MATH 251
Instr. K. Ciesielski
Spring 2018

## SAMPLE FINAL TEST

(longer than the actual Final Test)
Solve the following exercises. Show your work.

Ex. 1. ST \#1 Ex 3: Find the determinant of the matrix. Each time you expand the the matrix, you must expand it over a row or column that has the largest number of zeros. If necessary, use the row (or column) reduction method to create additional zeros.

$$
A=\left[\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
0 & 3 & 1 & 2
\end{array}\right]
$$

Solution: If we subtract from raw \# 4 the raw \# 2 and expand by the third column, we get

$$
|A|=\left|\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
-1 & 4 & 0 & 3
\end{array}\right|=(-1) \cdot 1\left|\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 2 & 1 \\
-1 & 4 & 3
\end{array}\right|
$$

Next, subtracting from raw \# 3 three times the raw \# 2 and expanding again by the third column, we get

$$
|A|=(-1)\left|\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 2 & 1 \\
-1 & 4 & 3
\end{array}\right|=(-1)\left|\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 2 & 1 \\
-4 & -2 & 0
\end{array}\right|=(-1)(-1)\left|\begin{array}{cc}
-1 & 2 \\
-4 & -2
\end{array}\right|=2-(-8)=10
$$

Ex. 2. ST \#1 Ex 4: Find the inverse matrix of

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

Solution: We need to transform $[A ; I]$ to $[I ; B]$. Then $B=A^{-1}$.
$[A ; I]=\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ -1 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1\end{array}\right]+R_{1} \rightarrow\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1\end{array}\right] \rightarrow-R_{2} \rightarrow$
$\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & -4 & -1 & -1 & 1\end{array}\right] \underset{-\frac{1}{4}}{ } \rightarrow\left[\begin{array}{rrrrrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}\end{array}\right] \begin{gathered}-R_{3} \\ -3 R_{3}\end{gathered} \rightarrow$
$\left[\begin{array}{rrrrrr}1 & 0 & 1 & \frac{3}{4} & -\frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{3}{4} \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}\end{array}\right]$
Answer: $A^{-1}=\left[\begin{array}{rrr}\frac{3}{4} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}\end{array}\right]$.

Ex. 3. ST \#1 Ex 6: Let $\mathbf{a}=\langle 0,1,2\rangle, \mathbf{b}=\langle-1,0,7\rangle$, and $\mathbf{c}=\langle 2,3,-1\rangle$. Evaluate: $2 \mathbf{a}-\mathbf{b}+\mathbf{c},|\mathbf{c}|$, and $(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \times \mathbf{c})$. (Do not confuse vectors with numbers. No partial credit for solutions with such errors.)

## Solution:

$2 \mathbf{a}-\mathbf{b}+\mathbf{c}=2\langle 0,1,2\rangle-\langle-1,0,7\rangle+\langle 2,3,-1\rangle=\langle 0,2,4\rangle+\langle 1,0,-7\rangle+\langle 2,3,-1\rangle=\langle 3,5,-4\rangle$
$|\mathbf{c}|=\sqrt{2^{4}+3^{2}+(-1)^{2}}=\sqrt{4+9+1}=\sqrt{14}$
As $\mathbf{a} \cdot \mathbf{b}=\langle 0,1,2\rangle \cdot\langle-1,0,7\rangle=0+0+14=14$ and
$\mathbf{b} \times \mathbf{c}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 0 & 7 \\ 2 & 3 & -1\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}0 & 7 \\ 3 & -1\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}-1 & 7 \\ 2 & -1\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}1 & 0 \\ 2 & -3\end{array}\right|=$ $\mathbf{i}(0-21)-\mathbf{j}(1-14)+\mathbf{k}(-3-0)=\langle-21,13,-3\rangle$, we have
$(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \times \mathbf{c})=14\langle-21,13,-3\rangle=\langle-14 \cdot 21,14 \cdot 13,-3 \cdot 14\rangle$.

Ex. 4. ST \#2 Ex 1: Find a vector equation of the line that passes through the point $P(11,13,-7)$ and is perpendicular to the plane with the equation: $x-2 z=17$.
Solution: The direction vector $\mathbf{v}$ of the line coincides with the normal vector of the plane: $\langle 1,0,-2\rangle$.

Answer: $\langle x, y, z\rangle=\langle 11,13,-7\rangle+t\langle 1,0,-2\rangle$, or $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}11 \\ 13 \\ -7\end{array}\right]+t\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$.

