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Set Theory, Math 783, Spring 2016:
Notes and homework assignments

Krzysztof Chris Ciesielski

Class of January 12:
Handed and discussed course syllabus.
Presented the solutions of the following problems related to Final Test of

Fall 2015:

Ex. Show that there exists a function f :R → R with the property that
|{x ∈ R: f(x) = g(x)}| < c for every continuous g:R→ R.

Solution: Recall that the class C(R) of continuous functions g:R→ R has
cardinality continuum. Let {gξ: ξ < c} be an enumeration of C(R) and let
{rξ: ξ < c} be an enumeration of R (with no repetitions).

For every ξ < c choose f(rξ) ∈ R \ {gζ(rξ): ζ < ξ}. (The choice can be
made, since |{gζ(rξ): ζ < ξ}| ≤ |ξ| < c = |R|.) Then f is defined on every
real number and it as desired. Indeed, for every g ∈ C(R) there is a ξ < c
such that g = gξ, and so the set

{x ∈ R: f(x) = g(x)} = {r ∈ R: f(r) = gξ(r)} ⊂ {rζ : ζ < ξ}

has cardinality ≤ |ξ| < c.

This is similar to:

Ex. Let κ be an infinite regular cardinal. Show that for every family F ⊂ κκ

with |F| ≤ κ there exists a function h:κ→ κ such that for every f ∈ F

|{α < κ:h(α) ≤ f(α)}| < κ.

Solution (sketch): Let F = {fξ: ξ < κ}. For every α < c choose

h(α) ∈ κ \
⋃
ξ≤α

(fξ(α) + 1) = κ \
⋃
ξ≤α

{η: η ≤ fξ(α)},

so that h(α) > fξ(α) for every ξ ≤ α.
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The choice can be made since, by regularity of κ,
⋃
ξ≤α(fξ(α) + 1) is

bounded in κ. Then, for every fξ ∈ F the set

{α < κ:h(α) ≤ fξ(α)} ⊂ {α < κ:α < ξ} = ξ

has cardinality < κ, i.e., h is as needed.

(We noted, that this is of interest even when κ = ω.)

Ex. Construct an f :R → R such that f−1(r) is a Bernstein set for every
r ∈ R.

Solution: Let P be that family of all perfect subsets of R. Then |P×R| = c,
so we can choose an enumeration {〈Pξ, rξ〉: ξ < c} of P × R.

By induction, choose a sequence {xξ: ξ < c} such that

• xξ ∈ Pξ \ {xζ : ζ < ξ}.

The choice can be made, since |{xζ : ζ < ξ}| ≤ |ξ| < c = |Pξ|.
Since xζ 6= xξ for every ζ < ξ < c, we can define f on {xξ: ξ < c} by

putting f(xξ) = rξ for every ξ < c and extending it in an arbitrary way on
R \ {xξ: ξ < c}.

To see that f is as desired, notice that f−1(r)∩P 6= ∅ for every r ∈ R and
P ∈ P . Indeed, if ξ < c is such that 〈Pξ, rξ〉 = 〈P, r〉, then xξ ∈ f−1(rξ)∩Pξ =
f−1(r) ∩ P .

Thus, for every r ∈ R, f−1(r) is a Bernstein set, since both f−1(r) and
its complement (which contain f−1(s) for any s 6= r) intersect every P ∈ P .



Set Theory, Math 783, Spring 2016 last updated: April 6, 2016 3

Class of January 14:
Review:

• We will study the Axiomatic Set Theory

– Take a look (at home) at the ZFC axioms from Appendix A.

– Recall, that there always will exist statement independent of the
axioms.

• Definitions of: well-ordered set, order isomorphism, initial segment, and
of O(x0).

• Theorems 4.1.5: Every proper initial segment S of a well-ordered set
W is of the form O(ξ) for some ξ ∈ W .

• Theorems 4.1.6: (Principle of transfinite induction) If a set A is well-
ordered, B ⊂ A, and for every x ∈ A the set B satisfies the condition

O(x) ⊂ B ⇒ x ∈ B, (1)

then B = A.

