MATH 251
NAME (print): \qquad
Instr. K. Ciesielski
Spring 2018

Solutions for SAMPLE TEST \# 1

Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.)

Ex. 1. Evaluate
(a) $3\left[\begin{array}{cc}2 & 3 \\ 4 & 5 \\ 11 & -1\end{array}\right]-5\left[\begin{array}{rr}0 & 8 \\ 4 & -2 \\ 5 & 1\end{array}\right]=$

Sol: $\left[\begin{array}{cc}6 & 9 \\ 12 & 15 \\ 33 & -3\end{array}\right]+\left[\begin{array}{rr}0 & -40 \\ -20 & 10 \\ -25 & -5\end{array}\right]=\left[\begin{array}{rr}6 & -31 \\ -8 & 25 \\ 8 & -8\end{array}\right]$.
(b) $\left[\begin{array}{rrr}1 & 2 & 1 \\ -1 & 6 & 3 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 0 & -1 \\ 2 & 3\end{array}\right]=$

Sol: $\left[\begin{array}{rr}1+0+2 & 1-2+3 \\ -1+0+6 & -1-6+9 \\ 0+0+4 & 0-1+6\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 5 & 2 \\ 4 & 5\end{array}\right]$.
(c) $\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]\left[\begin{array}{c}1 \\ 7 \\ -1\end{array}\right]=$

Sol: $\quad[1-14-3]=[-16]$.
(d) $\left[\begin{array}{c}1 \\ 7 \\ -1\end{array}\right]\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]=$

Sol: $\left[\begin{array}{ccc}1 & -2 & 3 \\ 7 & -14 & 21 \\ -1 & 2 & -3\end{array}\right]$.

Ex. 2. Solve each of the following systems of linear equations by representing as augmented matrix and transforming it to the row reduced echelon form. If the system inconsistent, give a reason for it explain the meaning of this fact in terms of solutions. If it is consistent, express its solution in the vertical vector form as $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$ or $\left[\begin{array}{c}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]+y\left[\begin{array}{r}0 \\ 5 \\ 11\end{array}\right]$.
(a) $\left\{\begin{aligned} a+b-c & =0 \\ a-4 b+2 c & =-1 \\ 2 a-3 b+c & =1\end{aligned}\right.$

Sol:

$$
\left[\begin{array}{rrrr}
1 & 1 & -1 & 0 \\
1 & -4 & 2 & -1 \\
2 & -3 & 1 & 1
\end{array}\right] \begin{array}{r}
\\
-R_{1} \\
-2 R_{1}
\end{array} \rightarrow\left[\begin{array}{rrrr}
1 & 1 & -1 & 0 \\
0 & -5 & 3 & -1 \\
0 & -5 & 3 & 1
\end{array}\right] \underset{-R_{2}}{ } \rightarrow\left[\begin{array}{rrrr}
1 & 1 & -1 & 0 \\
0 & -5 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

The last row leads to the equation $0 a+0 b+0 c=2$, which is never satisfied.
Answer: System is inconsistent, no solution.
(b) $\left\{\begin{aligned} a+b-c & =0 \\ a-4 b+2 c & =1 \\ 2 a-3 b+c & =1\end{aligned}\right.$

Sol:

$$
\begin{aligned}
& \left.\left[\begin{array}{rrrr}
1 & 1 & -1 & 0 \\
1 & -4 & 2 & -1 \\
2 & -3 & 1 & 1
\end{array}\right] \underset{\substack{ \\
-R_{1} \\
-2 R_{1}}}{\rightarrow\left[\begin{array}{rrrr}
1 & 1 & -1 & 0 \\
0 & -5 & 3 & 1 \\
0 & -5 & 3 & 1
\end{array}\right] \underset{-R_{2}}{ } \rightarrow\left[\begin{array}{rrrr}
1 & 1 & -1 & 0 \\
0 & -5 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \times-\frac{1}{5} \rightarrow} \begin{array}{rrrr}
1 & 1 & -1 & 0 \\
0 & 1 & -\frac{3}{5} & -\frac{1}{5} \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{-R_{2}} \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -\frac{2}{5} & \frac{1}{5} \\
0 & 1 & -\frac{3}{5} & -\frac{1}{5} \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We get: $a-\frac{2}{5} c=\frac{1}{5}$, that is, $a=\frac{1}{5}+\frac{2}{5} c ; b-\frac{3}{5} c=-\frac{1}{5}$, that is, $b=-\frac{1}{5}+\frac{3}{5} c$
Ans: Consistent, infinitely many solutions: $\left[\begin{array}{c}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}\frac{1}{5}+\frac{2}{5} c \\ -\frac{1}{5}+\frac{3}{5} c \\ c\end{array}\right]=\left[\begin{array}{r}\frac{1}{5} \\ -\frac{1}{5} \\ 0\end{array}\right]+c\left[\begin{array}{c}\frac{2}{5} \\ \frac{3}{5} \\ 1\end{array}\right]$.
(c) $\left\{\begin{aligned} a+b-c & =0 \\ a+2 c & =1 \\ 2 a-3 b+c & =1\end{aligned} \quad\right.$ Sol:

$\left[\begin{array}{rrrr}1 & 0 & 2 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & \frac{1}{3}\end{array}\right] \begin{aligned} & -2 R_{3} \\ & +3 R_{3}\end{aligned} \rightarrow\left[\begin{array}{llll}1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{3}\end{array}\right]$.
Answer: System is consistent, it has the unique solution: $\left[\begin{array}{c}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}\frac{1}{3} \\ 0 \\ \frac{1}{3}\end{array}\right]$.

