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Foundations of Geometry, Math 535, Spring 2015: Notes

Krzysztof Chris Ciesielski

Class of January 12:
The goal of the course is to build a solid understanding of Euclidean

geometry (on the plane), as axiom-based theory. This includes not only the
formal derivation of different consequences of the axioms (i.e., high school
covered material), but also discussion of their independence, via describing
different models that satisfies some of the axioms, but not others.

• Take a look at page 123, five Euclid’s postulates.

• Read preliminary Chapters 1 (equivalence relations), 2 (mappings), and
3 (real numbers).

Written assignment for Wednesday, January 14: Exercise 3.2, p. 31:

Ex. 1. Recall that a binary relation ◦ on a set S is:

commutative provided s ◦ t = t ◦ s for every s, t ∈ S; and

associative provided (s ◦ t) ◦ u = s ◦ (t ◦ u) for every s, t, u ∈ S.

Define the following relations ? and # on the set R of real numbers:

• a ? b = a2 + b2 for ever a, b ∈ R and

• a#b = |a|b for ever a, b ∈ R.

Show that

1. ? is commutative but not associative, and

2. # is associative but not commutative.

Read Section 4.1 (Axiom systems).

Mention the notions of consistency and independence of the axiom system.
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Section 4.2, Incidence planes

Definition 1 An incidence plane is any triple 〈P ,L,F〉, where sets P and
L are disjoint and F is a binary relation from P to L. The elements of P are
typically referred to as points, while the elements of L are typically referred
to as lines. The relation 〈P, `〉 ∈ F is usually (but not always) interpreted
as “P is contained in `.”

Go over example in Figure 4.1.

Go over example Real Cartesian Incidence Plane.

Affine plane axiom system. (Explain parallel.)

A1 For every distinct P,Q ∈ P there exists unique ` ∈ L containing P
and Q.

A2 If P ∈ P is not on ` ∈ L, then there exists unique line containing P
parallel to `.

A3 There exists four points such that no (distinct) three are on any line.

Go over two examples of (i.e., models for) the affine plane: standard
Euclidean plane and the 4 point example, M0 from Figure 4.2 (edges of
tetrahedron).

Note that in the example from Figure 4.2 notion of perpendicular is mean-
ingless. Mention that collineation is an isomorphism between the incidence
planes.

Note that the affine plane axiom system is not categorical, meaning that
it has two models that are not collinear.

Theorem 1 The affine plane axioms A1-A3 are independent.

Proof.

Model for ¬A1, A2, and A3: L – all planes in R3 perpendicular to one
of the coordinate axis; P – all points in R3; incidence – standard.

Model for A1, A2, and ¬A3: P –arbitrary set; L = {P}; incidence –
standard.

Model for A1, ¬A2, and A3: 7 point model M1 = 〈P1,L1,F1〉 from
Figure 4.3.
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Class of January 14:

Projective plane axiom system.

A1 For every distinct P,Q ∈ P there exists unique ` ∈ L containing P
and Q.

A2′ For every distinct lines ` and m there exists unique point on ` and
on m.

A3 There exists four points such that no (distinct) three are on any line.

Theorem 2 The projective plane axioms A1, A2′, and A3 are consistent.

Proof. Provided by 7 points model M1 for A1, ¬A2, and A3.

Theorem 3 The projective plane axioms A1, A2′, and A3 are independent.

Proof.

Model for A1, ¬A2′, and A3: 4 point model M0 for A1, A2, and A3.

Model for A1, A2′, and ¬A3: P –arbitrary set; L = {P}; incidence –
standard.

Model for ¬A1, A2′, and A3: P –arbitrary 4 point set; L a single line
containing no points; incidence – standard.

Theorem 4 The projective plane axiom system is not categorical (i.e., has
different models).

Proof. Two truly different models:

• 7 points model M1.

• An infinite model M2 = 〈P2,L2,F2〉: Fix a point O ∈ R3.

Let P2 be the set of all lines in R3 through O.

Let L2 be the set of all planes in R3 through O.

F2: P ∈ P2 is F2-incident to ` ∈ L2 when P is contained (in R3) in `.

Note that M2 satisfies A1, A2′, and A3.

See the interpretation of M2 as in Figure 4.4.

This means that M2 contains a copy of the standard Euclidean plane
model for the affine plane.
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Hyperbolic plane axiom system.

A1 For every distinct P,Q ∈ P there is unique ` ∈ L containing P and Q.

A2′′ If P ∈ P is not on ` ∈ L, then there exist two distinct lines containing
P , each parallel to `.

A3′ There exists four points such that no (distinct) three are on any line.
Each line contains a point.

Theorem 5 The hyperbolic plane axioms A1, A2′′, and A3 are consistent.

Proof. Given by model Q1, Quadrant Incidence Plane, from Fig 4.5(a).

Theorem 6 The hyperbolic plane axiom system is not categorical (i.e., has
different models).

Proof. Two truly different models: infinite Q1 and finite (10 points, 25
lines) described in the text. (No proof, for the finite model).

Theorem 7 The hyperbolic plane axioms A1, A2′′, and A3 are independent.

Proof.

Model for A1, ¬A2′′, and A3: 4 point model M0 for A1, A2, and A3.
Also, model Q2, Halfplane Incidence Plane, from Figure 4.5(b).

Model for A1, A2′′, and ¬A3: P –arbitrary set; L = {P}; incidence –
standard.

Model for ¬A1, A2′′, and A3: P –arbitrary 4 point set; L 8 lines, each
containing precisely one point, each point contained in two distinct lines;
incidence – standard.

Theorem 8 There exists an incidence plane satisfying A1 and A3 which
satisfies neither of the axioms: A2, A2′, and A2′′.

Proof. Model Q3, Missing-Quadrant Incidence Plane, from Figure 4.5(c).

Written assignment for Wednesday, January 21: Solve Ex 4.1, p. 45:
Show that parallelism is an equivalence relation on the set of all lines of an
affine plane, but parallelism is not an equivalence relation on the set of all
lines of a hyperbolic plane.
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Class of January 21: Chapter 6
We start describing the Axioms of Euclidean plane and derive their conse-

quences. Beside the axioms, we assume basics consisting of: logic, set theory,
real numbers.

The axioms will describe the properties of four classes of objects: P –
referred to as points; L – referred to as lines; d – referred to as distance
function (between points); m – referred to as the measure of the angle.

Axiom 1: Incidence Axiom

(a) P and L are sets; any ` ∈ L is a subset of P.

(b) If P,Q ∈ P are distinct, then there is unique ` ∈ L containing both P
and Q.

(c) There exists three elements of P not all in any element of L.

The axiom does not preclude the situation, that a line contains no points!

Definition 2 (See Definition 6.1)

• If `,m ∈ L are distinct, and P ∈ P is in ` and in m, then ` and m
intersect at P .
(By (b), the intersection cannot contain more than one point!)

• ` ∈ L is parallel to m ∈ L, denoted ` ‖ m, if either ` = m or ` and m
do not intersect.

• A set of points is collinear if it is contained in some line ` ∈ L.

• The unique line from (b) is denoted
←→
PQ.

The following follows from (b).

Theorem 9 (Thm 6.2) If distinct R, S ∈ P are on
←→
PQ, then

←→
RS=

←→
PQ.

The following follows from the definition of parallel.

Theorem 10 (Thm 6.3) If `,m ∈ L, then ` ‖ ` and ` ‖ m implies m ‖ `.

