MATH 251
Instr. K. Ciesielski
Spring 2016
SAMPLE FINAL TEST
(longer than the actual Final Test)

Solve the following exercises. Show your work.

Ex. 1. ST #1 Ex 3: Find the determinant of the matrix. Each time you expand the the
matrix, you must expand it over a row or column that has the largest number of zeros. If
necessary, use the row (or column) reduction method to create additional zeros.

-1 2 0 0
1 -1 1 -1
A= 1 2 0 1
0 3 1 2

Solution: Sol: If we subtract from raw # 4 the raw # 2 and expand by the third column,
we get
-1 2
1 -1
1 2
-1 4
Next, subtracting from raw # 3 three times the raw # 2 and expanding again by the third
column, we get

Al =

O O = O
—_

-1 2

2 0
Al =(-1)] 1 2 1 :(_1)(_1)‘ |:2—(—8):10.
) . —4 -2

Ex. 2. ST #1 Ex 4: Find the inverse matrix of

1 0 1
A= -1 1 2
01 -1
Solution: Sol: We need to transform [A; I] to [[; B]. Then B = A~}
10 1100 10 1100
A1) =| -1 1 01 0| +R — |01 3110 —
| 01 -1 00 1 01 -1 00 1| —Ry
10 1 1 00 10110 O —Ry
01 3 1 120 —-1013 11 0| —-3R; —
(00 —4 -1 -1 1] x—1 001+ 1 1
(101 3 —3
010 % 3
0015 5 -

N e

Answer: A7 =
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Ex. 3. ST #1 Ex 6: Let a = (0,1,2), b = (=1,0,7), and ¢ = (2,3, —1). Evaluate:
2a—b+c, |c|, and (a-b) (b x ¢). (Do not confuse vectors with numbers. No partial credit
for solutions with such errors.)

Solution: Sol:
2a—b+c=2(0,1,2) — (—=1,0,7) + (2,3, —1) = (0,2,4) + (1,0, =7) + (2,3, —1) = (3,5, —4)

e =20+ 32+ (-1)2=VI+9+1=V11

Asa-b=1(0,1,2)-(-1,0,7) =0+ 0+ 14 = 14 and
ik
0 7 -1 7 1 0
bxc=|-1 0 7 :il ’—j‘ |+k‘ |:
> 3 3 -1 2 -1 2 -3

i(0—21) — j(1 — 14) + k(=3 — 0) = (=21,13, —3), we have
(a-b) (bxc) =14 (=21,13,-3) = (=14 -21,14 - 13, —3 - 14).

Ex. 4. ST #2 Ex 1: Find a vector equation of the line that passes through the point
P(11,13,—7) and is perpendicular to the plane with the equation: x — 2z = 17.

Solution: The direction vector v of the line coincides with the normal vector of the plane:
(1,0,-2).

T 11 1
Answer: (z,y,z) = (11,13, =7) +¢(1,0,—2),or | y | = | 13 | +¢ 0
z —7 -2

Ex. 5. ST #2 Ex 7: Let v(t) = i(t + ¢)~' + k ¢* be a velocity of a particle. Find the
acceleration vector a(t) of the particle and its position vector r(t), where its initial position
was r(0) = 3i.
Solution: a(t) = v/(t) = —(t +e)~%i + 3tk.
r(t) = [v(t)dt =iln|t +e| + k t*/4+ C. To find C, we calculate r(0):
iln|0+e|+k0*/44 C = 3i. Since Ine = 1, we get i+ C = 3i and C = 2i. Therefore
r(t) =ilnt +e| + kt'/4 +2i = (2 +In|t +e|)i + Lk
Answer: a(t) = —(t +e)?i+3t’k and r(t) = (2 + In|t + e|)i + %k.

Ex. 6. ST #2 Ex 10: Sketch and fully describe the domain of the following func-
tion, including the name of the surface representing the domain’s boundary: f(z,y,z2) =
In (25 — 42% — 9y* — 2?).

Solution: Solution: The argument of the logarithm must be positive: 25—4x2 —9y? — 22 > 0,
. 2 2
that is, 422 + 9y? + 22 < 25, or =% +aEe t 2 <1

(5/2)2 T (5/3)2
2
+ 4 g—z = 1. Sketch: to be presented

Answer: The points inside the ellipsoid (57;)2 B/3)?

in class.




Ex. 7. ST #3 Ex. 2: Compute the first order partial derivatives of f(x,y,z) = ze™ cos Y.

Solution:
2 2
% = fz = ze" cosy -2z = 2xze” cosy

af
9y

of
0z

= f, = ze” (—siny) = —ze” siny

=f, = e’ cos
Y

Ex. 8. ST #3 Ex. 3: Compute all second order partial derivatives of g(s,t) = e+t sin(3s).

