{X}{2}] = \sum_{A,B} \mathbb{E}[Y_{A,B}]
\]
The Second Moment

- $\binom{X}{2}$ also gives useful information.
- For each ordered pair (A, B) of distinct elements in \mathcal{F} with $A \subsetneq B$, let $Y_{A,B}$ be the indicator r.v. for the full chain containing A and B.

\[
E[\binom{X}{2}] = \sum_{A,B} E[Y_{A,B}]
\]
\[
= \sum_{A,B} \frac{1}{\binom{n}{|A|, |B| - |A|, n - |B|}}
\]
The Second Moment

- \(\binom{X}{2} \) also gives useful information.
- For each ordered pair \((A, B)\) of distinct elements in \(\mathcal{F}\) with \(A \subsetneq B\), let \(Y_{A,B}\) be the indicator r.v. for the full chain containing \(A\) and \(B\).

\[
E[(X^2)] = \sum_{A,B} E[Y_{A,B}]
\]

\[
= \sum_{A,B} \frac{1}{\binom{n}{|A|,|B|-|A|,n-|B|}}
\]

\[
= \sum_{k=1}^{n} \binom{n}{k} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S),
\]
The Second Moment

- \(\binom{X}{2} \) also gives useful information.
- For each ordered pair \((A, B)\) of distinct elements in \(\mathcal{F}\) with \(A \subseteq B\), let \(Y_{A,B}\) be the indicator r.v. for the full chain containing \(A\) and \(B\).

\[
\mathbf{E}[\binom{X}{2}] = \sum_{A,B} \mathbf{E}[Y_{A,B}]
\]

\[
= \sum_{A,B} \frac{1}{\binom{n}{|A|,|B|-|A|,n-|B|}}
\]

\[
= \sum_{k=1}^{n} \binom{n}{k} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S),
\]

where \(\mathcal{F}_S\) is the set of all \(A \in \mathcal{F}\) that are disjoint from \(S\) with \(A \cup S \in \mathcal{F}\).
Extension of Szemerédi’s Cube Lemma

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.
Extension of Szemerédi’s Cube Lemma

Theorem
If \(F \subseteq 2^{[n]} \) and \(h_n(F) > \alpha_d(n) \), then \(F \) contains a copy of \(B_d \).

Corollary (Szemerédi’s Cube Lemma)
If \(A \subseteq [0, n] \) and \(|A| > \alpha_d(n) \), then \(A \) contains an affine \(d \)-cube.
Extension of Szemerédi’s Cube Lemma

Theorem
If $F \subseteq 2^{[n]}$ and $h_n(F) > \alpha_d(n)$, then F contains a copy of B_d.

Corollary (Szemerédi’s Cube Lemma)
If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

Let $F = \bigcup_{k \in A} \binom{[n]}{k}$.
Extension of Szemerédi’s Cube Lemma

Theorem
If \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a copy of \(B_d \).

Corollary (Szemerédi’s Cube Lemma)
If \(A \subseteq [0, n] \) and \(|A| > \alpha_d(n) \), then \(A \) contains an affine \(d \)-cube.

Proof.

\(\blacktriangleright \) Let \(\mathcal{F} = \bigcup_{k \in A} ([n]) \).

\(\blacktriangleright \) Note \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) = |A| > \alpha_d(n) \).
Extension of Szemerédi’s Cube Lemma

Theorem
If \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a copy of \(B_d \).

Corollary (Szemerédi’s Cube Lemma)
If \(A \subseteq [0, n] \) and \(|A| > \alpha_d(n) \), then \(A \) contains an affine \(d \)-cube.

Proof.

- Let \(\mathcal{F} = \bigcup_{k \in A} ([n]) \).
- Note \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) = |A| > \alpha_d(n) \).
- By the theorem: \(\mathcal{F} \) contains a copy of \(B_d \) generated by disjoint sets \(X_0, X_1, \ldots, X_d \).
Extension of Szemerédi’s Cube Lemma

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

Corollary (Szemerédi’s Cube Lemma)
If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

1. Let $\mathcal{F} = \bigcup_{k \in A} ([n])_k$.
2. Note $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) = |A| > \alpha_d(n)$.
3. By the theorem: \mathcal{F} contains a copy of B_d generated by disjoint sets X_0, X_1, \ldots, X_d.
4. Hence A contains an affine d-cube generated by x_0, \ldots, x_d with $x_i = |X_i|$.
Extension of Szemerédi’s Cube Lemma

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d.