Note: at this point, we do not know if parallelism is transitive!
Go over Theorem 6.4.
Note that P = {A,B,C} and L = {{A,B}, {B,C}, {A,C}, ∅} form a

“trivial” model for Axiom 1.
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Axiom 2: Ruler Postulate
There exists a mapping d : P ×P → R, with d(P,Q) denoted PQ, having

the following property.
For every ` ∈ L there exists a bijection f : `→ R such that

PQ = |f(P )− f(Q)| for every P and Q on `.

If f : `→ R is as in Axiom 2, then f is called coordinate system for ` and
f(P ) is a coordinate of P on ` (with respect to f).

The axiom insures that each line contains many points.

Go over Theorem 6.6, with proof.

Written assignment for Monday, January 26:

Ex 1: (Ex. 6.6) Show that Axioms 1 and 2 do not ensure that PQ+QR ≥ PR
by considering a model of the standard Euclidean plane with a function
d that insures Axiom 2, but for which the inequality fails for some points
P , Q, and R.

Ex 2: Consider the Rational Cartesian Incidence Plane model M2 defined with
P = Q2 and lines L of the form ` = {〈x, y〉 ∈ P : ax+ by + c = 0} for
some a, b, c ∈ Q with a2 + b2 > 0.

(a) (Ex. 6.8) Show that there is no map d satisfying Axiom 2 for M2.

(b) Show that if Axiom 2’ is obtained by replacing in Axiom 2 the
phrase “bijection f : `→ R” with the phrase “bijection f : `→ Q,”
then there exists a function d insuring that Axiom 2’ is satisfied.
(Can such d be the standard Euclidean distance?)

Go over Theorem 6.7.

Go over Theorem 6.8.

Go over Exercise 6.3: Axioms 1 and 2 are independent:
– Euclidean line satisfies A2, but not A1.
– Our finite models for Affine Plane satisfy A1, but not A2.
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Class of January 26: Chapter 7 – Betweenness

Definition 3 A point B is between points A and C, denoted A − B − C,
provided: (1) there are all distinct; (2) they are collinear; (3) AB+BC = AC.

Remark: The definition depends, explicitly on the distance-like function d
from Axiom 2, as AC is defined as d(A,C). However, there is no (explicit)

dependence of the coordinate function f of ` =
←→
AC.

Theorem 11 (Thm 7.2) A−B − C implies C −B − A.

Theorem 12 (Thm 7.4) If A−B−C, then neither A−C−B nor C−A−B.

Theorem 13 (Thms 7.3 & 7.5) A−B −C if, and only if, A, B, and C are
collinear and f(B) is between f(A) and f(C) for any coordinate system f

of
←→
AB.

Theorem 14 (Thm 7.6, known as Cantor-Dedekind Axiom) For any line
` there is an order-preserving bijection f : `→ R.

Theorem 15 (Thm 7.7) If P is in
←→
AB, then exactly one the following holds:

P − A−B, P = A, A− P −B, P = B, A−B − P .

Theorem 16 (Thm 7.8) If A,C ∈ P are distinct, then there exist B,D ∈ P
with A−B − C and A− C −D.

Theorem 17 (Thm 7.9) If A − B − C and A − B − D, then C = D, or
B − C −D or B −D − C.

Definition 4 A−B−C−D if, and only if, A−B−C, A−B−D, A−C−D,
and B − C −D.

Theorem 18 (Thm 7.11) If A−B−C and B−C−D, then A−B−D−C.

Theorem 19 (Thm 7.12) Any four distinct collinear points can be named
A, B, C, and D such that A−B −D − C.
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Class of January 28

Review new remark on the definition of A−B − C:

Remark: The definition of A−B−C depends, explicitly on the distance-like
function d from Axiom 2, as AC is defined as d(A,C). However, there is no

(explicit) dependence of the coordinate function f of ` =
←→
AC.

7.2: Taxicab geometry: review and new results.
Why assumption “(2) points are collinear” in the definition of A−B−C?
Consider weaker definition:

Definition 5 A point B is ∗-between points A and C, denoted A ∗ B ∗ C,
provided: (1) there are all distinct, and (3) AB+BC = AC. (No requirement
that (2): the points are collinear!)

Theorem 20 The “∗-between” notion is essentially weaker than the stan-
dard notion of “between.”

Proof. Justified by the taxicab distance, details below.

Definition 6 • Euclidean distance function d from Axiom 2:
d(P,Q) =

√
(x2 − x1)2 + (y2 − y1)2, where P = (x1, y1), Q = (x2, y2).

• Taxicab distance function t:
t(P,Q) = |x2 − x2|+ |y2 − y1|, where P = (x1, y1), Q = (x2, y2).

Theorem 21 Both distances, d and t, satisfy Axiom 2.

Proof. The case of Euclidean distance d: For a non-vertical line ` with
equation y = mx+ b, define the coordinate function f : `→ R via

f(P ) =
√

1 +m2 x for every P = (x,mx+ b) ∈ `.

Clearly it is a bijection and we have desired Axiom 2 property for every
P = (x1,mx1 + b) and Q = (x2,mx2 + b) on `:

PQ = d(P,Q) =
√

(x1 − x2)2 + ((mx1 + b)− (mx2 + b))2

=
√

(x1 − x2)2 + (m(x1 − x2))2 =
√

1 +m2 |x1 − x2|
= |
√

1 +m2 x1 −
√

1 +m2 x2| = |f(P )− f(Q)|.

For a vertical line ` with equation x = c, define the coordinate function
f : ` → R via f(P ) = y for every P = (c, y) ∈ `. It is obviously a bijection
with the desired property.
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The case of the taxicab distance t: For a vertical line the same
function, f(P ) = y for P = (c, y), is also a coordinate system.

For a non-vertical line ` with equation y = mx+ b, define the coordinate
function f : `→ R via

f(P ) = (1 + |m|)x for every P = (x,mx+ b) ∈ `.

Clearly it is a bijection and we have desired Axiom 2 property for every
P = (x1,mx1 + b) and Q = (x2,mx2 + b) on `:

PQ = d(P,Q) = |x1 − x2|+ |(mx1 + b)− (mx2 + b)|
= |x1 − x2|+ |m||x1 − x2| = (1 + |m|)|x1 − x2|
= |(1 + |m|)x1 − (1 + |m|)x2| = |f(P )− f(Q)|.

For A = (0, 0) and C = (2, 4) draw all points B with A ∗ B ∗ C. Notice,
that there is B with A ∗B ∗ C but not A−B − C.

More specifically, finish the proof of theorem 20 by noticing that for the
Axiom 2 satisfied by the taxicab distance t and points A = (0, 0), B = (2, 2)
and C = (2, 4), we have

• A ∗B ∗ C, as AB +BC = 4 + 2 = 6 = AC, but

• A−B − C fails, as points A, B, and C are no co-linear.

Written assignment for Monday, February 2: Solve Ex 7.11, p. 82:
On the Euclidean plane, with points P = R2, define function:

t(P,Q) = max{|x2 − x1|, |y2 − y1|}, where P = (x1, y1), Q = (x2, y2).

Show that the function r satisfies Axiom 2 (as d).

Go over the solutions of the three exercises, assigned on January 14 .

What follows, not covered, worth to look over.

Note that taxicab distance satisfies the triangle inequality.

