MATH 251
Instr. K. Ciesielski
Spring 2020

SAMPLE TEST \# 4

Solve the following exercises. Show your work.

Ex. 1. Set up the integral formulas, including the limits of the integrations, for the following problems. Do not evaluate the integrals! Where appropriate, use polar, cylindrical, or spherical coordinates.
(a) The volume of the solid bounded by $z=x^{2}+y^{2}, z=0, x=0, y=0$, and $x+y=1$.

Solution: If T is a triangle bounded by $x=0, y=0$, and $x+y=1$ (i.e., $y=1-x$), then $V=\iiint_{E} 1 d V=\iint_{T} \int_{0}^{x^{2}+y^{2}} 1 d z d A=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x^{2}+y^{2}} 1 d z d y d x$
(b) The mass of the plane lamina bounded by $y=x^{2}$ and $y=2 x+3$, with the density $\delta(x, y)=x^{2}$.

Solution: If $y=x^{2}$ and $y=2 x+3$, then $x^{2}=2 x+3$, that is, $x^{2}-2 x-3=0$, so that $x=-3$ and $x=1$. Then mass $=\iint_{R} \delta(x, y) d A=\int_{-3}^{1} \int_{x^{2}}^{2 x+3} x^{2} d y d x$.
(c) The mass of the solid T with the density $\delta(x, y, z)=x^{2}+e^{z}$ bounded by the surfaces: $6 x+2 y+z=12, x=0, y=0$, and $z=0$.

Solution: The solid is a tetrahedron with a triangular base B on the $x y$-plane $z=0$ bounded by $6 x+2 y=12, x=0, y=0$. The upper bound of T is $z=12-6 x-2 y$. So, mass $=\iiint_{T} \delta(x, y, z) d V=\iint_{B} \int_{0}^{12-6 x-2 y}\left(x^{2}+e^{z}\right) d z d A$.
Since the triangle side $6 x+2 y=12$ means that $y=6-3 x$, which quals 0 for $x=2$, we get mass $=\int_{0}^{2} \int_{0}^{6-3 x} \int_{0}^{12-6 x-2 y}\left(x^{2}+e^{z}\right) d z d y d x$.

Ex. 2. Evaluate the integrals:
(a) $\int_{0}^{1} \int_{0}^{\pi} \frac{1}{x+1}+\sin y d y d x=$

Solution: int $=\int_{0}^{1}\left[\frac{1}{x+1} y-\cos y\right]_{0}^{\pi} d x=\int_{0}^{1}\left(\frac{1}{x+1} \pi-(\cos \pi-\cos 0)\right) d x$. So int $=\int_{0}^{1}\left(\frac{1}{x+1} \pi-(-1-1)\right) d x=[\pi \ln |x+1|+2 x]_{0}^{1}=\pi(\ln 2-\ln 1)+2=\pi \ln 2+2$
(b) $\int_{-2}^{0} \int_{0}^{y}\left(x+2 y^{2}\right) d x d y=$

Solution: \quad int $=\int_{-2}^{0}\left[\frac{1}{2} x^{2}+2 y^{2} x\right]_{x=0}^{x=y} d y=\int_{-2}^{0}\left(\frac{1}{2} y^{2}+2 y^{3}\right) d y=\left[\frac{1}{6} y^{3}+\frac{1}{2} y^{4}\right]_{-2}^{0}=$ $0-\left(\frac{1}{6}(-8)+\frac{1}{2} 16\right)=\frac{4}{3}-8=-6 \frac{2}{3}$
(c) $\iint_{R} \frac{d y d x}{\sqrt{9-x^{2}-y^{2}}}$, where R is the second quadrant region bounded by $x^{2}+y^{2}=4$.

Solution: We use the polar coordinates, in which the region R is given as $0 \leq r \leq 2$ and $\pi / 2 \leq \theta \leq \pi$. So, in the second equation using substitution $u=9-r^{2}$,

$$
\begin{aligned}
& \text { int }=\int_{\pi / 2}^{\pi} \int_{0}^{2}\left(9-r^{2}\right)^{-1 / 2} r d r d \theta=\int_{\pi / 2}^{\pi}\left[-\left(9-r^{2}\right)^{1 / 2}\right]_{0}^{2} d \theta= \\
& \int_{\pi / 2}^{\pi}\left[-\left((9-4)^{1 / 2}-9^{1 / 2}\right)\right]_{0}^{2} d \theta=[3-\sqrt{5}]_{\pi / 2}^{\pi}=\frac{3-\sqrt{5}}{2} \pi .
\end{aligned}
$$

Ex. 3. Find the mass of the solid bounded by the hemisphere $x^{2}+y^{2}+z^{2} \leq R^{2}, z \geq 0$, with the density $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.