• Sec 4.2: Ordinal numbers the in von Neumann form: sets of their
predecessors.

• Sec 4.3: Definition by transfinite induction: big part of this semester
study.

• (Well-ordering or Zermelo’s theorem) Every nonempty set X can be
well ordered.

• Sec 5.1: Carinal numbers as initial ordinals. Cantor’s Theorem.

• Sec 5.2: Cardinal arithmetic.

Cor 5.2.5: If λ and κ are infinite cardinals then

κ⊕ λ = κ⊗ λ = max{κ, λ}.

Thm 5.2.11: |R| = |2ω| = |P(ω)| = c.
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Read at home Exercise 4 page 73: If κ is an infinite cardinal and |Xα| ≤ κ
for all α < κ, then

∣∣⋃
α<κXα

∣∣ ≤ κ.

Solution. If
⋃
α<κXα = ∅, then clearly the inequality holds. So, assume

that
⋃
α<κXα 6= ∅ and choose x ∈

⋃
α<κXα. For every α < κ let X∗α = Xα if

Xα 6= ∅ and Xα = {x}, otherwise. Then
⋃
α<κXα =

⋃
α<κX

∗
α and |X∗α| ≤ κ

for all α < κ.
For every α < κ let fα be a surjection from κ ontoX∗α. (We neededX∗α 6= ∅

to ensure existence of fα.) Then function F :κ × κ →
⋃
α<κX

∗
α, F (α, β) =

fα(β) is a surjection. Therefore
∣∣⋃

α<κXα

∣∣ =
∣∣⋃

α<κX
∗
α

∣∣ ≤ |κ × κ| = κ, as
required.

Ex. For an arbitrary set Γ let

c0(Γ) = {f ∈ RΓ: {γ ∈ Γ: |f(γ)| > ε} is finite for every ε > 0}

and
c00(Γ) = {f ∈ RΓ: {γ ∈ Γ: |f(γ)| 6= 0} is finite}.

Find the cardinalities of the following sets: c0(ω), c0(ω1), c0(c+), c00(ω),
c00(ω1), and c00(c+).

Solution. We will show that for every cardinal κ ≥ ω:

max{κ, c} ≤ |c00(κ)| ≤ |c0(κ)| ≤ κω.

Since, for ω ≤ κ ≤ c we have max{κ, c} = κω = c, the inequalities im-
ply that |c00(ω)| = |c0(ω)| = |c00(ω1)| = |c0(ω1)| = c. Similarly, the equa-
tion max{c+, c} = (c+)ω = c+ and the inequalities imply that |c00(c+)| =
|c0(c+)| = c+.

The inequality κ ≤ |c00(κ)| follows from inclusion {χ{ξ}: ξ < κ} ⊂ c00(κ),
as clearly |{χ{ξ}: ξ < κ}| = κ.

c ≤ |c00(κ)| follows from inclusion {rχ{0}: r ∈ R} ⊂ c00(κ), as clearly
|{rχ{0}: r ∈ R}| = c.
|c00(κ)| ≤ |c0(κ)| is justified by inclusion c00(κ) ⊂ c0(κ).
To see |c0(κ)| ≤ κω, for every f ∈ RΓ let supp(f) = {γ ∈ Γ: f(γ) 6= 0} and

notice that for every f ∈ c0(κ) the set supp(f) =
⋃∞
n=1{γ ∈ Γ: |f(γ)| > 1

n
}

is at most countable, as a countable union of finite sets. Since the mapping
c0(κ) 3 f 7→ f � supp(f) ∈

⋃
S∈[κ]≤ω RS is injective and |RS| = (2ω)|S| ≤ c,

we get |c0(κ)| ≤
∣∣∣⋃S∈[κ]≤ω RS

∣∣∣ ≤ [κ]≤ω| ⊗ c = κω ⊗ 2ω = κω, as needed.
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Class of January 19:

Review of Section 5.3: Cofinality

• A cofinality cof(α) of a limit ordinal number α is the smallest β for
which there exists a map f : β → α coffinal in α, that is, such that
α =

⋃
ξ<β f(ξ). (You can define also cof(α + 1) = 1.)