Describe taxicab “circle:” B(A, ε) = {B ∈ P : t(A,B) < ε}.
Describe, for the taxicab distance, the set L(A,B) = {C ∈ P : AP =

BP} of all points P equidistant from A and B, for:
(1) A = (0, 0) and B = (0, 2) (see Fig. 7.8a),
(2) A = (0, 0) and B = (4, 2) (see Fig. 7.8b), and
(3) A = (0, 0) and B = (2, 2) (see Fig. 7.8c).
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Class of February 2

Go over the solutions of the two exercises, assigned on January 21.

Section 8.1: Segments and Rays

Read pages 84 and 85 on terminology changes and on how rigorous proofs
should/should not be.

Definition 7 For distinct points A and B, we define

• segment (with endpoints A & B) as AB = {A,B}∪{P ∈ P : A−P−B};

• ray (with vertex A) as
−→
AB= {P ∈

←→
AB : not P − A−B}.

Theorem 22 (Thm 8.2) For every distinct points A and B:

1. AB = BA

2.
−→
AB 6=

−→
BA

3.
−→
AB= AB ∪ {P ∈ P : A−B − P}

4. AB (
−→
AB(

←→
AB

Theorem 23 (Thm 8.3) AB =
−→
AB ∩

−→
BA and

←→
AB=

−→
AB ∪

−→
BA for every

distinct points A and B.

Theorem 24 (Thm 8.4) For every distinct points A and B: AB = CD iff
{A,B} = {C,D}.

Definition 8 • The length of AB is defined as AB.

• AB is congruent to CD, denoted AB ' CD, provided AB = CD.
That is, AB ' CD, provided the segments have the same length.

Theorem 25 (Thm 8.6) The congruence ' is an equivalence relation on the
family of all segments.
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Theorem 26 (Thm 8.7) For every ray
−→
V A there exists a unique coordinate

system f for
←→
V A such that f(V ) = 0 and

−→
V A= {P ∈

←→
V A : f(P ) ≥ 0}.

Theorem 27 (Thm 8.8, on segment construction) For every segment AB

and ray
−→
V C there exists a unique point D in

−→
V A with AB ' V D.

Notice that the above theorem is non-trivial, in a sense that it fails in the
Rational Cartesian Incidence Plane model M2 we discussed in Ex 2(b) in a
homework assigned on January 21.

Written assignment for Monday, February 9: Solve Ex 8.2 p. 92:
Prove Thm 8.10, on segment subtraction.
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Class of February 4
Recall that:

• segment AB = {A,B} ∪ {P ∈ P : A− P −B};

• ray
−→
AB= {P ∈

←→
AB : not P − A−B};

• AB = BA;
−→
AB 6=

−→
BA;

−→
AB= AB ∪ {P ∈ P : A−B − P};

• AB = CD iff {A,B} = {C,D}

• AB ' CD, provided AB = CD; ' is an equivalence relation;

• Thm: For every
−→
V A there exists a unique coordinate system f for

←→
V A

such that f(V ) = 0 and
−→
V A= {P ∈

←→
V A : f(P ) ≥ 0}.

• Thm: For every AB and
−→
V C there is unique D ∈

−→
V A with AB ' V D.

Review both theorems above, with proofs, and the remark related to the
Rational Cartesian Incidence Plane model M2.

New material:

Theorem 28 (Thm 8.9, on segment addition) If A − B − C, D − E − F ,
AB ' DE, and BC ' EF , then AC ' DF .

Theorem 29 (Thm 8.10, on segment subtraction) If A−B−C, D−E−F ,
AB ' DE, and AC ' DF , then BC ' EF .

Theorem 30 (Thm 8.11) B is on
−→
V A and B 6= V iff

−→
V B=

−→
V A.

Theorem 31 (Thm 8.12) If
−→
V A=

−→
WB, then V = W . In particular, every

ray has unique vertex.

Notice, how much work was required to prove that the axioms imply
uniqueness of vertex in any ray!

Written assignment for Monday, February 9: Solve Ex 8.9 p. 93:
In the Taxicab Geometry find a counterexample to the statement that

AB = {P ∈ P : AP + PB = AB}.
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Section 8.2: Convex sets

Definition 9 For distinct points A and B,

• a mid point of AB is an M with A−M −B and AM = MB;

• M ∈ P is a mid point of A and B if either A = M = B or M is a mid
point of AB;

•
−→
V A is an opposite ray of

−→
V B provided A− V −B.

Theorem 32 (Thm 8.15) Every segment has a unique midpoint. For every
A,B ∈ P there exist unique M,N ∈ P such that M is a mid point of A and
B, while B is a mid point of A and N .

Theorem 33 (Thm 8.16) Every ray has an opposite ray. If
−→
V A is an oppo-

site ray of
−→
V B, then

−→
V B is an opposite ray of

−→
V A.

Theorem 34 (Thm 8.17) If P,Q ∈
←→
AB, AP = AQ, and BP = BQ, then

P = Q.

Definition 10 • The interior of AB, denoted int(AB), is AB \ {A,B};

• The interior of
−→
V A, denoted int(

−→
V A), is

−→
V A \{V };

• A half line is the interior of a ray;

• A set T ⊂ P is convex provided AB ⊂ T for every distinct A,B ∈ T .

See Fig 8.5 for examples of sets that are not convex in the Euclidean plane.

Theorem 35 (Thm 8.19) The intersection of two or more convex sets is
convex.

Theorem 36 (Thm 8.20) If A,B ∈ P are distinct, that each of the following

sets is convex: ∅, {A}, AB, int(AB),
−→
AB, int(

−→
AB),

←→
AB, P .

Theorem 37 (Thm 8.21) For every V ∈ ` ∈ L there exists convex sets H1

and H2 such that:

(i) ` \ {V } = H1 ∪H2,

(ii) if P ∈ H1, Q ∈ H2, and P 6= Q, then PQ ∩ {V } 6= ∅ (i.e., V ∈ PQ).

Note, that there are models with points P = R2 (i.e., M10 from the text)
in which convex sets are not convex in the standard Euclidean plane model.
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Class of February 9
Recall that:

• The interiors: int(AB) = AB \ {A,B}, int(
−→
V A) =

−→
V A \{V }.

• A set T ⊂ P is convex provided AB ⊂ T for every distinct A,B ∈ T .

Describe Moulton model (i.e., M10 from the text, pages 10–11, with
points P = R2) in which convex sets are not convex in the standard Euclidean
plane model, see Figure 8.6.

Chapter 9: Angles and Triangles

Definition 11 If A, V , and B are three distinct noncollinear points, then

an angle ∠AV B (having vertex V and sides
−→
V A and

−→
V B) is defined as

∠AV B =
−→
V A ∪

−→
V B.

Notice that 180◦ straight angle is not angle according to this definition.
Similarly 0◦ angle.

Theorem 38 (Thm 9.2) If A, B, and C are three distinct noncollinear
points, then ∠ABC = ∠CBA 6= ∠ACB.

Theorem 39 (Thm 9.3) Given ∠AV B, if C ∈ int(
−→
V A) and D ∈ int(

−→
V B),

then ∠AV B = ∠CVD.

Theorem 40 (Thm 9.4) If ∠AV B = ∠CVD, then either
−→
V A=

−→
V C or

−→
V A=

−→
V D.

Theorem 41 (Thm 9.5) If ∠AV B = ∠AWB, then V = W .

