
MATH 251
Instr. K. Ciesielski
Spring 2016

SAMPLE FINAL TEST
(longer than the actual Final Test)

Solve the following exercises. Show your work.

Ex. 1. ST #1 Ex 3: Find the determinant of the matrix. Each time you expand the the
matrix, you must expand it over a row or column that has the largest number of zeros. If
necessary, use the row (or column) reduction method to create additional zeros.

A =


−1 2 0 0
1 −1 1 −1
1 2 0 1
0 3 1 2


Solution: Sol: If we subtract from raw # 4 the raw # 2 and expand by the third column,
we get

|A| =

∣∣∣∣∣∣∣∣∣
−1 2 0 0
1 −1 1 −1
1 2 0 1
−1 4 0 3

∣∣∣∣∣∣∣∣∣ = (−1) · 1

∣∣∣∣∣∣∣
−1 2 0
1 2 1
−1 4 3

∣∣∣∣∣∣∣
Next, subtracting from raw # 3 three times the raw # 2 and expanding again by the third
column, we get

|A| = (−1)

∣∣∣∣∣∣∣
−1 2 0
1 2 1
−1 4 3

∣∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣∣
−1 2 0
1 2 1
−4 −2 0

∣∣∣∣∣∣∣ = (−1)(−1)

∣∣∣∣∣ −1 2
−4 −2

∣∣∣∣∣ = 2− (−8) = 10.

Ex. 2. ST #1 Ex 4: Find the inverse matrix of

A =

 1 0 1
−1 1 2

0 1 −1


Solution: Sol: We need to transform [A; I] to [I;B]. Then B = A−1.

[A; I] =

 1 0 1 1 0 0
−1 1 2 0 1 0

0 1 −1 0 0 1

 +R1 →

 1 0 1 1 0 0
0 1 3 1 1 0
0 1 −1 0 0 1


−R2

→

 1 0 1 1 0 0
0 1 3 1 1 0
0 0 −4 −1 −1 1


×− 1

4

→

 1 0 1 1 0 0
0 1 3 1 1 0
0 0 1 1

4
1
4
−1

4

 −R3

−3R3 →

 1 0 1 3
4
−1

4
1
4

0 1 0 1
4

1
4

3
4

0 0 1 1
4

1
4
−1

4


Answer: A−1 =


3
4
−1

4
1
4

1
4

1
4

3
4

1
4

1
4
−1

4

.
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Ex. 3. ST #1 Ex 6: Let a = 〈0, 1, 2〉, b = 〈−1, 0, 7〉, and c = 〈2, 3,−1〉. Evaluate:
2a−b+ c, |c|, and (a ·b) (b× c). (Do not confuse vectors with numbers. No partial credit
for solutions with such errors.)

Solution: Sol:
2a− b+ c = 2〈0, 1, 2〉 − 〈−1, 0, 7〉+ 〈2, 3,−1〉 = 〈0, 2, 4〉+ 〈1, 0,−7〉+ 〈2, 3,−1〉 = 〈3, 5,−4〉

|c| =
√

24 + 32 + (−1)2 =
√

4 + 9 + 1 =
√

14

As a · b = 〈0, 1, 2〉 · 〈−1, 0, 7〉 = 0 + 0 + 14 = 14 and

b× c =

∣∣∣∣∣∣∣
i j k
−1 0 7
2 3 −1

∣∣∣∣∣∣∣ = i

∣∣∣∣∣ 0 7
3 −1

∣∣∣∣∣− j

∣∣∣∣∣ −1 7
2 −1

∣∣∣∣∣+ k

∣∣∣∣∣ 1 0
2 −3

∣∣∣∣∣ =

i(0− 21)− j(1− 14) + k(−3− 0) = 〈−21, 13,−3〉, we have
(a · b) (b× c) = 14 〈−21, 13,−3〉 = 〈−14 · 21, 14 · 13,−3 · 14〉.

Ex. 4. ST #2 Ex 1: Find a vector equation of the line that passes through the point
P (11, 13,−7) and is perpendicular to the plane with the equation: x− 2z = 17.

Solution: The direction vector v of the line coincides with the normal vector of the plane:
〈1, 0,−2〉.

Answer: 〈x, y, z〉 = 〈11, 13,−7〉+ t〈1, 0,−2〉, or

 x
y
z

 =

 11
13
−7

+ t

 1
0
−2

.

Ex. 5. ST #2 Ex 7: Let v(t) = i(t + e)−1 + k t3 be a velocity of a particle. Find the
acceleration vector a(t) of the particle and its position vector r(t), where its initial position
was r(0) = 3i.