• There is strictly increasing coffinal map f : cof(α)→ α.

• cof(α) is always a cardinal number.

• A limit ordinal number α is regular provided α = cof(α). In particular,
every regular limit ordinal number is a cardinal number.

• cof(α) is a regular ordinal (and cardinal): cof(cof(α)) = cof(α).

• ω is a regular cardinal.

• κ+ is a regular cardinal for every infinite cardinal κ.

• If A ⊂ α and |A| < cof(α), then A ⊂ β for some β < α, that is, A is
bounded in α.

• κcof(κ) > κ for every infinite cardinal κ.

• cof(c) > ω..

Solve the remaining two exercises from the Fall 2015 final test

Ex. 1. Show that |S| = 2κ, where S = {f ∈ κµ: |{γ ∈ µ: f(γ) 6= 0}| ≤ κ}
while µ = κ+ and κ is an infinite cardinal.

Solution: For every α < µ let Sα = {f ∈ κµ: {γ ∈ µ: f(γ) 6= 0} ⊂ α}.
Since µ = κ+ is a regular cardinal, for every f ∈ S there is an α < µ such
that {γ ∈ κ: f(γ) 6= 0} ⊂ α, that is, f ∈ Sα. So, S =

⋃
α<µ Sα. Also, the

map Sα 3 f 7→ f � α ∈ κα is a bijection. So, |Sα| = |κα| = κ|α| ≤ κκ = 2κ.
Hence, S is a union of κ+ ≤ 2κ sets, each of cardinality ≤ 2κ. So, |S| ≤ 2κ.

On the other hand, |S| ≥ |Sκ| = |κκ| = 2κ. Thus, |S| = 2κ.
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Ex. 3. Construct Bernstein set B ⊂ R with B + B = R. (Recall, that a
Bernstein set is not Lebesque-measurable and has no Baire property.)

Solution: Let {Pξ: ξ < c} be an enumeration of all perfect subsets of R
and let {rξ: ξ < c} be an enumeration of R.

Aiming for B = {bξ: ξ < c} ∪ {rξ − bξ: ξ < c}, by transfinite induction on
ξ < c we define the sequences 〈aξ: ξ < c〉 and 〈bξ: ξ < c〉 by choosing in step
ξ < c:

(Iξ) bξ ∈ Pξ \Dξ, where Dξ = {aζ : ζ < ξ} ∪ {rξ − aζ : ζ < ξ};

(Jξ) aξ ∈ Pξ \ Eξ, where Eξ = {bζ : ζ ≤ ξ} ∪ {rζ − bζ : ζ ≤ ξ}.

This can be done since |Pξ| = c, while |Eξ| ≤ |ξ + 1| ⊕ |ξ + 1| < c and
|Dξ| ≤ |ξ|⊕|ξ| < c. This finishes the inductive construction of the sequences.

The purpose of sets Dξ and Eξ is to ensure that the set A = {aξ: ξ < c}
is disjoint with B. Indeed, this is the case, since for any ξ, ζ < c we have
aξ 6= bζ and aξ 6= rζ − bζ :

• this is guaranteed by (Jξ) when ξ ≥ ζ, and

• by (Iζ) when ζ > ξ (as bζ 6= rζ − aξ implies aξ 6= rζ − bζ).

Now, B is a Bernstein set since for every perfect set P :

• P 6⊂ B, as aξ ∈ P ∩A ⊂ P ∩ (R \B), where ξ < c is such that P = Pξ;

• P 6⊂ R \B, as bξ ∈ P ∩B, where ξ < c is such that P = Pξ.

Finally, B + B = R, since for every r ∈ R there ξ < c for which r = rξ
and so, r = rξ is a sum of bξ, rξ − bξ ∈ B.