Corollary (Szemerédi’s Cube Lemma)
If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Question

- Is it true that among all \mathcal{B}_d-free families $\mathcal{F} \subseteq 2^{[n]}$ that maximize $h_n(\mathcal{F})$, at least one is the union of level sets?
Extension of Szemerédi’s Cube Lemma

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

Corollary (Szemerédi’s Cube Lemma)
If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Question
- Is it true that among all B_d-free families $\mathcal{F} \subseteq 2^{[n]}$ that maximize $h_n(\mathcal{F})$, at least one is the union of level sets?
- If so, then both extremal problems are equivalent.
Extension of Szemerédi’s Cube Lemma

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

Corollary (Szemerédi’s Cube Lemma)
If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Question

- Is it true that among all B_d-free families $\mathcal{F} \subseteq 2^{[n]}$ that maximize $h_n(\mathcal{F})$, at least one is the union of level sets?
- If so, then both extremal problems are equivalent.
- Sperner’s Theorem: yes for $d = 1$.
Extension of Szemerédi’s Cube Lemma

Theorem
If \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a copy of \(\mathcal{B}_d \).

Corollary (Szemerédi’s Cube Lemma)
If \(A \subseteq [0, n] \) and \(|A| > \alpha_d(n) \), then \(A \) contains an affine \(d \)-cube.

Question

- Is it true that among all \(\mathcal{B}_d \)-free families \(\mathcal{F} \subseteq 2^{[n]} \) that maximize \(h_n(\mathcal{F}) \), at least one is the union of level sets?
- If so, then both extremal problems are equivalent.
- Sperner’s Theorem: yes for \(d = 1 \).
- Open for \(d \geq 2 \).
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

- By induction on d. Case $d = 0$: trivial.
Extension of Szemerédi’s Cube Lemma: Proof

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

- By induction on d. Case $d = 0$: trivial.
- Let X be the number of times a random full chain meets \mathcal{F}.
Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d.

- By induction on d. Case $d = 0$: trivial.
- Let X be the number of times a random full chain meets \mathcal{F}.
- $E[X] = h_n(\mathcal{F}) > \alpha_d(n)$.

\[\emptyset \subseteq [n]\]
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

- By induction on d. Case $d = 0$: trivial.
- Let X be the number of times a random full chain meets \mathcal{F}.
- $E[X] = h_n(\mathcal{F}) > \alpha_d(n)$.
- By convexity:
 $$E\left[\binom{X}{2}\right] \geq \binom{E[X]}{2}.$$
Extension of Szemerédi’s Cube Lemma: Proof

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d.

- By induction on d. Case $d = 0$: trivial.
- Let X be the number of times a random full chain meets \mathcal{F}.
- $E[X] = h_n(\mathcal{F}) > \alpha_d(n)$.
- By convexity:
 \[
 E\left[\binom{X}{2}\right] \geq \binom{E[X]}{2} > \binom{\alpha_d(n)}{2}
 \]
Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d.

- By induction on d. Case $d = 0$: trivial.
- Let X be the number of times a random full chain meets \mathcal{F}.
- $\mathbb{E}[X] = h_n(\mathcal{F}) > \alpha_d(n)$.
- By convexity:
 $$\mathbb{E}[(\binom{X}{2})] \geq \binom{\mathbb{E}[X]}{2} > \binom{\alpha_d(n)}{2} = n\alpha_{d-1}(n)$$
Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

By convexity:

$$E[(\binom{X}{2})] \geq (E[X]^2) > \binom{\alpha_d(n)}{2} = n\alpha_{d-1}(n)$$
Extension of Szemerédi’s Cube Lemma: Proof

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

- By convexity:
 $$\mathbb{E}[(X)^2] \geq \left(\frac{\mathbb{E}[X]}{2}\right) > \left(\frac{\alpha_d(n)}{2}\right) = n\alpha_{d-1}(n)$$

- Grouping pairs $(A, B) \in \mathcal{F} \times \mathcal{F}$ with $A \subsetneq B$ by $B - A$, with $S = B - A$:

 $$\mathbb{E}[(X)^2] =$$
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a copy of \(B_d \).

- By convexity:
 \[
 \mathbb{E}[\binom{X}{2}] \geq \left(\frac{\mathbb{E}[X]}{2} \right) > \left(\frac{\alpha_d(n)}{2} \right) = n \alpha_{d-1}(n)
 \]

- Grouping pairs \((A, B) \in \mathcal{F} \times \mathcal{F}\) with \(A \subsetneq B \) by \(B - A \), with \(S = B - A \):
 \[
 \mathbb{E}[\binom{X}{2}] = \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S),
 \]
Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

- By convexity:
 $$E[(\chi_2)] \geq (\frac{E[X]}{2}) > (\frac{\alpha_d(n)}{2}) = n\alpha_{d-1}(n)$$

- Grouping pairs $(A, B) \in \mathcal{F} \times \mathcal{F}$ with $A \subset B$ by $B - A$, with $S = B - A$:
 $$E[(\chi_2)] = \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S),$$
 where \mathcal{F}_S is the family of all $A \in \mathcal{F}$ that are disjoint from S with $A \cup S \in \mathcal{F}$.
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If $F \subseteq 2^{[n]}$ and $h_n(F) > \alpha_d(n)$, then F contains a copy of B_d.