Solution: a(t) = v′(t) = −(t+ e)−2i + 3t2k.

r(t) =
∫
v(t) dt = i ln |t+ e|+ k t4/4 + ~C. To find ~C, we calculate r(0):

i ln |0 + e|+ k 04/4 + ~C = 3i. Since ln e = 1, we get i + ~C = 3i and ~C = 2i. Therefore
r(t) = i ln |t+ e|+ k t4/4 + 2i = (2 + ln |t+ e|)i + t4

4
k.

Answer: a(t) = −(t+ e)−2i + 3t2k and r(t) = (2 + ln |t+ e|)i + t4

4
k.

Ex. 6. ST #2 Ex 10: Sketch and fully describe the domain of the following func-
tion, including the name of the surface representing the domain’s boundary: f(x, y, z) =
ln (25− 4x2 − 9y2 − z2).

Solution: Solution: The argument of the logarithm must be positive: 25−4x2−9y2−z2 > 0,
that is, 4x2 + 9y2 + z2 < 25, or x2

(5/2)2
+ y2

(5/3)2
+ z2

52
< 1.

Answer: The points inside the ellipsoid x2

(5/2)2
+ y2

(5/3)2
+ z2

52
= 1. Sketch: to be presented

in class.
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Ex. 7. ST #3 Ex. 2: Compute the first order partial derivatives of f(x, y, z) = zex
2

cos y.

Solution:

∂f
∂x

= fx = zex
2

cos y · 2x = 2xzex
2

cos y

∂f
∂y

= fy = zex
2
(− sin y) = −zex2 sin y

∂f
∂z

= fz = ex
2

cos y

Ex. 8. ST #3 Ex. 3: Compute all second order partial derivatives of g(s, t) = e5t+t sin(3s).

Solution:

gs = 3t cos(3s) gss = −9t sin(3s) gst = 3 cos(3s)

gt = 5e5t + sin(3s) gts = 3 cos(3s) gtt = 25e5t

Ex. 9. ST #3 Ex. 4: Find an equation of the plane tangent to the surface z = x2 − 5y3

at the point P (2, 1,−1).

Solution:

zx = 2x; zx(P ) = 2 · 2 = 4;

zy = −15y2; zy(P ) = −15 · 12 = −15;

Normal vector n = 〈zx(P ), zy(P ),−1〉 = 〈4,−15,−1〉.

Answer: 4(x− 2)− 15(y − 1)− 1(z + 1) = 0 or 4x− 15y − z + 6 = 0.

Ex. 10. ST #3 Ex. 8: Find the point on the cone z =
√
x2 + y2 which is the closest to

the point (4,−8, 0).

Solution:

Solution: Distance of (x, y, z) on the surface from (4,−8, 0) is
√

(x− 4)2 + (y + 8)2 + (z − 0)2.

Since z2 = x2 + y2, this is equal to

f(x, y) =
√

(x− 4)2 + (y + 8)2 + (x2 + y2).

fx(x, y) = 2(x−4)+2x

2
√

(x−4)2+(y+8)2+(x2+y2)
and fy(x, y) = 2(y+8)+2y

2
√

(x−4)2+(y+8)2+(x2+y2)
.

fx = 0 when 2(x− 4) + 2x = 0, that is, 4x− 8 = 0, so x = 2.
fy = 0 when 2(y + 8) + 2y, that is, 4y + 16 = 0, so y = −4.
This gives critical point (2,−4). Since these are the coordinates of a point on the cone,

we get z =
√

22 + (−4)2 =
√

20.

Answer: Point (2,−4,
√

20).
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Ex. 11. ST #3 Ex. 5: Find the absolute maximum and the absolute minimum of the
function f(x, y) = x3 − xy on the region bounded below by parabola y = x2 − 1 and above
by line y = 3. You will get credit only if all critical points are found.

Solution: The curves intersect, when x2 − 1 = 3, that is, when x = ±2.
Thus, we need to consider the region above x2−1 and below 3 for x in the interval [−2, 2].

Region’s interior: fx(x, y) = 3x2−y and fy(x, y) = −x. This leads to system 3x2−y = 0
and −x = 0, with only solution (x, y) = (0, 0). This point belongs to the region. This is our
first critical point.

Lower boundary: y = x2 − 1 and −2 ≤ x ≤ 2. Then
g(x) = f(x, x2 − 1) = x3 − x(x2 − 1) = x and g′(x) = 1 is never 0.
So, there are no true critical points, but we need to consider the endpoints of g, x = ±2.
This give us the critical points (x, y) = (±2, 3).