Next class, we will go to new material: Chapter 7

Class of January 21:
Started Section 7.2: Discussed material up to Theorem 7.2.5. The proof

of this theorem was sketched.
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Class of January 26:
Finish the proof of Theorem 7.2.5.
Discuss briefly Exercises 1 and 3.
Go over Section 7.1.

Written assignment for February 2: Prove the following theorem of
Sierpiński and Zygmund:1

There exists a function f :R → R, known as Sierpiński-Zygmund function,
such f � X is discontinuous for every X ∈ [R]c.

Hint: Use (you do not need to prove this) the fact that every continuous
function h:X → R, with X ⊂ R, has a continuous extension h̄:G → R to
a Gδ set G ⊂ R. (This can be proved by noticing that the set of all z ∈ R
for which the limit limx→z h(x) does not exist is an Fσ set.) Noticing this
extension result, in the content of this theorem, is the key in the Sierpiński-
Zygmund result.

Class of January 28:
Started Section 7.3: Discussed material up to Corollary 7.3.7. Started

(sketches) the proof of Theorem 7.3.8. So far we proved that

• If a function f :R → R has a disconnected graph, then there exists a
closed set P ⊂ R2 disjoint with (the graph of) f and such that its
projection p[P ] contains a non-trivial interval.

Class of February 2:
Finish Section 7.3: prove (finish) Theorem 7.3.8 and Theorem 7.3.9 (in-

cluding lemmas).
Lemmas left for the next class.

1This is the correction of Exercise 5, p. 111. The statement of this exercise is true,
but requires no hint. If you cannot prove the general statement, try first prove its version
from Exercise 5 (without using the hint).
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Class of February 4:
Finish the proof of Theorem 7.3.9, including Lemmas 7.3.10 and 7.3.11.
Start Chapter 8. (We will skip section 7.4.)

Written assignment for Thursday, February 18. (I may consider
this as a take-home Mid Term Test.) Solve Exercise 3 page 117. Keep
the solutions of parts (a) and (b) separate—they will be graded separately.

Hint: For part (a), construct V by a transfinite induction.
For part (b) start with a Hamel H basis which is a Bernstein set. It might

be convenient to use one that contains 1 (i.e., with 1 ∈ H). If used, explain
why such an H exist.

On Tuesday, February 9, Prof. Wojciechowski will give a lecture.
(Cancelled due to bad weather.)
There will be no class on Thursday, February 11.

Class of February 16:
Covered section 8.1 up to, including, the proof of Rasiowa-Sikosrki lemma.

Class of February 18:
Collect assignment.
Continue covering section 8.1: covered up to statement of Theorem 8.1.5

and proved Lemma 8.1.8.

Class of February 23:
Finish section 8.1 by restating Theorem 8.1.5, proving Lemma 8.1.9, and

proving the theorem.
Start going over section 8.2, on Martin’s Axiom. (Covered up to, includ-

ing Theorem 8.2.1.)

Assignment alternative to one of the party of previous assignment.
Solve Exercise 1 page 138. You need to use Rasiowa-Sikorski Lemma (and
the language of partial ordered set) to get a credit.
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Class of February 25:
Restate Theorem 8.1.5 on the consistency of the Martin’s Axiom, MA,

and ¬CH, including the definition of a ccc PO set.
Go over the consequences of MA, starring with Theorem 8.2.2 on the

existence of scale.
Went also over a big part of the proof of Theorem 8.2.3. Concluded

Corollaries 8.2.4 and 8.2.5.

Class of March 1:
Hand the solutions of Exercise 3 page 117: assigned on February 18.
Also briefly discuss the solution of part (b) of this problem.
Finish the proof of Theorem 8.2.3.
Time permitting, go over Theorem 8.2.6. (Not covered.)
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Solutions of the assignment of February 4, for February 18: Exer-
cise 3, p. 117.