Ex. 5. ST \#2 Ex 7: Let $\mathbf{v}(t)=\mathbf{i}(t+e)^{-1}+\mathbf{k} t^{3}$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}(0)=3 \mathbf{i}$.
Solution: $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=-(t+e)^{-2} \mathbf{i}+3 t^{2} \mathbf{k}$.
$\mathbf{r}(t)=\int \mathbf{v}(t) d t=\mathbf{i} \ln |t+e|+\mathbf{k} t^{4} / 4+\vec{C}$. To find $\vec{C}$, we calculate $\mathbf{r}(0)$ :
$\mathbf{i} \ln |0+e|+\mathbf{k} 0^{4} / 4+\vec{C}=3 \mathbf{i}$. Since $\ln e=1$, we get $\mathbf{i}+\vec{C}=3 \mathbf{i}$ and $\vec{C}=2 \mathbf{i}$. Therefore $\mathbf{r}(t)=\mathbf{i} \ln |t+e|+\mathbf{k} t^{4} / 4+2 \mathbf{i}=(2+\ln |t+e|) \mathbf{i}+\frac{t^{4}}{4} \mathbf{k}$.
Answer: $\mathbf{a}(t)=-(t+e)^{-2} \mathbf{i}+3 t^{2} \mathbf{k}$ and $\mathbf{r}(t)=(2+\ln |t+e|) \mathbf{i}+\frac{t^{4}}{4} \mathbf{k}$.

Ex. 6. ST \#2 Ex 10: Sketch and fully describe the domain of the following function, including the name of the surface representing the domain's boundary: $f(x, y, z)=$ $\ln \left(25-4 x^{2}-9 y^{2}-z^{2}\right)$.

Solution: The argument of the logarithm must be positive: $25-4 x^{2}-9 y^{2}-z^{2}>0$, that is, $4 x^{2}+9 y^{2}+z^{2}<25$, or $\frac{x^{2}}{(5 / 2)^{2}}+\frac{y^{2}}{(5 / 3)^{2}}+\frac{z^{2}}{5^{2}}<1$.

Answer: The points inside the ellipsoid $\frac{x^{2}}{(5 / 2)^{2}}+\frac{y^{2}}{(5 / 3)^{2}}+\frac{z^{2}}{5^{2}}=1$. Sketch: to be presented in class.

Ex. 7. ST \#3 Ex. 2: Compute the first order partial derivatives of $f(x, y, z)=z e^{x^{2}} \cos y$.

## Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=f_{x}=z e^{x^{2}} \cos y \cdot 2 x=2 x z e^{x^{2}} \cos y \\
& \frac{\partial f}{\partial y}=f_{y}=z e^{x^{2}}(-\sin y)=-z e^{x^{2}} \sin y \\
& \frac{\partial f}{\partial z}=f_{z}=e^{x^{2}} \cos y
\end{aligned}
$$

Ex. 8. ST \#3 Ex. 3: Compute all second order partial derivatives of $g(s, t)=e^{5 t}+t \sin (3 s)$.
Solution:

$$
\begin{array}{lll}
g_{s}=3 t \cos (3 s) & g_{s s}=-9 t \sin (3 s) & g_{s t}=3 \cos (3 s) \\
g_{t}=5 e^{5 t}+\sin (3 s) & g_{t s}=3 \cos (3 s) & g_{t t}=25 e^{5 t}
\end{array}
$$

Ex. 9. ST $\# \mathbf{Z} \mathbf{E x . 4 :}$ Find an equation of the plane tangent to the surface $z=x^{2}-5 y^{3}$ at the point $P(2,1,-1)$.

## Solution:

$$
\begin{aligned}
& z_{x}=2 x ; \quad z_{x}(P)=2 \cdot 2=4 \\
& z_{y}=-15 y^{2} ; \quad z_{y}(P)=-15 \cdot 1^{2}=-15
\end{aligned}
$$

Normal vector $\mathbf{n}=\left\langle z_{x}(P), z_{y}(P),-1\right\rangle=\langle 4,-15,-1\rangle$.
Answer: $4(x-2)-15(y-1)-1(z+1)=0 \quad$ or $\quad 4 x-15 y-z+6=0$.

Ex. 10. ST \#3 Ex. 8: Find the point on the cone $z=\sqrt{x^{2}+y^{2}}$ which is the closest to the point $(4,-8,0)$.