Upper boundary: y = 3 and −2 ≤ x ≤ 2. Then
g(x) = f(x, 3) = x3 − 3x and g′(x) = 3x2 − 3, which is 0 when x = ±1 ∈ [−2, 2].
This give us the critical points (x, y) = (±1, 3). (Plus the end points (x, y) = (±2, 3),

considered above.)

Checking the critical points: f(0, 0) = 0;
f(2, 3) = 23 − 6 = 2; f(−2, 3) = (−2)3 + 6 = −2;
f(1, 3) = 13 − 3 = −2; f(−1, 3) = (−1)3 + 3 = 2;

Answer: f has the absolute maximum value 2, at points (2, 3) and (−1, 3).
f has the absolute minimum value −2, at points (−2, 3) and (1, 3).

Ex. 12. ST #4 Ex. 1(a)&(c): Set up the integral formulas, including the limits of
the integrations, for the following problems. Do not evaluate the integrals!

(a) The volume of the solid bounded by z = x2 + y2, z = 0, x = 0, y = 0, and x+ y = 1.

Solution: If T is a triangle bounded by x = 0, y = 0, and x+ y = 1 (i.e., y = 1− x),

then V =
∫ ∫ ∫

E 1dV =
∫ ∫

T

∫ x2+y2
0 1 dz dA =

∫ 1
0

∫ 1−x
0

∫ x2+y2
0 1 dz dy dx

(c) The mass of the solid T with the density δ(x, y, z) = x2 + ez bounded by the surfaces:
6x+ 2y + z = 12, x = 0, y = 0, and z = 0.

Solution: The solid is a tetrahedron with a triangular base B on the xy-plane z = 0
bounded by 6x + 2y = 12, x = 0, y = 0. The upper bound of T is z = 12 − 6x − 2y.
So, mass =

∫ ∫ ∫
T δ(x, y, z) dV =

∫ ∫
B

∫ 12−6x−2y
0 (x2 + ez) dz dA.

Since the triangle side 6x + 2y = 12 means that y = 6 − 3x, which quals 0 for x = 2,
we get mass =

∫ 2
0

∫ 6−3x
0

∫ 12−6x−2y
0 (x2 + ez) dz dy dx.
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Ex. 13. ST #4 Ex. 2: Evaluate the integrals:

(a)
∫ 1

0

∫ π

0

1

x+ 1
+ sin y dy dx =

Solution: int =
∫ 1
0

[
1

x+1
y − cos y

]π
0
dx =

∫ 1
0

(
1

x+1
π − (cos π − cos 0)

)
dx. So

int =
∫ 1
0

(
1

x+1
π − (−1− 1)

)
dx = [π ln |x+ 1|+ 2x]10 = π(ln 2− ln 1) + 2 = π ln 2 + 2

(b)
∫ 0

−2

∫ y

0
(x+ 2y2) dx dy =

Solution: int =
∫ 0
−2

[
1
2
x2 + 2y2x

]x=y
x=0

dy =
∫ 0
−2

(
1
2
y2 + 2y3

)
dy =

[
1
6
y3 + 1

2
y4
]0
−2

=

0−
(
1
6
(−8) + 1

2
16
)

= 4
3
− 8 = −62

3

(c)
∫ ∫

R

dy dx√
9− x2 − y2

, where R is the second quadrant region bounded by x2 + y2 = 4.

Solution: We use the polar coordinates, in which the region R is given as 0 ≤ r ≤ 2
and π/2 ≤ θ ≤ π. So, in the second equation using substitution u = 9− r2,

int =
∫ π
π/2

∫ 2
0 (9− r2)−1/2r dr dθ =

∫ π
π/2

[
−(9− r2)1/2

]2
0
dθ =∫ π

π/2

[
−
(
(9− 4)1/2 − 91/2

)]2
0
dθ =

[
3−
√

5
]π
π/2

= 3−
√
5

2
π.

Ex. 14. ST #4 Ex. 3: Find the mass of the solid bounded by the hemisphere x2+y2+z2 ≤
R2, z ≥ 0, with the density δ(x, y, z) = x2 + y2 + z2.