- By convexity:
 \[E[(X_2)^n] \geq E[X_2] > \alpha_d(n) = n\alpha_{d-1}(n) \]

- Grouping pairs $(A, B) \in F \times F$ with $A \subsetneq B$ by $B - A$, with $S = B - A$:
 \[E[(X_2)^n] = \sum_{k=1}^{n} \frac{1}{(n\choose k)} \sum_{S \in \binom{[n]}{k}} h_{n-k}(F_S), \]
 where F_S is the family of all $A \in F$ that are disjoint from S with $A \cup S \in F$.

 \[\sum_{k=1}^{n} \frac{1}{(n\choose k)} \sum_{S \in \binom{[n]}{k}} h_{n-k}(F_S) > n\alpha_{d-1}(n) \]
Extension of Szemerédi’s Cube Lemma: Proof

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

\[\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n) \]
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a copy of \(B_d \).

\[
\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n)
\]

\[
\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)
\]

Find \(k \) such that

Find \(S \in \binom{[n]}{k} \) with \(h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n) \).

\(\emptyset \)
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

\[
\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n)
\]

Find k such that
\[
\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)
\]

Find $S \in \binom{[n]}{k}$ with $h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$.
Extension of Szemerédi’s Cube Lemma: Proof

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

- $\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n)$

- Find k such that
 $$\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$$

- Find $S \in \binom{[n]}{k}$ with $h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$.
Extension of Szemerédi’s Cube Lemma: Proof

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

\[\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n \alpha_{d-1}(n) \]

- Find k such that
 \[\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n) \]

- Find $S \in \binom{[n]}{k}$ with $h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$.

By induction, \mathcal{F}_S contains a copy of B_{d-1} generated by X_0, \ldots, X_{d-1}.

\mathcal{F} contains a copy of B_d generated by X_0, \ldots, X_{d-1} with $X_d = S$.

Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a copy of \(\mathcal{B}_d \).

\[
\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n)
\]

- Find \(k \) such that
 \[
 \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)
 \]

- Find \(S \in \binom{[n]}{k} \) with \(h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n) \).
- By induction, \(\mathcal{F}_S \) contains a copy of \(\mathcal{B}_{d-1} \) generated by \(X_0, \ldots, X_{d-1} \).
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If \(\mathcal{F} \subseteq 2^{[n]} \) and \(h_n(\mathcal{F}) > \alpha_d(n) \), then \(\mathcal{F} \) contains a copy of \(\mathcal{B}_d \).

\[\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n) \]

- Find \(k \) such that
 \[\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n) \]

- Find \(S \in \binom{[n]}{k} \) with \(h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n) \).
- By induction, \(\mathcal{F}_S \) contains a copy of \(\mathcal{B}_{d-1} \) generated by \(X_0, \ldots, X_{d-1} \).
Extension of Szemerédi’s Cube Lemma: Proof

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

\begin{itemize}
 \item $\sum_{k=1}^{n} \frac{1}{(n)} \sum_{S \in \binom{n}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n)$
 \item Find k such that $\frac{1}{(n)} \sum_{S \in \binom{n}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$
 \item Find $S \in \binom{n}{k}$ with $h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$.
 \item By induction, \mathcal{F}_S contains a copy of B_{d-1} generated by X_0, \ldots, X_{d-1}.
\end{itemize}
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

- $\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n)$

- Find k such that
 $\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$

- Find $S \in \binom{[n]}{k}$ with $h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$.

- By induction, \mathcal{F}_S contains a copy of B_{d-1} generated by X_0, \ldots, X_{d-1}.

- \mathcal{F} contains a copy of B_d generated by X_0, \ldots, X_d with $X_d = S$.
Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

$\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}|_S) > n\alpha_{d-1}(n)$

Find k such that
$\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}|_S) > \alpha_{d-1}(n)$

Find $S \in \binom{[n]}{k}$ with $h_{n-k}(\mathcal{F}|_S) > \alpha_{d-1}(n)$.

By induction, $\mathcal{F}|_S$ contains a copy of B_{d-1} generated by X_0, \ldots, X_{d-1}.

\mathcal{F} contains a copy of B_d generated by X_0, \ldots, X_d with $X_d = S$.
Turán Results

Theorem

If $F \subseteq 2^{[n]}$ and $h_n(F) > \alpha_d(n)$, then F contains a copy of B_d.

Corollary

If $F \subseteq 2^{[n]}$ and $h_n(F) \geq 4n^{1-2d}$, then F contains a copy of B_d.