Ex. 3 page 117: Construct a Vitali et V such that:

(a) V + V = R;

(b) V + V is a Bernstein set.

Solution: Part (a): Let R = {xξ ∈ R: ξ < c}. We will choose, by induction
on ξ < c, the sequence 〈vξ ∈ R: ξ < c〉 aiming for V being an extension of the
sets Vξ =

⋃
ζ<ξ{vζ , xζ−vζ}. This will guarantee that V +V = R, as for every

x ∈ R there is ξ < c such that x = xξ = vξ +(xξ−vξ) ∈ Vξ+1 +Vξ+1 ⊂ V +V .
The trick is to ensure that no two elements of Vξ are in the ∼ relation.

For this, choose vξ ∈ R outside of the following set, of cardinality < c:

(Q + Vξ) ∪ [xξ − (Q + Vξ)] ∪ (xξ/2 + Q).

The first set, Q + Vξ, ensures that vξ 6∼ v for every v ∈ Vξ. The second set,
xξ− (Q+Vξ), ensures that xξ− vξ 6∼ v for every v ∈ Vξ. While the third set,
xξ/2 + Q, ensures that xξ − vξ 6∼ vξ.

Thus, the construction ensures that no two distinct elements of Vc are in
the ∼ relation. Finally, we can extend V to a full Vitali set V , which will
not affect that fact that V + V = Vc + Vc = R.

Part (b): Let H be a Hamel basis from Corollary 7.3.7, that is, such that
|H ∩ P | = c for every perfect set P .

First, notice that we can assume that 1 ∈ H. Indeed, there exist distinct
x1, . . . , xn ∈ H and nonzero numbers q1, . . . , qn ∈ Q with the property that
1 = q1x1 + · · · + qnxn. Then (H \ {x0}) ∪ {1} is the Hamel basis with the
desired properties.

Now, assuming that indeed 1 ∈ H, notice that V = LINQ(H \ {1}) is a
desired Vitali set.

Indeed, it is a Vitali set, since for every every x ∈ R there exist unique
numbers v ∈ V and q ∈ Q such that x = v + q · 1. (This follows from the
uniqueness of a representation of each number in a Hamel basis.)

To see that V is a Bernstein set, notice that V + V = V . Clearly, V
intersects every perfect set, since so does H \{1} ⊂ V . Also, R\V intersects
every perfect set, since so does its subset 1 + V , being a translation of a set
with such property.



Set Theory, Math 783, Spring 2016 last updated: April 6, 2016 11

Class of March 3:
State Theorem 8.2.6. Time permitting, it will be proved later in the

semester.
State and prove Theorem 8.2.7.
Time permitting, start discussing Theorem 8.2.8.

Homework assignments. Start working on Exercises 2 and 3, page 153.

Class of March 8:
State and prove Theorem 8.2.8.

Class of March 10:
Discuss a bit a philosophy of why we use properties like MA or CH.
Go over some additional details of the proof of Theorem 8.2.8,
State and prove Corollaries 8.2.9 and 8.2.10.

Class of March 15:
State and prove Lemma 8.2.11.
Start proving Theorem 8.2.12: reduced transfinite induction requirements

to the main combinatorial task.

Class of March 17:
Finish proving Theorem 8.2.12.
After Spring break: move to the next section.
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Class of March 29:
Section 8.3. Introduction to Suslin Hypothesis (SH).
Prove of Theorem 8.3.1, that MA+not CH implies (SH).

Class of March 31:
Went over Lemma 8.3.2.
Stated Diamond Principle ♦ and proved Proposition 8.3.5.
Still no definition of closed unbounded sets club.

Class of April 5:
Define closed unbounded sets, club, and stationary sets.
Go over Propositions 8.3.3 and 8.3.4.
Go over Lemma 8.3.6.

Written assignment for Tuesday, April 12. Solve Exercise 4 page 162.

Class of April 7:
Possibly, solve in class Exercises 5 and 6, page 162.
Start the proof of Theorem 8.3.7.