Solution: We use the spherical coordinates. Since the solid, T , is the upper hemisphere, we
get
mass =

∫ ∫ ∫
T δ(x, y, z) dV =

∫ ∫ ∫
T (x2 + y2 + z2) dV =

∫ π/2
0

∫ 2π
0

∫ R
0 (ρ2)ρ2 sinφ dρ dθ dφ =∫ π/2

0

∫ 2π
0

[
1
5
ρ5 sinφ

]R
0
dθ dφ =

∫ π/2
0

∫ 2π
0

1
5
R5 sinφ dθ dφ =

∫ π/2
0

[(
1
5
R5 sinφ

)
θ
]2π
0
dφ =∫ π/2

0
2
5
πR5 sinφ dφ =

[
2
5
πR5(− cosφ)

]π/2
0

= −2
5
πR5(cos(π/2) − cos 0) = −2

5
πR5(0 − 1) =

2
5
πR5

Ex. 15. ST #4 Ex. 4: Find the mass of the plane lamina bounded by x = 0 and x = 9−y2
with density δ(x, y) = x2.

Solution: Notice that x = 0 and x = 9− y2 when 9− y2 = 0 that is, when y = ±3.

mass =
∫ ∫

R δ(x, y)dA =
∫ 3
−3
∫ 9−y2
0 x2 dx dy =

∫ 3
−3

[
1
3
x3
]9−y2
0

dy =
∫ 3
−3

1
3
(9− y2)3 dy =∫ 3

−3
1
3
(93 − 3 · 92(y2) + 3 · 9(y2)2 − (y2)3) dy =

∫ 3
−3(3

5 − 34y2 + 32y4 − 1
3
y6) dy =[

35y − 33y3 + 32

5
y5 − 1

21
y7
]3
−3

= 35(3 + 3)− 33(33 + 33) + 32

5
(35 + 35)− 1

21
(37 + 37) =

2 · 36 − 2 · 36 + 2
5
37 − 2

21
37 = 2(1

5
− 1

21
)37 = 221−5

105
37 = 216

35
36 = 32

35
36

5



Ex. 16. ST #4 Ex. 6: Evaluate the integral, where C is the graph of y = x3 from (−1,−1)
to (1, 1)∫
C
y2 dx+ xdy =

Solution: Clearly x changes from −1 to 1. Put x = t. Then y(t) = t3 and −1 ≤ t ≤ 1 and∫
C y

2 dx+xdy =
∫ 1
−1(y(t))2 x′(t) dt+x(t) y′(t) dt =

∫ 1
−1[(t

3)2 1+t (3t2)] dt =
∫ 1
−1(t

6+3t3) dt =[
1
7
t7 + 3

4
t4
]1
−1

= 1
7
(1 + 1) + 3

4
(1− 1) = 2

7

Ex. 17. ST #4 Ex. 8: Find a potential function of the vector field and use the fundamental
theorem for line integrals to evaluate∫ (π,π)

(π/2,π/2)
(sin y + y cosx) dx+ (sinx+ x cos y) dy =

Solution: We have P = sin y + y cosx and Q = sinx + x cos y. It is easy to see that
∂P
∂y

= cos y + cosx = ∂Q
∂x

so indeed we can find the potential function f(x, y). We have

f(x, y) =
∫
P dx =

∫
sin y + y cosx dx = x sin y + y sinx+K(y).

Taking partial derivative, in terms of y, of both side we get

x cos y + sinx+K ′(y) = ∂f
∂y

= Q = sinx+ x cos y, so that K ′(y) = 0 and K(y) = C.

So, the potential function f(x, y) = x sin y + y sinx+ C and

int = [f(x, y)]
(π,π)
(π/2,π/2) = [x sin y + y sinx]

(π,π)
(π/2,π/2) = (π sin π + π sinπ)− (π

2
sin π

2
+ π

2
sin π

2
) =

(0 + 0)− (π
2

+ π
2
) = −π

Ex. 18. ST #4 Ex. 9: Apply Green’s theorem to evaluate the following integral, where
the simple closed curve C, with counter clockwise direction, is the boundary of the circle
x2 + y2 = 1.∮
C

(sinx− x2y) dx+ xy2 dy =

Solution: Let D denoted the disk x2 + y2 ≤ 1.

By Green’s theorem int =
∫ ∫

D

(
∂Q
∂x
− ∂P

∂y

)
dA, where P = sinx− x2y and Q = xy2. So,

int =
∫ ∫

D (y2 − (−x2)) dA =
∫ ∫

D (x2 + y2) dA

Changing to the polar coordinates, we get

int =
∫ 2π
0

∫ 1
0 r

2 r dr dθ =
∫ 2π
0

[
1
4
r4
]1
0
dθ =

∫ 2π
0

1
4
dθ =

[
1
4
θ
]2π
0

= 1
2
π
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