Solution:
gs = 3t cos(3s) gss = —9tsin(3s) gst = 3cos(3s)

gt = 5e™ +sin(3s) gy = 3cos(3s) Gy = 25e>

Ex. 9. ST #3 Ex. 4: Find an equation of the plane tangent to the surface z = 2% — 5y
at the point P(2,1,—1).

Solution:
2y =215 2,(P)=2-2=4;
z, = —15y%  z,(P)=—15-1% = —15;
Normal vector n = (z,(P), z,(P), —1) = (4, —15, —1).
Answer: 4(x —2) —15(y —1) —1(¢+1)=0 or 4o —15y—2+6=0.

Ex. 10. ST #3 Ex. 8: Find the point on the cone z = v/x? + y? which is the closest to
the point (4, —8,0).

Solution:

Solution: Distance of (z,y, z) on the surface from (4, —8,0) is \/(:C — 42+ (y+8)2+ (2 —0)%
Since 2% = x? + y?2, this is equal to
floy) = (r =42+ (y +8)* + (42 +y2).

o 2(z—4)+2z o 2(y+8)+2y
Jal@:9) = 3 e WY = e e e

fe =0 when 2(z — 4) + 2z = 0, that is, 4x — 8 =0, so z = 2.
fy = 0 when 2(y + 8) + 2y, that is, 4y + 16 = 0, so y = —4.
This gives critical point (2, —4). Since these are the coordinates of a point on the cone,

we get 2 = /22 4 (—4)2 = /20.

Answer: Point (2, —4,/20).




Ex. 11. ST #3 Ex. 5: Find the absolute maximum and the absolute minimum of the
function f(x,y) = 23 — 2y on the region bounded below by parabola y = 2> — 1 and above
by line y = 3. You will get credit only if all critical points are found.

Solution: The curves intersect, when 22 — 1 = 3, that is, when z = £2.
Thus, we need to consider the region above z2 —1 and below 3 for z in the interval [—2, 2].

Region’s interior: f,(z,y) = 32> —y and f,(z,y) = —x. This leads to system 3z? —y = 0
and —z = 0, with only solution (z,y) = (0,0). This point belongs to the region. This is our
first critical point.

Lower boundary: y = 2> — 1 and —2 <z < 2. Then
g(z) = f(z,2? = 1) =23 — x(z*> — 1) = x and ¢/(z) = 1 is never 0.
So, there are no true critical points, but we need to consider the endpoints of g, v = £2.
This give us the critical points (z,y) = (£2, 3).

Upper boundary: y =3 and —2 <z < 2. Then
g(z) = f(x,3) = 2 — 3z and ¢'(x) = 32? — 3, which is 0 when = = +1 € [-2,2].
This give us the critical points (z,y) = (£1,3). (Plus the end points (z, y) =
considered above.)

(+2,3),

Checking the critical pomts £(0,0) = 0;
f(2,3)=2°—6=2; f(—2,3) = (— )3+6: —2;
f(1,3) =1 =3= -2 f(-1,3) = (-1)° +3 = 2;

Answer: f has the absolute maximum value 2, at points (2,3) and (—1, 3).
f has the absolute minimum value —2, at points (—2,3) and (1, 3).

Ex. 12. ST #4 Ex. 1(a)&(c): Set up the integral formulas, including the limits of
the integrations, for the following problems. Do not evaluate the integrals!

(a) The volume of the solid bounded by z =22 +9% 2=0,2=0,y=0,and z +y = 1.

Solution: If T is a triangle bounded by x =0,y =0, and z +y =1 (i.e., y =1 — x),
then V = [ [ [p1dV = [ [, & 1 dz dA = [} [172 [F° 1 dz dy dw

(c) The mass of the solid T with the density 6(z,y, z) = x* + e bounded by the surfaces:
6br+2y+2=12, 2 =0,y =0, and z = 0.

Solution: The solid is a tetrahedron with a triangular base B on the zy-plane z = 0
bounded by 6x + 2y = 12, x = 0, y = 0. The upper bound of T is z = 12 — 6z — 2y.
So, mass = [ [ [;(z,y, )dV I g Jo2 072 (2? + €?) dz dA.

Since the triangle side 6z 4+ 2y = 12 means that y = 6 — 3z, which quals 0 for x = 2,

we get mass = [ [O73 [1270T (42 4 ¢?) dz dy de.