## Solution:

Solution: Distance of $(x, y, z)$ on the surface from $(4,-8,0)$ is $\sqrt{(x-4)^{2}+(y+8)^{2}+(z-0)^{2}}$. Since $z^{2}=x^{2}+y^{2}$, this is equal to
$f(x, y)=\sqrt{(x-4)^{2}+(y+8)^{2}+\left(x^{2}+y^{2}\right)}$.
$f_{x}(x, y)=\frac{2(x-4)+2 x}{2 \sqrt{(x-4)^{2}+(y+8)^{2}+\left(x^{2}+y^{2}\right)}}$ and $f_{y}(x, y)=\frac{2(y+8)+2 y}{2 \sqrt{(x-4)^{2}+(y+8)^{2}+\left(x^{2}+y^{2}\right)}}$.
$f_{x}=0$ when $2(x-4)+2 x=0$, that is, $4 x-8=0$, so $x=2$.
$f_{y}=0$ when $2(y+8)+2 y$, that is, $4 y+16=0$, so $y=-4$.
This gives critical point $(2,-4)$. Since these are the coordinates of a point on the cone, we get $z=\sqrt{2^{2}+(-4)^{2}}=\sqrt{20}$.

Answer: Point $(2,-4, \sqrt{20})$.

Ex. 11. ST \#3 Ex. 5: Find the absolute maximum and the absolute minimum of the function $f(x, y)=x^{3}-x y$ on the region bounded below by parabola $y=x^{2}-1$ and above by line $y=3$. You will get credit only if all critical points are found.

Solution: The curves intersect, when $x^{2}-1=3$, that is, when $x= \pm 2$.
Thus, we need to consider the region above $x^{2}-1$ and below 3 for $x$ in the interval $[-2,2]$.
Region's interior: $\quad f_{x}(x, y)=3 x^{2}-y$ and $f_{y}(x, y)=-x$. This leads to system $3 x^{2}-y=0$ and $-x=0$, with only solution $(x, y)=(0,0)$. This point belongs to the region. This is our first critical point.

Lower boundary: $y=x^{2}-1$ and $-2 \leq x \leq 2$. Then
$g(x)=f\left(x, x^{2}-1\right)=x^{3}-x\left(x^{2}-1\right)=x$ and $g^{\prime}(x)=1$ is never 0.
So, there are no true critical points, but we need to consider the endpoints of $g, x= \pm 2$.
This give us the critical points $(x, y)=( \pm 2,3)$.

Upper boundary: $y=3$ and $-2 \leq x \leq 2$. Then
$g(x)=f(x, 3)=x^{3}-3 x$ and $g^{\prime}(x)=3 x^{2}-3$, which is 0 when $x= \pm 1 \in[-2,2]$.
This give us the critical points $(x, y)=( \pm 1,3)$. (Plus the end points $(x, y)=( \pm 2,3)$, considered above.)

Checking the critical points: $\quad f(0,0)=0$;
$f(2,3)=2^{3}-6=2 ; f(-2,3)=(-2)^{3}+6=-2 ;$
$f(1,3)=1^{3}-3=-2 ; f(-1,3)=(-1)^{3}+3=2$.
$f(1,3)=1^{3}-3=-2 ; f(-1,3)=(-1)^{3}+3=2$;
Answer: $f$ has the absolute maximum value 2, at points $(2,3)$ and $(-1,3)$.
$f$ has the absolute minimum value -2 , at points $(-2,3)$ and $(1,3)$.

Ex. 12. ST \#4 Ex. 1(a)\&(c): Set up the integral formulas, including the limits of the integrations, for the following problems. Do not evaluate the integrals!
(a) The volume of the solid bounded by $z=x^{2}+y^{2}, z=0, x=0, y=0$, and $x+y=1$.

Solution: If $T$ is a triangle bounded by $x=0, y=0$, and $x+y=1$ (i.e., $y=1-x$ ), then $V=\iiint_{E} 1 d V=\iint_{T} \int_{0}^{x^{2}+y^{2}} 1 d z d A=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x^{2}+y^{2}} 1 d z d y d x$
(c) The mass of the solid $T$ with the density $\delta(x, y, z)=x^{2}+e^{z}$ bounded by the surfaces: $6 x+2 y+z=12, x=0, y=0$, and $z=0$.

