MATH 251
NAME (print):
Instr. K. Ciesielski
Spring 2020

SAMPLE TEST \# 2

Solve the following exercises. Show your work.

Ex. 1. Find a vector equation of the line that passes through the point $P(11,13,-7)$ and is perpendicular to the plane with the equation: $x-2 z=17$.

Ex. 2. Find: (a) the unit tangent vector to the curve $\mathbf{r}(t)=\left\langle e^{t}, t, \cos \pi t\right\rangle$ at the point $(1,0,1)$, and (b) the vector equation of the line tangent to the same curve at the point $(e, 1,-1)$.

Ex. 3. Find the volume of the pyramid with the vertices: $P(3,2,-1), Q(-2,5,1), R(2,1,5)$, and the origin $O(0,0,0)$. The volume of a pyramid is equal $1 / 6$ th of the volume of parallelepiped spanned by the same vectors.

Ex. 4. Find an equation of the plane passing through point $(1,11,-13)$ and parallel to the plane with equation $2 x-17 z+\pi=0$.

Ex. 5. Describe and sketch the graphs of the surfaces given by the following equations. Name each surface. Give specific informations, like center and radius in the case of a sphere.
(a) $2 x^{2}+2 y^{2}+2 z^{2}=7 x+9 y+11 z$
(b) $4 y=x^{2}+z^{2}$
(c) $4 y=z^{2}$

Ex. 6. Find the curvature $\kappa(t)$ of the curve with position vector $\mathbf{r}(t)=\mathbf{i} \cos t+\mathbf{j} \sin t+2 t \mathbf{k}$.

Ex. 7. Let $\mathbf{v}(t)=\mathbf{i}(t+e)^{-1}+\mathbf{k} t^{3}$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}(0)=3 \mathbf{i}$.

Ex. 8. Find the arc length, s, of the curve with position vector $\mathbf{r}(t)=2 e^{t} \mathbf{i}+2 t \mathbf{j}+e^{-t} \mathbf{k}$ from $t=0$ to $t=1$.

Ex. 9. Sketch and fully describe the graph of a function $f(x, y)=\sqrt{1+x^{2}+y^{2}}$.

Ex. 10. Sketch and fully describe the domain of the following function, including the name of the surface representing the domain's boundary: $f(x, y, z)=\ln \left(25-4 x^{2}-9 y^{2}-z^{2}\right)$.