This uniqueness of a vertex in the angle is not that obvious in the Moulton
model M10, see Figure 9.2

Theorem 42 (Thm 9.6) If ∠AV B = ∠CWD, then V = W and either
−→
V A=

−→
V C or

−→
V A=

−→
V D.
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Class of February 11
Note: The solutions of the homework that was due February 9 will be

handed on Monday, February 16. No corrections afterword.
Note: I will administer a 20-30 minutes quiz on Monday, February 16!

Few words what problem 8.9, page 93, is about.

Recall that:

• Angle: ∠AV B =
−→
V A ∪

−→
V B.

• If ∠AV B = ∠CWD, then V = W and either
−→
V A=

−→
V C or

−→
V A=

−→
V D.

New material

Definition 12 Given ∠AV B, A− V − A′ and B − V −B′,

• ∠AV B and ∠A′V B′ are vertical angles;

• ∠AV B and ∠A′V B are linear pair of angles.

Theorem 43 (Thm 9.8) Given ∠AV B, if
−→
V A′ is opposite to ray

−→
V A and

−→
V B′ is opposite to ray

−→
V B, then

1. ∠AV B and ∠A′V B′ are vertical angles;

2. ∠AV B′ and ∠A′V B are vertical angles;

3. ∠AV B and ∠BV A′ are a linear pair;

4. ∠AV B and ∠AV B′ are a linear pair;

5. ∠BV A′ and ∠A′V B′ are a linear pair;

6. ∠A′V B′ and ∠B′V A are a linear pair.

Definition 13 If A, B, and C are three distinct noncollinear points, then
a triangle 4ABC (with vertices A, B, and C and with sides AB, BC, and
AC) is defined as 4ABC = AB ∪BC ∪ CA.

The angles ∠BAC, ∠ABC, and ∠ACB are angles of 4ABC and are
often simply denoted as ∠A, ∠B, and ∠C, when no confusion is likely.
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Theorem 44 (Thm 9.10) If A, B, and C are three distinct noncollinear

points, then 4ABC = 4CAB = 4ACB and AB = 4ABC∩
←→
AB.

Theorem 45 (Thm 9.11) If4ABC = 4DEF , then {A,B,C} = {D,E, F}.

Intuitive notion of how triangle looks breaks in the Moulton model M10,
see Figure 9.6.

Definition 14 • Point P is in the ray-interior of ∠AV B if there exist

C ∈ int(
−→
V A), D ∈ int(

−→
V B), and E ∈ int(CD) such that P ∈ int(

−→
V E).

In such case,
−→
V B is an interior ray of ∠AV B.

• Point P is in the inside or segment-interior of ∠AV B if there exist

C ∈ int(
−→
V A) and D ∈ int(

−→
V B) such that P ∈ int(CD).

Theorem 46 (Thm 9.14) The inside of ∠AV B is contained in the ray-
interior ∠AV B.

But, in general, not other way around! This happens in the weird plane
model to be discussed next class.

Why difficulties? Why two different definitions?

Definition 15 Pasch’s Postulate: If a line intersects a side of a triangle not
at the vertex, then it intersects another side of the triangle.

Theorem 47 Pasch’s Postulate does not follow from our two axioms!

Proof. This happens in the missing strip model (M8, e), (see page 56): see
Figure 9.11.

We will discuss missing strip model (M8, e) in some details.

Written assignment for Monday, February 16: Solve Ex 9.9 p. 109.
Give a specific distance formula e for the missing strip model (M8, e).

Show that the provided function e satisfies Axiom 2 (Ruler Postulate).

Definition 16 Plane-Separation Postulate, PSP: For any line ` there exists
two convex sets H1 and H2 such that P \ ` ⊂ H1 ∪H2 and for every P ∈ H1

and Q ∈ H2, if P 6= Q, then PQ ∩ ` 6= ∅.

Fact: PSP also fails in the missing strip model (as we will later prove the
two axioms imply that PSP and Pasch’s Postulate are equivalent).
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Class of February 16
Start with 20 minutes quiz. Then recall:

• Point P is in: the inside of ∠AV B if there exist C ∈ int(
−→
V A) and

D ∈ int(
−→
V B) such that P ∈ int(CD);

the ray-interior of ∠AV B if there exist C ∈ int(
−→
V A), D ∈ int(

−→
V B),

and E ∈ int(CD) such that P ∈ int(
−→
V E);

P is the inside of ∠AV B implies that P is in the ray-interior of ∠AV B.

• Pasch’s Postulate: If a line intersects a side of a triangle not at the
vertex, then it intersects another side of the triangle.
Pasch’s Postulate does not follow from our two axioms. This is justified
by the missing strip model (M8, e).

New material: several new models.

The Space Incidence Plane model (M4, d): P = R3 (!!!), lines and dis-
tance d as in Euclidean 3D space.

Theorem 48 In the Space Incidence Plane model M4:

• the ray-interior of an angle is the same as the inside of this angle;

• Pasch’s Postulate fails;

• the following “strong” version of Crossbar (defined below) holds.

Definition 17 Crossbar: If P is a point in the ray-interior of ∠AV B, then
−→
V P intersects AB.

Theorem 49 Crossbar fails in the missing strip model (M8, e).

Proof. See Figure 9.11: G is in the inside (so, also ray-interior) of ∠AV B,

while
−→
V G does not intersect AD.

Remark In (M8, e), the ray-interior of an angle is the same as the inside
of this angle.

Theorem 50 Let M be a model that satisfies Axiom 1, Incidence Axiom.
If for every line ` there exist a bijection f` : ` → R, then M satisfies also
Axiom 2, Ruler Postulate.
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Proof. For points P,Q ∈ P we put: d(P,Q) = 0 provided P = Q, and

d(P,Q) =
∣∣∣f←→

PQ
(P )− f←→

PQ
(Q)
∣∣∣ when P 6= Q.

Cayley-Klein Incidence Plane model M13: P = {(x, y) ∈ R2 : x2 + y2 < 1},
lines – ` ∩ P 6= ∅, where ` standard Euclidean line in the plane.

M13 satisfies Axioms 1 and 2: Ruler Postulate follows from Theorem 50.

Theorem 51 In the Cayley-Klein Incidence Plane model M13:

(i) the ray-interior of an angle is not the same as the inside of the angle;

(ii) Pasch’s Postulate holds;

(iii) Crossbar (“strong” version) holds.

Proof. For (i), see Figure 9.13 and point E. (ii) Pasch holds, since the
only triangles in M13 are the “true” Euclidean triangles (no details); (iii) no
detailed proof.

Summary: Let I = RI stand for “ the ray-interior of an angle is the same
as the inside of this angle.” Here at the models for the two axioms that
describe the relations between Pasch, Crossbar, and I = RI:

• Pasch & Crossbar & I = RI hold in the Euclidean plane model M1

• ¬ Pasch & Crossbar & I = RI hold in the Space Incidence model M4

• ¬ Pasch & ¬Crossbar & I = RI hold in the missing strip model M8

• Pasch & Crossbar & ¬I = RI hold in the Cayley-Klein model M13

Next: Weird Plane model (M1, d′): standard M1 points and lines, but
weird distance d′. Let h, k : R→ R be defined as: h(x) = x+2 and k(x) = −x
when x is and integer an as h(x) = k(x) = x otherwise.

For the point P = (x, y) on a line ` we define

f`(P ) =


h(x) when ` is horizontal,

k(y) when ` is vertical,√
1 +m2 x otherwise, for ` with y = mx+ b

(f`(P ) =
√

1 +m2 x is the standard Euclidean plane coordinate system.)
This, by Theorem 50, leads to a distance function, d′.
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Class of February 18
Start with 20 minutes quiz.