Ex. 13. ST #4 Ex. 2: Evaluate the integrals:

1 T ]_
iny dy de =
(a)/o/o x+1+smy y dx

Solution: int = [ Lclﬁy — o8 y}z dr = [y (;?W — (cosm — cos O)) dx. So

int = [ (x%rlﬂ— (—1— 1)) dr = [rln|z 4+ 1]+ 22], = 7(In2 —In1) +2 = 7In2 4 2

o) [ [ o) dw dy =

0
-2

Solution: int = [, BxQ + 21/2”’”}2 dy = [°, (%Zﬁ 4 23/3) dy = [%y?’ X %yﬂ
0— (4(~8)+316) = § — 8 = —62

dy d.
(c) / / yer where R is the second quadrant region bounded by x? + y? = 4.
R

/9—:E2—y27

Solution: We use the polar coordinates, in which the region R is given as 0 < r < 2
and m/2 < 6 < 7. So, in the second equation using substitution u = 9 — 72,

int = [7, [2(9 — )72 dr df = 7, [~(9 — )] db =
Fale (0= -0 o= o ], =

w/2 o

Ex. 14. ST #4 Ex. 3: Find the mass of the solid bounded by the hemisphere 22 +y? 422 <
R? 2z >0, with the density §(z,y, 2) = 2> + y* + 22

Solution: We use the spherical coordinates. Since the solid, T', is the upper hemisphere, we
get
mass = [ [ Jp0(x,y.2) AV = [ [ fp(e® + 32 + 22) dV = [ 2% [F(o2)p* sin 6 dp dO d =

- - X R - - . - X 21

Ry sm¢]0 df do = [ [77 LR sin ¢ dO dop = J7* [(LR%sin o) @]O dp =

/2 2rRPsing do = [%ﬂ'Rs(— Cos ¢)} o —27R%(cos(m/2) — cos0) = —27R%(0 — 1) =

g
2 5 0
gﬂ'R

Ex. 15. ST #4 Ex. 4: Find the mass of the plane lamina bounded by z = 0 and = 9—?

with density d(z,y) = 22

Solution: Notice that z = 0 and x = 9 — 3? when 9 — 3? = 0 that is, when y = £3.
a2 9-y?
mass = [ oo, y)dA = [ 10 22 do dy = 1% [30°07 dy = 1 50— )P dy =
S5 5(9° = 3-9%(y%) +3-9(y°)° — (v*)*) dy = [25(3° = 3%* + 3% — 31°) dy =
f 3
3%y = 3% + Lo° — 7|, =303 +3) =337 +3) + L(3+3%) — (37 +37) =

230 —2.30 4237 — 237 = 2(3 — ;)37 = 23237 = 220306 — 2236



Ex. 16. ST #4 Ex. 6: Evaluate the integral, where C'is the graph of y = z? from (-1, —1)
to (1,1)

/ y? dx + xdy =

C

Solution: Clearly = changes from —1 to 1. Put  =¢. Then y(¢) = t* and —1 <t <1 and
Joy? detady = [1y(y(0))* /(1) di+x(t)y' (1) dt = [1,[(1°)* 144 (362)] dt = [1,(1°+3t%) dt =

1 3,411 1 3 2
[T +3) =i+ +31-1)=2

Ex. 17. ST #4 Ex. 8: Find a potential function of the vector field and use the fundamental
theorem for line integrals to evaluate

(m,m)
/( o) )(Siny+ycosa:) dx + (sinx 4+ z cosy) dy =
w/2,m7/2

Solution: We have P = siny + ycosx and ) = sinz + xcosy. It is easy to see that
oP 0Q

By = COSY +cosx = F< 50 indeed we can find the potential function f(z,y). We have
flz,y) = [Pdx = [siny+ycosx de =xsiny + ysinz + K(y).
Taking partial derivative, in terms of y, of both side we get

xcosy +sinz + K'(y) = %i =@ =sinz + xcosy, so that K'(y) =0 and K(y) = C.
So, the potential function f(x,y) = xsiny + ysinz + C and

int = [f(x,g)}gﬁ)’ﬂm = [zsiny + ysinx]g’/g)mm = (wsinm 4+ 7wsinm) — (5sinf 4+ Zsin%) =
(0+0)—(§+§) = =T

Ex. 18. ST #4 Ex. 9: Apply Green’s theorem to evaluate the following integral, where
the simple closed curve C', with counter clockwise direction, is the boundary of the circle
2?4+ = 1.

7{ (sinz — 2%y) dx + 2y dy =
C
Solution: Let D denoted the disk 2% +y? < 1.

By Green’s theorem int = [ [ (%—g — ?TI;) dA, where P = sinz — 2%y and Q = x9?%. So,

int = [ [p(y* = (=2%)) dA = [ [p (* +y?) dA

Changing to the polar coordinates, we get

int = [ Jo v dr do = 2[4 do = L do = [16] " = in