Solution: The solid is a tetrahedron with a triangular base $B$ on the $x y$-plane $z=0$ bounded by $6 x+2 y=12, x=0, y=0$. The upper bound of $T$ is $z=12-6 x-2 y$. So, mass $=\iiint_{T} \delta(x, y, z) d V=\iint_{B} \int_{0}^{12-6 x-2 y}\left(x^{2}+e^{z}\right) d z d A$.
Since the triangle side $6 x+2 y=12$ means that $y=6-3 x$, which quals 0 for $x=2$, we get mass $=\int_{0}^{2} \int_{0}^{6-3 x} \int_{0}^{12-6 x-2 y}\left(x^{2}+e^{z}\right) d z d y d x$.

Ex. 13. ST \#4 Ex. 2: Evaluate the integrals:
(a) $\int_{0}^{1} \int_{0}^{\pi} \frac{1}{x+1}+\sin y d y d x=$

Solution: int $=\int_{0}^{1}\left[\frac{1}{x+1} y-\cos y\right]_{0}^{\pi} d x=\int_{0}^{1}\left(\frac{1}{x+1} \pi-(\cos \pi-\cos 0)\right) d x$. So int $=\int_{0}^{1}\left(\frac{1}{x+1} \pi-(-1-1)\right) d x=[\pi \ln |x+1|+2 x]_{0}^{1}=\pi(\ln 2-\ln 1)+2=\pi \ln 2+2$
(b) $\int_{-2}^{0} \int_{0}^{y}\left(x+2 y^{2}\right) d x d y=$

Solution: $\quad$ int $=\int_{-2}^{0}\left[\frac{1}{2} x^{2}+2 y^{2} x\right]_{x=0}^{x=y} d y=\int_{-2}^{0}\left(\frac{1}{2} y^{2}+2 y^{3}\right) d y=\left[\frac{1}{6} y^{3}+\frac{1}{2} y^{4}\right]_{-2}^{0}=$ $0-\left(\frac{1}{6}(-8)+\frac{1}{2} 16\right)=\frac{4}{3}-8=-6 \frac{2}{3}$
(c) $\iint_{R} \frac{d y d x}{\sqrt{9-x^{2}-y^{2}}}$, where $R$ is the second quadrant region bounded by $x^{2}+y^{2}=4$.

Solution: We use the polar coordinates, in which the region $R$ is given as $0 \leq r \leq 2$ and $\pi / 2 \leq \theta \leq \pi$. So, in the second equation using substitution $u=9-r^{2}$,

$$
\begin{aligned}
& \text { int }=\int_{\pi / 2}^{\pi} \int_{0}^{2}\left(9-r^{2}\right)^{-1 / 2} r d r d \theta=\int_{\pi / 2}^{\pi}\left[-\left(9-r^{2}\right)^{1 / 2}\right]_{0}^{2} d \theta= \\
& \int_{\pi / 2}^{\pi}\left[-\left((9-4)^{1 / 2}-9^{1 / 2}\right)\right]_{0}^{2} d \theta=[3-\sqrt{5}]_{\pi / 2}^{\pi}=\frac{3-\sqrt{5}}{2} \pi .
\end{aligned}
$$

Ex. 14. ST \#4 Ex. 3: Find the mass of the solid bounded by the hemisphere $x^{2}+y^{2}+z^{2} \leq$ $R^{2}, z \geq 0$, with the density $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.
Solution: We use the spherical coordinates. Since the solid, $T$, is the upper hemisphere, we get
mass $=\iiint_{T} \delta(x, y, z) d V=\iiint_{T}\left(x^{2}+y^{2}+z^{2}\right) d V=\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{R}\left(\rho^{2}\right) \rho^{2} \sin \phi d \rho d \theta d \phi=$ $\int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left[\frac{1}{5} \rho^{5} \sin \phi\right]_{0}^{R} d \theta d \phi=\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \frac{1}{5} R^{5} \sin \phi d \theta d \phi=\int_{0}^{\pi / 2}\left[\left(\frac{1}{5} R^{5} \sin \phi\right) \theta\right]_{0}^{2 \pi} d \phi=$ $\int_{0}^{\pi / 2} \frac{2}{5} \pi R^{5} \sin \phi d \phi=\left[\frac{2}{5} \pi R^{5}(-\cos \phi)\right]_{0}^{\pi / 2}=-\frac{2}{5} \pi R^{5}(\cos (\pi / 2)-\cos 0)=-\frac{2}{5} \pi R^{5}(0-1)=$ $\frac{2}{5} \pi R^{5}$