Weird plane, (M1, d′): Standard points P = R2 and lines. Let h, k : R→
R be defined as: h(x) = x + 2 and k(x) = −x when x is an integer and as
h(x) = k(x) = x otherwise. If d is the standard Euclidean distance, put

d′((x1, y1), (x2, y2)) =


|h(x2)− h(x1)| when y1 = y2,

|k(y2)− k(y1)| when x1 = x2,

d((x1, y1), (x2, y2)) otherwise.

It satisfies Axiom 2, where coordinate system for line ` is given as

f`((x, y)) =


h(x) when ` is horizontal,

k(y) when ` is vertical,√
1 +m2 x otherwise, for ` with y = mx+ b.

Discuss some segments and rays for the weird plane depicted in Figure 9.14.

Discuss an angle for the weird plane depicted in corrected Figure 9.15.

Discuss the two triangles for the weird plane depicted in Figure 9.16.

Written assignment for Monday, February 23: Solve Ex 9.7 p. 109.
Show, that Pasch’s Postulate does not hold in the weird plane, (M1, d′).

Hint: Either of the triangles depicted in Figure 9.16 could be used in a coun-
terexample. But you need to give specific coordinates of the vertices of the
used triangle and indicate for which line the postulate fails.

Section 12.1: Axiom 3, PSP

• Pasch’s Postulate, PASCH: If a line intersects a triangle not at the
vertex, then it intersects two sides of the triangle.

• Plane-Separation Postulate, PSP: For any line ` there exists two convex
sets H1 and H2 such that P \ ` = H1 ∪ H2 and PQ ∩ ` 6= ∅ for every
P ∈ H1 and Q ∈ H2 such that P 6= Q.

Theorem 52 (Thm 12.1) Assuming Axioms 1 and 2, PASCH implies PSP.

We will skip a proof of this theorem. (The reverse implication is also
true, to be proved.)
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Axiom 3: PSP holds.

Sets H1 and H2 from PSP are called halfplanes of line `, while ` is an
edge of each halfplane.

From now on, all theorem will be proved assuming Axioms 1–3.
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Class of February 23
Recall

• Pasch’s Postulate, PASCH: If a line intersects a triangle not at the
vertex, then it intersects two sides of the triangle.

• Plane-Separation Postulate, PSP: For any line ` there exists two convex
sets H1 and H2 such that P \ ` = H1 ∪ H2 and PQ ∩ ` 6= ∅ for every
P ∈ H1 and Q ∈ H2 such that P 6= Q.

• Axiom 3: PSP holds.

From now on, all theorem will be proved assuming Axioms 1–3.

New material:

Theorem 53 (Thm 12.4) If points A and B are off line ` and AB ∩ ` 6= ∅,
then A and B are not on the same halfplane of `.

Theorem 54 (Thm 12.5) If H1 and H2 are a pair of halfplanes of line `,
then H1 6= ∅ and H2 6= ∅, but H1 ∩H2 = ∅.

Theorem 55 (Thm 12.6) If H1 and H2 are a pair of halfplanes of line `,
then P is a union of three mutually disjoint sets: H1, H2, and `.

Theorem 56 (Thm 12.7) Up to an order, the halfplanes of a line ` are
unique. If A ∈ P \ `, then the halfplanes are: {P ∈ P \ ` : AP ∩ ` 6= ∅} and
{A} ∪ {Q ∈ P \ ` : AQ ∩ ` = ∅}.

Theorem 57 (Thm 12.8) No two lines have the same halfplanes. The edge
of a halfplane is unique.

Definition 18 A halfplane of
←→
AB is a side of

←→
AB. Each of the two halfplanes

of a line is opposite of the other.
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Theorem 58 (Thm 12.10) Let A and B be points on opposite sides of line `.
Then

• A and B are not on the same side of `;

• if B and C are points on opposite sides of `, then A and C are on the
same side of `;

• if B and D are points on same side of `, then A and D are on the
opposite sides of `.

Theorem 59 (Thm 12.11) If line ` contains no vertex of 4ABC, then `
cannot intersects all three sides of 4ABC.

Theorem 60 (Thm 12.12) The three axioms imply PASCH.

Written assignment for Wednesday, February 25: Solve Ex 12.1 p.
140.

Prove PASCH.
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Class of February 25
Mid term test will be in class, February 9, 2015. I can extend the test

time for up to two hours.
Recall

• If H1 and H2 are a pair of halfplanes of line `, then P is a union of
three mutually disjoint sets: H1, H2, and `.

• The edge of a halfplane is unique.

• The three axioms imply PASCH.

New material

Theorem 61 (Thm 12.13) Peano’s Postulate: If4ABC, B−C−D, and

A−E−C, then there is an F ∈
←→
DE such that A−F −B. (See Figure 12.3.)

Theorem 62 (Thm 12.14) If 4ABC, B − C − D, and A − F − B, then

there is an E ∈
←→
DF such that A−E −C and D−E −F . (See Figure 12.4.)

Theorem 63 (Thm 12.15) If 4ABC, then every point lies on a line that
intersects the triangle at two points.

Theorem 64 (Thm 12.16) Sylvester’s Theorem: If n points are not all
collinear, then there exists a line containing exactly two of the points.

Interesting, but we will not prove this theorem.

Section 13.1: More incidence theorems

Theorem 13.2 is, essentially, a restatement of theorem 12.10.

Theorem 65 (Thm 13.3) If a non-empty convex set S does not intersect
line `, then it is on one side of `.

Theorem 66 (Cor 13.4) Theorem 65 applies when S is a line, ray, or seg-

ment. If line ` intersects
←→
AC at the single point V such that A−V −C, then

int(
−→
V A) and int(V A) are on the same side of `, but int(

−→
V A) and int(

−→
V C)

are on the opposite sides of `.
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Definition 19 The interior of ∠AV B, denoted int(∠AV B), is the intersec-

tion of the side of
←→
V A that contains B and the side of

←→
V B that contains A.

Theorem 67 (Thm 13.6) Point P is in int(∠AV B) if, and only if, A and P

are on the same side of
←→
V B and B and P are on the same side of

←→
V A.

Given ∠AV B, if A− P −B, then P is in int(∠AV B).
Given 4ABC, then int(AB) is in int(∠ACB).

Written assignment for Monday, March 2: Solve Ex 13.1 p. 152, that
is, prove Theorem 75 (Thm 13.14 from the text):
If 4ABC, B−C−D, A−E−C, and B−E−F , then F is in int(∠ACD).
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Class of March 2
Recall

• The interior of ∠AV B, denoted int(∠AV B), is the intersection of the

side of
←→
V A that contains B and the side of

←→
V B that contains A.

New material (we repeat the proofs of theorems 68-70)

Theorem 68 (Thm 13.7) If P is in int(∠AV B) and
−→
AP intersects

−→
V B at

D, then A− P −D.

Theorem 69 (Thm 13.8, crossbar) If P is in int(∠AV B), then
−→
V P inter-

sects int(AB).