Ex. 3. Find the determinant of the matrix. Each time you expand the matrix, you must expand it over a row or column that has the largest number of zeros. If necessary, use the row (or column) reduction method to create additional zeros.

$$
A=\left[\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
0 & 3 & 1 & 2
\end{array}\right]
$$

Sol: If we subtract from raw \# 4 the raw \# 2 and expand by the third column, we get

$$
|A|=\left|\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
-1 & 4 & 0 & 3
\end{array}\right|=(-1) \cdot 1\left|\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 2 & 1 \\
-1 & 4 & 3
\end{array}\right|
$$

Next, subtracting from raw \# 3 three times the raw \# 2 and expanding again by the third column, we get

$$
|A|=(-1)\left|\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 2 & 1 \\
-1 & 4 & 3
\end{array}\right|=(-1)\left|\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 2 & 1 \\
-4 & -2 & 0
\end{array}\right|=(-1)(-1)\left|\begin{array}{cc}
-1 & 2 \\
-4 & -2
\end{array}\right|=2-(-8)=10
$$

Ex. 4. Find the inverse matrix of

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

Sol: We need to transform $[A ; I]$ to $[I ; B]$. Then $B=A^{-1}$.
$[A ; I]=\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ -1 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1\end{array}\right]+R_{1} \rightarrow\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1\end{array}\right] \underset{-R_{2}}{ } \rightarrow$
$\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & -4 & -1 & -1 & 1\end{array}\right]_{\times-\frac{1}{4}} \rightarrow\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}\end{array}\right] \begin{gathered}-R_{3} \\ -3 R_{3}\end{gathered} \rightarrow$
$\left[\begin{array}{rrrrrr}1 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{3}{4} \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}\end{array}\right]$
Answer: $A^{-1}=\left[\begin{array}{rrr}\frac{3}{4} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}\end{array}\right]$.

Ex. 5. Let A be as below. Show that it is its own inverse, that is, that $A^{-1}=A$.

$$
A=\left[\begin{array}{ccc}
1 / 2 & \sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Sol: Matrix B is an inverse of $A, B=A^{-1}$, precisely when $A B=I$. Thus, for $A=A^{-1}$, we must have $A A=I$. Here is the checking:

$$
\begin{aligned}
& A A=\left[\begin{array}{ccc}
1 / 2 & \sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & \sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & -1
\end{array}\right]= \\
& {\left[\begin{array}{ccc}
1 / 4+3 / 4+0 & \sqrt{3} / 4-\sqrt{3} / 4+0 & 0+0+0 \\
\sqrt{3} / 4-\sqrt{3} / 4+0 & 3 / 4+1 / 4+0 & 0+0+0 \\
0+0+0 & 0+0+0 & 0+0+1
\end{array}\right]=I \text {, as required. }}
\end{aligned}
$$

Ex. 6. Let $\mathbf{a}=\langle 0,1,2\rangle, \mathbf{b}=\langle-1,0,7\rangle$, and $\mathbf{c}=\langle 2,3,-1\rangle$. Evaluate: $2 \mathbf{a}-\mathbf{b}+\mathbf{c},|\mathbf{c}|$, and $(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \times \mathbf{c})$. (Do not confuse vectors with numbers. No partial credit for solutions with such errors.)
Sol:
$2 \mathbf{a}-\mathbf{b}+\mathbf{c}=2\langle 0,1,2\rangle-\langle-1,0,7\rangle+\langle 2,3,-1\rangle=\langle 0,2,4\rangle+\langle 1,0,-7\rangle+\langle 2,3,-1\rangle=\langle 3,5,-4\rangle$
$|\mathbf{c}|=\sqrt{2^{2}+3^{2}+(-1)^{2}}=\sqrt{4+9+1}=\sqrt{14}$
As $\mathbf{a} \cdot \mathbf{b}=\langle 0,1,2\rangle \cdot\langle-1,0,7\rangle=0+0+14=14$ and
$\mathbf{b} \times \mathbf{c}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 0 & 7 \\ 2 & 3 & -1\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}0 & 7 \\ 3 & -1\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}-1 & 7 \\ 2 & -1\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}1 & 0 \\ 2 & -3\end{array}\right|=$
$\mathbf{i}(0-21)-\mathbf{j}(1-14)+\mathbf{k}(-3-0)=\langle-21,13,-3\rangle$, we have
$(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \times \mathbf{c})=14\langle-21,13,-3\rangle=\langle-14 \cdot 21,14 \cdot 13,-3 \cdot 14\rangle$.