Solution: We use the spherical coordinates. Since the solid, T, is the upper hemisphere, we get
mass $=\iiint_{T} \delta(x, y, z) d V=\iiint_{T}\left(x^{2}+y^{2}+z^{2}\right) d V=\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{R}\left(\rho^{2}\right) \rho^{2} \sin \phi d \rho d \theta d \phi=$ $\int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left[\frac{1}{5} \rho^{5} \sin \phi\right]_{0}^{R} d \theta d \phi=\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \frac{1}{5} R^{5} \sin \phi d \theta d \phi=\int_{0}^{\pi / 2}\left[\left(\frac{1}{5} R^{5} \sin \phi\right) \theta\right]_{0}^{2 \pi} d \phi=$ $\int_{0}^{\pi / 2} \frac{2}{5} \pi R^{5} \sin \phi d \phi=\left[\frac{2}{5} \pi R^{5}(-\cos \phi)\right]_{0}^{\pi / 2}=-\frac{2}{5} \pi R^{5}(\cos (\pi / 2)-\cos 0)=-\frac{2}{5} \pi R^{5}(0-1)=\frac{2}{5} \pi R^{5}$

Ex. 4. Find the mass of the plane lamina bounded by $x=0$ and $x=9-y^{2}$ with density $\delta(x, y)=y^{2}$.

Solution: Notice that $x=0$ and $x=9-y^{2}$ when $9-y^{2}=0$ that is, when $y= \pm 3$. mass $=\iint_{R} \delta(x, y) d A=\int_{-3}^{3} \int_{0}^{9-y^{2}} y^{2} d x d y=\int_{-3}^{3}\left[x y^{2}\right]_{0}^{9-y^{2}} d y=\int_{-3}^{3} y^{2}\left(9-y^{2}\right) d y=$ $\int_{-3}^{3}\left(9 y^{2}-y^{4}\right) d y=\left[3 y^{3}-\frac{1}{5} y^{5}\right]_{-3}^{3}=3(27+27)-\frac{1}{5}(243+243)=162-97.2=64.8$

Ex. 5. Evaluate $\int_{C} x y d s$, where C is the parametric curve for which $x=3 t, y=t^{4}$, and $0 \leq t \leq 1$.

Solution: Since $d s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=\sqrt{(3)^{2}+\left(4 t^{3}\right)^{2}} d t=\sqrt{9+16 t^{6}} d t$,
$\int_{C} x y d s=\int_{0}^{1}(3 t)\left(t^{4}\right) \sqrt{9+16 t^{6}} d t=\int_{0}^{1}\left(9+16 t^{6}\right)^{1 / 2}\left(3 t^{5} d t\right)$
For $u=9+16 t^{6}$, we get $\frac{d u}{d x}=6 \cdot 16 t^{5}$, and so $3 t^{5} d t=\frac{1}{32} d u$.
Hence, $\int\left(9+16 t^{6}\right)^{1 / 2}\left(3 t^{5} d t\right)=\int u^{1 / 2} \frac{1}{32} d u=\frac{1}{3 \cdot 16} u^{3 / 2}+C=\frac{1}{48}\left(9+16 t^{6}\right)^{3 / 2}+C$. Thus $\int_{C} x y d s=\left[\frac{1}{48}\left(9+16 t^{6}\right)^{3 / 2}\right]_{0}^{1}=\frac{1}{48}\left[(9+16)^{3 / 2}-9^{3 / 2}\right]=\frac{1}{48}[125-27]=\frac{49}{24}=2 \frac{1}{24}$

Ex. 6. Evaluate the integral, where C is the graph of $y=x^{3}$ from $(-1,-1)$ to $(1,1)$ $\int_{C} y^{2} d x+x d y=$