Partitioning $2^{[n]}$ into consecutive segments of \sqrt{n} levels and applying an averaging argument yields:

Theorem

If $F \subseteq 2^{[n]}$ and $|F| \geq 50n - \frac{1}{2^d}2^{n}$, then F contains a copy of B_d.
Turán Results

Theorem
If $F \subseteq 2^{[n]}$ and $h_n(F) > \alpha_d(n)$, then F contains a copy of B_d.

Corollary
If $F \subseteq 2^{[n]}$ and $h_n(F) \geq 4n^{1 - \frac{2}{2^d}}$, then F contains a copy of B_d.
Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

Corollary
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) \geq 4n^{1 - \frac{2}{2d}}$, then \mathcal{F} contains a copy of B_d.

Partitioning $2^{[n]}$ into consecutive segments of \sqrt{n} levels and applying an averaging argument yields:
Turán Results

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of B_d.

Corollary
If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) \geq 4n^{1-\frac{2}{2d}}$, then \mathcal{F} contains a copy of B_d.

- Partitioning $2^{[n]}$ into consecutive segments of \sqrt{n} levels and applying an averaging argument yields:

Theorem
If $\mathcal{F} \subseteq 2^{[n]}$ and $|\mathcal{F}| \geq 50n^{-1/2^d} \cdot 2^n$, then \mathcal{F} contains a copy of B_d.
Ramsey Problem

- How many parts are needed to partition 2^n into \mathcal{B}_d-free families?

Prior Work

Theorem $r(n, d) \geq \frac{1}{16} \cdot n^2$
Ramsey Problem

- How many parts are needed to partition $2^{[n]}$ into \mathcal{B}_d-free families?
- Let $r(n, d)$ be the minimum number of parts needed.
Ramsey Problem

- How many parts are needed to partition 2^n into \mathcal{B}_d-free families?
- Let $r(n, d)$ be the minimum number of parts needed.

Prior Work

- Clearly, $r(n, 1) = n + 1$.

Thank You.
Ramsey Problem

- How many parts are needed to partition $2^{|n|}$ into B_d-free families?
- Let $r(n, d)$ be the minimum number of parts needed.

Prior Work

- Clearly, $r(n, 1) = n + 1$.
- [Gunderson–Rödl–Sidorenko 1999] For n sufficiently large

\[
(1 - o(1)) \frac{3}{4} \cdot n^{1/2} \leq r(n, 2) \leq (1 + o(1)) \cdot n^{1/2}.
\]
Ramsey Problem

- How many parts are needed to partition $2^{[n]}$ into B_d-free families?
- Let $r(n, d)$ be the minimum number of parts needed.

Prior Work

- [Gunderson–Rödl–Sidorenko 1999] For $d > 2$, there exists c_d such that for n sufficiently large
 \[c_d \cdot n^{\frac{1}{2^d}} \leq r(n, d) \leq n^{\frac{d}{2^d - 1}(1+o(1))}. \]
Ramsey Problem

- How many parts are needed to partition 2^n into B_d-free families?
- Let $r(n, d)$ be the minimum number of parts needed.

Prior Work

- [Gunderson–Rödl–Sidorenko 1999] For $d > 2$, there exists c_d such that for n sufficiently large

$$c_d \cdot n^{\frac{1}{2^d}} \leq r(n, d) \leq n^{\frac{d}{2^d-1}}(1+o(1)).$$

- Here, $c_d = (10d)^{-d}(1 + o(1))$.
Ramsey Problem

- How many parts are needed to partition 2^n into B_d-free families?
- Let $r(n, d)$ be the minimum number of parts needed.

Prior Work

- [Gunderson–Rödl–Sidorenko 1999] For $d > 2$, there exists c_d such that for n sufficiently large

\[c_d \cdot n^{\frac{1}{2d}} \leq r(n, d) \leq n^{\frac{d}{2d-1}(1+o(1))}. \]

- Here, $c_d = (10d)^{-d}(1 + o(1))$.

Theorem

\[r(n, d) \geq \frac{1}{4} \cdot n^{\frac{2}{2d}} \]
Ramsey Problem

- How many parts are needed to partition 2^n into B_d-free families?
- Let $r(n, d)$ be the minimum number of parts needed.

Prior Work

- [Gunderson–Rödl–Sidorenko 1999] For $d > 2$, there exists c_d such that for n sufficiently large

\[
c_d \cdot n^{\frac{1}{2d}} \leq r(n, d) \leq n^{\frac{d}{2d - 1}(1 + o(1))}.
\]

- Here, $c_d = (10d)^{-d}(1 + o(1))$.

Theorem

\[
r(n, d) \geq \frac{1}{4} \cdot n^{\frac{2}{2d}}
\]

Thank You.