MATH 251 Instr. K. Ciesielski Spring 2020

SAMPLE FINAL TEST

(longer than the actual Final Test)

Solve the following exercises. Show your work.

Ex. 1. ST #1 Ex 3: Find the determinant of the matrix. Each time you expand the the matrix, you must expand it over a row or column that has the largest number of zeros. If necessary, use the row (or column) reduction method to create additional zeros.

 $A = \begin{bmatrix} -1 & 2 & 0 & 0\\ 1 & -1 & 1 & -1\\ 1 & 2 & 0 & 1\\ 0 & 3 & 1 & 2 \end{bmatrix}$

Ex. 2. ST #1 Ex 4: Find the inverse matrix of

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 0 & 1 & -1 \end{array} \right]$$

Ex. 3. ST #1 Ex 6: Let $\mathbf{a} = \langle 0, 1, 2 \rangle$, $\mathbf{b} = \langle -1, 0, 7 \rangle$, and $\mathbf{c} = \langle 2, 3, -1 \rangle$. Evaluate: $2\mathbf{a} - \mathbf{b} + \mathbf{c}$, $|\mathbf{c}|$, and $(\mathbf{a} \cdot \mathbf{b})$ ($\mathbf{b} \times \mathbf{c}$). (Do not confuse vectors with numbers. No partial credit for solutions with such errors.)

Ex. 4. ST #2 Ex 1: Find a vector equation of the line that passes through the point P(11, 13, -7) and is perpendicular to the plane with the equation: x - 2z = 17.

Ex. 5. ST #2 Ex 7: Let $\mathbf{v}(t) = \mathbf{i}(t+e)^{-1} + \mathbf{k} t^3$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}(0) = 3\mathbf{i}$.

Ex. 6. ST #2 Ex 10: Sketch and fully describe the domain of the following function, including the name of the surface representing the domain's boundary: $f(x, y, z) = \ln (25 - 4x^2 - 9y^2 - z^2)$.

Ex. 7. ST #3 Ex. 2: Compute the first order partial derivatives of $f(x, y, z) = ze^{x^2} \cos y$.

Ex. 8. ST #3 Ex. 3: Compute all second order partial derivatives of $g(s,t) = e^{5t} + t \sin(3s)$.

Ex. 9. ST #3 Ex. 4: Find an equation of the plane tangent to the surface $z = x^2 - 5y^3$ at the point P(2, 1, -1).

Ex. 10. ST #3 Ex. 8: Find the point on the cone $z = \sqrt{x^2 + y^2}$ which is the closest to the point (4, -8, 0).

Ex. 11. ST #3 Ex. 5: Find the absolute maximum and the absolute minimum of the function $f(x, y) = x^3 - xy$ on the region bounded below by parabola $y = x^2 - 1$ and above by line y = 3. You will get credit only if all critical points are found.

Ex. 12. ST #4 Ex. 1(a)&(c): Set up the integral formulas, including the limits of the integrations, for the following problems. *Do not evaluate the integrals!*

- (a) The volume of the solid bounded by $z = x^2 + y^2$, z = 0, x = 0, y = 0, and x + y = 1.
- (c) The mass of the solid T with the density $\delta(x, y, z) = x^2 + e^z$ bounded by the surfaces: 6x + 2y + z = 12, x = 0, y = 0, and z = 0.

Ex. 13. ST #4 Ex. 2: Evaluate the integrals:

(a)
$$\int_0^1 \int_0^\pi \frac{1}{x+1} + \sin y \, dy \, dx =$$

(b)
$$\int_{-2}^{0} \int_{0}^{y} (x+2y^2) dx dy =$$

(c) $\int \int_{R} \frac{dy \, dx}{\sqrt{9 - x^2 - y^2}}$, where *R* is the *second quadrant* region bounded by $x^2 + y^2 = 4$.

Ex. 14. ST #4 Ex. 3: Find the mass of the solid bounded by the hemisphere $x^2 + y^2 + z^2 \le R^2$, $z \ge 0$, with the density $\delta(x, y, z) = x^2 + y^2 + z^2$.

Ex. 15. ST #4 Ex. 4: Find the mass of the plane lamina bounded by x = 0 and $x = 9 - y^2$ with density $\delta(x, y) = y^2$.

Ex. 16. ST #4 Ex. 6: Evaluate the integral, where C is the graph of $y = x^3$ from (-1, -1) to (1, 1)

 $\int_C y^2 \, dx + x \, dy =$

Ex. 17. ST #4 Ex. 8: Find a potential function of the vector field and use the fundamental theorem for line integrals to evaluate

$$\int_{(\pi/2,\pi/2)}^{(\pi,\pi)} (\sin y + y \cos x) \, dx + (\sin x + x \cos y) \, dy =$$

Ex. 18. ST #4 Ex. 9: Apply Green's theorem to evaluate the following integral, where the simple closed curve C, with counter clockwise direction, is the boundary of the circle $x^2 + y^2 = 1$.

$$\oint_C (\sin x - x^2 y) \, dx + xy^2 \, dy =$$