Proof. See Figure 13.2. (1) P and C are on the opposite sides of
←→
V A as

V and B are on the same side, while C and B on the opposite sides. (2)

int(AC) is disjoint with int(
−→
V P ), since each is convex and they are on the

opposite sides of
←→
V A. (3) int(AC) is disjoint with

←→
V P , since the interior

of the ray opposite to
−→
V P does not intersect int(AC), each being convex

and on the opposite sides of
←→
V A. (4)

←→
V P intersects int(AB), at some point

Q, by PASCH applied to 4ABC. (5) Q is on int(
−→
V P ), since otherwise Q

and P would be on the opposite sides of
←→
V B, which is impossible, as P and

int(AB) 3 Q are on the same side of
←→
V B.

Theorem 70 (Thm 13.9) Given int(∠AV B), if
−→
V P intersects int(AB), then

P is in int(∠AV B).

Theorem 71 (Thm 13.10) If points B and P are on the same side of
←→
V A,

then P is in int(∠AV B) if, and only if, points A and B are on the opposite

sides of
←→
V P .

If A−V −C, then P is in int(∠AV B) if, and only if, B is in int(∠CV P ).

If points B and P are on the same side of
←→
V A, then either

−→
AB=

−→
AP , point

P is in int(∠AV B), or B is in int(∠AV P ).
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Theorem 72 (Thm 13.11) If ∠AV B = ∠CVD and
−→
V E intersects int(CD),

then
−→
V E intersects int(AB).

Theorem 73 (Thm 13.12) Given ∠AV B, the following are equivalent

(a) P is in int(∠AV B).

(b)
−→
V P intersects int(AB).

(c) Point P is in the ray-interior of ∠AV B.

(d)
−→
V P is an interior ray of ∠AV B.

Theorem 74 (Cor 13.13) The ray-interior of ∠AV B is the interior of ∠AV B.

Theorem 75 (Thm 13.14) If4ABC, B−C−D, A−E−C, and B−E−F ,
then F is in int(∠ACD).

Definition 20 For a point P off ` ∈ L let HP (`) be a side of ` containg P .
Them the interior of 4ABC is defined as

int(4ABC) = HA(
←→
BC) ∩HB(

←→
AC) ∩HC(

←→
AB).

Theorem 76 (Thm 13.16) int(∠ABC) and int(4ABC) are convex sets.

Theorem 77 (Thm 13.17) Given 4ABC,

int(4ABC) = int(∠A)∩ int(∠B) = int(∠A)∩ int(∠C) = int(∠B)∩ int(∠C)
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Class of March 4
As a review for a test, go over some of the past homework exercises.

Recall

• For a point P off ` ∈ L let HP (`) be a side of ` containg P . Then the
interior of 4ABC is defined as

int(4ABC) = HA(
←→
BC) ∩HB(

←→
AC) ∩HC(

←→
AB).

.

Theorem 78 (Thm 13.18, Line-Triangle Theorem) If a line intersects
the interior of a triangle, then the line intersects the triangle exactly twice.

Proof. See Figure 13.4.

Definition 21 Quadrilateral is defined as �ABCD = AB∪BC∪CD∪DA
provided no three of the points A, B, C, and D are collinear and such that
no two of int(AB), int(BC), int(CD), and int(DA) intersect each other. For
other related and natural definitions associated with �ABCD see the text.

Theorem 79 (Thm 13.20) Given �ABCD we have �ABCD = �DCBA
and �ABCD = �BCDA�CDAB = �DABC. However, if �ABCD and
�ABDC exist, then they are not equal.

Class of March 9
Mid term test.

Class of March 11
Return the in-class part of the mid term test.

Collect take home part of the mid term test.

Discuss the solutions of all mid term test, except the bonus exercise, # 7.

Note in the solution of Exercise 5, points D and E need to be switched.
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Class of March 16
Collect the bonus exercise, # 7, from the mid term test.

Return the take home part of the mid term test.

Shortly discuss the results of the mid term test.

Recall

• Quadrilateral is defined as �ABCD = AB ∪BC ∪CD∪DA provided
no three of the points A, B, C, and D are collinear and such that no
two of int(AB), int(BC), int(CD), and int(DA) intersect each other.

• (Theorem 13.20) Given �ABCD we have �ABCD = �DCBA and
�ABCD = �BCDA�CDAB = �DABC. However, if �ABCD and
�ABDC exist, then they are not equal.

Theorem 80 (Thm 13.21) The four vertices, the four sides, the two diago-
nals, and the four angles of a quadrilateral are unique.

Definition 22 A convex quadrilateral is a quadrilateral with the property
that each side of the quadrilateral is on a halfplane of the opposite side of
the quadrilateral.

Theorem 81 (Thm 13.23) A quadrilateral is a convex quadrilateral if, and
only if, the vertex of each angle of the quadrilateral is in the interior of its
opposite angle.

Theorem 82 (Thm 13.24) The diagonals of a convex quadrilateral intersect
each other. Conversely, if the diagonals of a quadrilateral intersect each other,
then the quadrilateral is a convex quadrilateral.

Section 14.1 – Axiom 4: The Protractor Pos-

tulate
Axiom 4, The Protractor Postulate: There exists a mapping m from the
set of all angles into R = {x ∈ R : 0 < x < π} such that

(a) if
−→
V A is a ray on the edge of halfplane H, then for every r ∈ R there

exists exactly one ray
−→
V P with P in H such that m∠AV P = r;

(b) If B is a point in the interior of ∠AV C, then m∠AV B +m∠BV C =
m∠AV C.
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Definition 23 The mapping m from the Protractor Postulate is called angle
measure function. Angles are congruent if they have the same measure. See
also book on how degrees are related to radians.
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Class of March 18
Recall

Axiom 4, The Protractor Postulate: There exists a mapping m from the
set of all angles into R = {x ∈ R : 0 < x < π} such that

(a) if
−→
V A is a ray on the edge of halfplane H, then for every r ∈ R there

exists exactly one ray
−→
V P with P in H such that m∠AV P = r;

(b) If B is a point in the interior of ∠AV C, then m∠AV B +m∠BV C =
m∠AV C.

• The mapping m from the Protractor Postulate is called angle measure
function. Angles are congruent, denoted by ∠AV B ' ∠CWD, if they
have the same measure.

New material

Theorem 83 (Thm 14.2) Congruence of angles is an equivalence relation
on the set of all angles.

Theorem 84 (Thm 14.3: Angle-Construction Theorem) Given ∠AV B,
−→
WC,

and half plane H of
←→
WC, there exists exactly one ray

−→
WD such that D is in

H and m∠AV B = m∠CWD.

Corollary 85 (Cor 14.4: Angle-Segment-Construction Theorem) If 0 < a <

π, r > 0 and H is a half plane of
←→
AB, then there exists a unique point C in

H such that m∠ABC = a and BC = r.

Theorem 86 (Theorem 14.5: Angle-Addition Theorem) Suppose that C ∈
int(∠AV B), C ′ ∈ int(∠A′V ′B′), and ∠AV C is congruent to ∠A′V ′C ′. Then
∠AV B is congruent to ∠A′V ′B′ if, and only if, ∠CV B is congruent to
∠C ′V ′B′.

Written assignment for Monday, March 30. Solve Exercise 14.1, p.
169: Prove Angle-Addition Theorem.
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Theorem 87 (Thm 14.6) If B and C are two points on the same side of
←→
V A

and m∠AV B < m∠AV C, then B ∈ int(∠AV C).

Definition 24 If m∠AV B = m∠BV C and B ∈ int(∠AV C), then
−→
V B is an

angle bisector of ∠AV C. If m∠AV B + m∠CWD = π, then angles ∠AV B
and ∠CWD are supplementary; if m∠AV B +m∠CWD = π/2, then angles
∠AV B and ∠CWD are complementary.