Ex. 15. ST \#4 Ex. 4: Find the mass of the plane lamina bounded by $x=0$ and $x=9-y^{2}$ with density $\delta(x, y)=y^{2}$.
Solution: Notice that $x=0$ and $x=9-y^{2}$ when $9-y^{2}=0$ that is, when $y= \pm 3$. mass $=\iint_{R} \delta(x, y) d A=\int_{-3}^{3} \int_{0}^{9-y^{2}} y^{2} d x d y=\int_{-3}^{3}\left[x y^{2}\right]_{0}^{9-y^{2}} d y=\int_{-3}^{3} y^{2}\left(9-y^{2}\right) d y=$ $\int_{-3}^{3}\left(9 y^{2}-y^{4}\right) d y=\left[3 y^{3}-\frac{1}{5} y^{5}\right]_{-3}^{3}=3(27+27)-\frac{1}{5}(243+243)=162-97.2=64.8$

Ex. 16. ST \#4 Ex. 6: Evaluate the integral, where $C$ is the graph of $y=x^{3}$ from $(-1,-1)$ to $(1,1)$
$\int_{C} y^{2} d x+x d y=$
Solution: Clearly $x$ changes from -1 to 1 . Put $x=t$. Then $y(t)=t^{3}$ and $-1 \leq t \leq 1$ and $\int_{C} y^{2} d x+x d y=\int_{-1}^{1}(y(t))^{2} x^{\prime}(t) d t+x(t) y^{\prime}(t) d t=\int_{-1}^{1}\left[\left(t^{3}\right)^{2} 1+t\left(3 t^{2}\right)\right] d t=\int_{-1}^{1}\left(t^{6}+3 t^{3}\right) d t=$ $\left[\frac{1}{7} t^{7}+\frac{3}{4} t^{4}\right]_{-1}^{1}=\frac{1}{7}(1+1)+\frac{3}{4}(1-1)=\frac{2}{7}$

Ex. 17. ST \#4 Ex. 8: Find a potential function of the vector field and use the fundamental theorem for line integrals to evaluate
$\int_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}(\sin y+y \cos x) d x+(\sin x+x \cos y) d y=$
Solution: We have $P=\sin y+y \cos x$ and $Q=\sin x+x \cos y$. It is easy to see that $\frac{\partial P}{\partial y}=\cos y+\cos x=\frac{\partial Q}{\partial x}$ so indeed we can find the potential function $f(x, y)$. We have
$f(x, y)=\int P d x=\int \sin y+y \cos x d x=x \sin y+y \sin x+K(y)$.
Taking partial derivative, in terms of $y$, of both side we get
$x \cos y+\sin x+K^{\prime}(y)=\frac{\partial f}{\partial y}=Q=\sin x+x \cos y$, so that $K^{\prime}(y)=0$ and $K(y)=C$.
So, the potential function $f(x, y)=x \sin y+y \sin x+C$ and

$$
\text { int }=[f(x, y)]_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}=[x \sin y+y \sin x]_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}=(\pi \sin \pi+\pi \sin \pi)-\left(\frac{\pi}{2} \sin \frac{\pi}{2}+\frac{\pi}{2} \sin \frac{\pi}{2}\right)=
$$ $(0+0)-\left(\frac{\pi}{2}+\frac{\pi}{2}\right)=-\pi$

Ex. 18. ST \#4 Ex. 9: Apply Green's theorem to evaluate the following integral, where the simple closed curve $C$, with counter clockwise direction, is the boundary of the circle $x^{2}+y^{2}=1$.
$\oint_{C}\left(\sin x-x^{2} y\right) d x+x y^{2} d y=$
Solution: Let $D$ denoted the disk $x^{2}+y^{2} \leq 1$.
By Green's theorem int $=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$, where $P=\sin x-x^{2} y$ and $Q=x y^{2}$. So, int $=\iint_{D}\left(y^{2}-\left(-x^{2}\right)\right) d A=\iint_{D}\left(x^{2}+y^{2}\right) d A$
Changing to the polar coordinates, we get
int $=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{4} r^{4}\right]_{0}^{1} d \theta=\int_{0}^{2 \pi} \frac{1}{4} d \theta=\left[\frac{1}{4} \theta\right]_{0}^{2 \pi}=\frac{1}{2} \pi$