Solution: Clearly x changes from -1 to 1 . Put $x=t$. Then $y(t)=t^{3}$ and $-1 \leq t \leq 1$ and
$\int_{C} y^{2} d x+x d y=\int_{-1}^{1}(y(t))^{2} x^{\prime}(t) d t+x(t) y^{\prime}(t) d t=\int_{-1}^{1}\left[\left(t^{3}\right)^{2} 1+t\left(3 t^{2}\right)\right] d t=\int_{-1}^{1}\left(t^{6}+3 t^{3}\right) d t=$ $\left[\frac{1}{7} t^{7}+\frac{3}{4} t^{4}\right]_{-1}^{1}=\frac{1}{7}(1+1)+\frac{3}{4}(1-1)=\frac{2}{7}$

Ex. 7. Determine if the following vector field is conservative. Find potential function for a field, if it is conservative.
(a) $\mathbf{F}=\left(x^{3}+\frac{y}{x}\right) \mathbf{i}+\left(y^{2}+\ln x\right) \mathbf{j}$

Solution: We have $P=x^{3}+\frac{y}{x}$ and $Q=y^{2}+\ln x$. So $\frac{\partial P}{\partial y}=\frac{1}{x}$ and $\frac{\partial Q}{\partial x}=\frac{1}{x}$. Since $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$, the field is conservative and we can find the potential function $f(x, y)$. We have
$f(x, y)=\int P d x=\int x^{3}+\frac{y}{x} d x=\frac{1}{4} x^{4}+y \ln (x)+K(y)$.
Taking partial derivative, in terms of y, of both side we get
$\ln (x)+K^{\prime}(y)=\frac{\partial f}{\partial y}=Q=y^{2}+\ln x$, so that $K^{\prime}(y)=y^{2}$ and $K(y)=\frac{1}{3} y^{3}+C$.
Answer: The potential function $f(x, y)=\frac{1}{4} x^{4}+y \ln (x)+\frac{1}{3} y^{3}+C$.
(b) $\mathbf{F}=(y \cos x+\ln y) \mathbf{i}+\left(\frac{x}{y}+e^{y}\right) \mathbf{j}$

Solution: We have $P=y \cos x+\ln y$ and $Q=\frac{x}{y}+e^{y}$. So $\frac{\partial P}{\partial y}=\cos x+\frac{1}{y}$ and $\frac{\partial Q}{\partial x}=\frac{1}{y}$. Since $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, the field is not conservative and the potential function does not exist.

Ex. 8. Find a potential function of the vector field and use the fundamental theorem for line integrals to evaluate
$\int_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}(\sin y+y \cos x) d x+(\sin x+x \cos y) d y=$
Solution: We have $P=\sin y+y \cos x$ and $Q=\sin x+x \cos y$. It is easy to see that $\frac{\partial P}{\partial y}=\cos y+\cos x=\frac{\partial Q}{\partial x}$ so indeed we can find the potential function $f(x, y)$. We have
$f(x, y)=\int P d x=\int \sin y+y \cos x d x=x \sin y+y \sin x+K(y)$.
Taking partial derivative, in terms of y, of both side we get
$x \cos y+\sin x+K^{\prime}(y)=\frac{\partial f}{\partial y}=Q=\sin x+x \cos y$, so that $K^{\prime}(y)=0$ and $K(y)=C$.
So, the potential function $f(x, y)=x \sin y+y \sin x+C$ and
int $=[f(x, y)]_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}=[x \sin y+y \sin x]_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}=(\pi \sin \pi+\pi \sin \pi)-\left(\frac{\pi}{2} \sin \frac{\pi}{2}+\frac{\pi}{2} \sin \frac{\pi}{2}\right)=$ $(0+0)-\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=-\pi$

Ex. 9. Apply Green's theorem to evaluate the following integral, where the simple closed curve C, with counter clockwise direction, is the boundary of the circle $x^{2}+y^{2}=1$. $\oint_{C}\left(\sin x-x^{2} y\right) d x+x y^{2} d y=$

Solution: Let D denoted the disk $x^{2}+y^{2} \leq 1$.
By Green's theorem int $=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$, where $P=\sin x-x^{2} y$ and $Q=x y^{2}$. So, int $=\iint_{D}\left(y^{2}-\left(-x^{2}\right)\right) d A=\iint_{D}\left(x^{2}+y^{2}\right) d A$
Changing to the polar coordinates, we get
int $=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{4} r^{4}\right]_{0}^{1} d \theta=\int_{0}^{2 \pi} \frac{1}{4} d \theta=\left[\frac{1}{4} \theta\right]_{0}^{2 \pi}=\frac{1}{2} \pi$