Theorem 88 (Thm 14.8) Every angle has a unique angle bisector.

Theorem 89 (Thm 14.9: Euclid’s Proposition I.13) If two angles are linear
pair, then the two angles are supplementary.

Theorem 90 (Thm 14.10: Euclid’s Proposition I.14) If points A and C are

on the opposite sides of
←→
V B, then m∠AV B+m∠BV C = π implies A−V −C.

Written assignment for Monday, March 30. Solve Exercise 14.2, p.
169: Prove Euclid’s Proposition I.14.

Written assignment for Monday, March 30, optional, for students
that need to improve their grade: Solve Exercise 14.3, p. 169.
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Class of March 30
Recall

(a) If m∠AV B = m∠BV C and B ∈ int(∠AV C), then
−→
V B is an angle

bisector of ∠AV C. If m∠AV B + m∠CWD = π, then angles ∠AV B
and ∠CWD are supplementary; if m∠AV B + m∠CWD = π/2, then
angles ∠AV B and ∠CWD are complementary.

(b) (Thm 14.9: Euclid’s Proposition I.13) If two angles are linear pair, then
the two angles are supplementary.

New material
Theorem 91 (Thm 14.11: Euclid’s Proposition I.15) Vertical angles are
congruent. Also, if A − V − C and points B and D are on the opposite

sides of
←→
AC, then the fact that ∠AV B is congruent to ∠CVD implies that

B − V −D.

Definition 25 If m∠AV B = π/2, then angle ∠AV B is right.
If m∠AV B < π/2, then angle ∠AV B is acute.
If m∠AV B > π/2, then angle ∠AV B is obtuse.

Theorem 92 (Thm 14.13) If two congruent angles are a linear pair, then
each of the angles is a right angle.

Theorem 93 (Thm 14.14: Four-Angle Theorem) If A−V −A′, B−V −B′,
and ∠AV B is a right angle, then each of the angles ∠AV B′, ∠A′V B, and
∠A′V B′ is a right angle.

Theorem 94 (Thm 14.15) If m∠AV B + m∠BV C = m∠AV C, then B ∈
int(∠AV C).

Proof. This follows from Theorem 14.6, if B and C are on the same side

of
←→
AV . So, assume that B and C are on the opposite sides of

←→
AV .

Let A− V − A′.
If A and C are on the same side of

←→
V B, then, by Theorem 13.10, A ∈

int(∠BV C) and, by the Protractor Postulate, m∠BV A+m∠AV C = m∠BV C,
so that m∠AV C > m∠BV C contradicting m∠AV B+m∠BV C = m∠AV C.

Thus, A and C must be on the opposite sides of
←→
V B and so, A′ and C are

on the same side of
←→
V B. So, by Theorem 13.10, A′ ∈ int(∠BV C). Thus, by

the Protractor Postulate, m∠BV A′ + m∠A′V C = m∠BV C. Moreover, by
Euclid’s Proposition I.13, ∠AV B+∠BV A′ = π, so that we have m∠AV C =
m∠AV B+m∠BV C = m∠AV B+m∠BV A′+m∠A′V C = π+m∠A′V C >
π, a contradiction.
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Definition 26 The lines ` and m are perpendicular, denoted as ` ⊥ m, pro-
vided `∪m contains a right angles. We will also write a ⊥ b provided ` ⊥ m
and a (b, respectively) is a segment, ray, or line on ` (on m, respectively).

Theorem 95 (Thm 14.17) If each of a and b is a segment, ray, or line, then
a ⊥ b implies b ⊥ a.

Theorem 96 (Thm 14.18) If P is on line `, then there is a unique line
through P that is perpendicular to `.

Proof. Existence is easy. Uniqueness requires some work.

Models for Axioms 1-4

• Standard Euclidean model (M1, d,m), where m is the usual angle mea-
sure function.

• Taxicab Geometry model (M1, t,m), with m as above.

• The Cayley-Klein model (M13, d,m), with m as above. (Recall that
P = {〈x, y〉 ∈ R2 : x2 + y2 < 1}.)

• The Moulton “bent lines” model (M10, s,m2), where, in case of when
the angle measure is measured at the bending point, we use the usual
angle measure function m to the left rays. (Requires some work to
check, that Axiom 4 is satisfied.)

Theorem 97 Axioms 1-4 apply neither of the following:

• Side-Angle-Side, SAS, Theorem (for the triangles);

• that the sum of the angles in a triangle is π;

• uniqueness of a perpendicular to a line ` through a point P off `;

• existence of a perpendicular to a line ` through a point P off `.

Proof. All of this holds in the Moulton “bent lines” model (M10, s,m2),
see Figure 14.7. (No detailed proof.)

The theorem shows need for yet another axiom, which will be SAS.

Theorem 98 Axioms 1-3 imply Axiom 4!

Proof. See Section 14.2. We will not go over this proof.
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Class of April 1: MIRROR, SAS, and congruence of triangles

Definition 27 (Definition 16.1) MIRROR: For every line m there exists a
collineation (i.e., a bijection from P onto P) that: (1) preserves distance and
angle measure, (2) fixes m pointwise, and (3) interchanges the half-planes of
m.

Definition 28 (Definition 16.2) Side-Angle-Side, SAS: Given 4ABC
and 4A′B′C ′, if AB ' A′B′, ∠A ' ∠A′, and AC ' A′C ′, then ∠B ' ∠B′,
BC ' B′C ′, and ∠C ' ∠C ′.

Similarly, we define propositions: ASA, SAA, ASS, SSS, and AAA.

Theorem 99 (Thm 16.3) Under Axioms 1-4, MIRROR implies SAS.

Proof. We will not go over it, since we will use SAS as Axiom 5. We will
also prove soon that, under Axioms 1-4, SAS implies MIRROR.

Theorem 100 (Thm 16.5) Under Axioms 1-4, ASA implies SAS.

Written assignment for Monday, April 6. Solve Exercise 16.3, p. 189:
Prove that ASS is false in any model of Axioms 1-4.

Definition 29 (Version of definition 17.2) Suppose 4ABC and 4DEF ex-
ist. Then 4ABC is congruent to 4DEF provided there are points A′, B′,
C ′ such that 4A′B′C ′ = 4DEF and AB ' A′B′, AC ' A′C ′, BC ' B′C ′,
∠A ' ∠A′, ∠B ' ∠B′, and ∠C ' ∠C ′.

Note, that definition 17.1 from the text, of 4ABC ' 4DEF , is incor-
rect in a sense that we may have 4ABC ' 4DEF and not 4CAB '
4DEF , in spite the fact that 4CAB = 4ABC! This definition should be
used for the ordered triangles, ~4ABC, instead. The notion from definition
17.1 (of 4ABC ' 4DEF , that should have been ~4ABC ' ~4DEF ) is
used in the text in some proofs.
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Axiom 5, SAS: Given 4ABC and 4A′B′C ′, if AB ' A′B′, ∠A ' ∠A′,
and AC ' A′C ′, then ~4ABC ' ~4DEF .

Theorem 101 (Thm 17.5) Pons Asinorum: Given 4ABC, if AB ' AC,
then ∠B ' ∠C.

Theorem 102 (Thm 17.6) Given 4ABC, if A− C −D, then m∠BCD >
m∠B.

Definition 30 (Def 17.7) If 4ABC and A − C − D, then ∠BCD is an
exterior angle of 4ABC with remote interior angles ∠A and ∠B.

Read the rest of Def 17.7 for the notions of: opposite side and an-
gle, isosceles triangle, base angles, scalene triangle, equilateral triangle, and
equiangular triangle.

Read Def 17.8 for the notions of larger and smaller angles.

Written assignment for Monday, April 6. Solve Exercise 17.5, p. 201:
Prove Euclid’s Proposition I.17: Given 4ABC, m∠A+m∠B < π.
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Class of April 6:
Recall:

• Axiom 5: SAS.

• Pons Asinorum: Given 4ABC, if AB ' AC, then ∠B ' ∠C.

• Thm 17.6: Given 4ABC, if A− C −D, then m∠BCD > m∠B.

New material:

Theorem 103 (Thm 17.9: Euclid’s Proposition I.16) An exterior angle of
a triangle is larger than either of its remote interior angles.

Theorem 104 (Thm 17.10) The base angles of an isosceles triangle are
acute.

Theorem 105 (Thm 17.12) ASA

Theorem 106 (Thm 17.13) SAA

Theorem 107 (Thm 17.14) SSS

Proof. Use Philo’s argument.

Theorem 108 (Thm 18.1) Given point P and line `, there exists a unique
line through P that is perpendicular to `.

Proof. Similar to Philo’s argument.

Theorem 109 (Thm 18.2) If two lines are perpendicular to the same line,
then the two lines are parallel.

Theorem 110 (Thm 18.3) Given a point P off line `, there exists a line
through P that is parallel to `.

This is not famous parallel axiom. No uniqueness!

Define perpendicular bisector, Def 18.4.

Theorem 111 (Thm 18.5) The locus of all points equidistant from distinct
points P and Q is the perpendicular bisector of PQ.

Theorem 112 (Thm 18.6) If P is off line `, there exists a unique point Q
such that ` is a perpendicular bisector of PQ.

Theorem 113 (Thm 18.7) Given 4ABC, if ∠B ' ∠C, then AB ' AC.

Theorem 114 (Thm 18.8) A triangle is equilateral if, and only if, it is
equiangular.
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Class of April 8:

Theorem 115 (Thm 18.10) If two sides of a triangle are not congruent,
then the angle opposite the longer side is larger than the angle opposite the
shorter side.

Theorem 116 (Thm 18.11) If two angles of a triangle are not congruent,
then the side opposite the larger angle is longer than the side opposite the
smaller angle.

Theorem 117 (Thm 18.12) In any triangle, the sum of the lengths of any
two sides is greater than the length of the third side.

Theorem 118 (Thm 18.13, triangle inequality) For any points A, B, C:

• AB +BC ≥ AC;

• AB +BC = AC if, and only if, either A = B = C or B ∈ AC;

• 4ABC iff AB +BC > AC, AC + CB > AB, and BA+ AC > BC.

Theorem 119 (Thm 18.16: Euclid’s Proposition I.21) If D ∈ int(4ABC),
then BD +BC < BA+ AC and ∠BDC > ∠BAC.

Theorem 120 (Thm 18.17) If 4ABC, A − D − B, and BC ≥ AC, then
CD < BC.

Theorem 121 (Thm 18.18: Euclid’s Proposition I.24) Suppose 4ABC and
4DEF are such that AB ' DE, AC ' DF , and ∠A > ∠D, then BC >
EF .

Proof. Read from the text.

Theorem 122 (Thm 18.19: Euclid’s Proposition I.25) Suppose 4ABC and
4DEF are such that AB ' DE, AC ' DF , and BC > EF , then ∠A >
∠D.

Theorem 123 (Thm 18.20) A triangle has at most one right angle. If a
triangle has a right or an obtuse angle, than the other angles are acute
angles.

Theorem 124 (Thm 18.22) A hypotenuse of a right triangle is longer than
either leg. The shortest segment joining a point to a line is the perpendicular
segment.

Theorem 125 (Thm 18.23) Let F be the foot of the perpendicular from A

to
←→
BC. If BC is the longest side of 4ABC, then B − F − C.
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Read briefly Chapter 19 on reflections.

You will not be responsible for the proofs. But in what follows I may use,
without proofs, some of the results presented there.

Chapter 20, Circles: Read Def 20.1 on standard terminology on circles.

Theorem 126 (Thm 20.2, part) Three points on a circle determine the
circle. The center and the radius of a circle are unique.

Read the remaining parts of the theorem.
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Class of April 13:
Recall:

• (Thm 20.2, part) Three points on a circle determine the circle. The
center and the radius of a circle are unique.

Theorem 127 (Thm 20.9, Compass-Construction Axiom) If
−→
PQ⊥ CP

and CP < r, then there exists a unique point T on
−→
PQ such that CT = r.

Proof. This is a deep theorem, with proof based on the Intermediate Value
Theorem!

Remark: Note that Compass-Construction Axiom fails in the Rational
Cartesian Plane model M2.

Theorem 128 (Thm 20.13) If 4ABC has a right angle at C, 4A′B′C ′ has
a right angle at C ′, AB = A′B′, and AC > A′C ′, then BC < B′C ′.

Theorem 129 (Thm 20.14) If chords PR and QS of a circle with center
C and radius r are perpendicular to a diameter of the circle at X and Y ,
respectively, such that C −X − Y , then r > PX > QY .

Theorem 130 (Thm 20.15, Triangle Theorem) For positive real numbers
a, b, and c

• a, b, and c are the lengths of the sides of some triangle if, and only if,
each of the numbers is less than the sum of the other two.

Proof. Once again, the proof is based on the Intermediate Value Theorem!

Theorem 131 (Thm 20.16, Two-Circle Theorem) If CA is a circle with
center A and radius a, CB is a circle with center b and radius b, AB = c, and
each of a, b, and c is less than the sum of the other two, then CA and CB
intersect in exactly two points, one each on each side of

←→
AB.

Theorem 132 (Thm 21.1: Euclid’s Proposition I.1) Given AB, there exists
an equilateral triangle with side AB.

Proof. Follows from Two-Circle Theorem.
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Class of April 15:
Recall:

• Compass-Construction Axiom: If
−→
PQ⊥ CP and CP < r, then

there exists a unique point T on
−→
PQ such that CT = r.

• Triangle Theorem: For positive real numbers a, b, and c: a, b, and c
are the lengths of the sides of some triangle if, and only if, each of the
numbers is less than the sum of the other two.

• Euclid’s Proposition I.1: Given AB, there exists an equilateral tri-
angle with side AB.

New material:

Theorem 133 (Thm 21.2: Euclid’s Proposition I.2) Given BC and a point
A, there exists a point L such that AL ' BC.

Definition 31 (Def 21.3) Define the notions of: cut by transversal, interior
angle, alternate interior angles, and corresponding angles see Figure 21.2.

Theorem 134 (Thm 21.4) If two lines are cut by transversal, then the fol-
lowing are equivalent:

(a) The angles in a pair of alternate interior angles are congruent.

(b) The angles in a pair of corresponding angles are congruent.

(c) Each of the four pairs of corresponding angles is a pair of congruent
angles.

(d) Each of the two pairs of alternate interior angles is a pair of congruent
angles.

(e) The interior angles intersecting the same side of transversal are supple-
mentary.

Theorem 135 (Thm 21.5) If two lines are cut by transversal such that a
pair of alternate interior angles are congruent, then the two lines have a
common perpendicular.
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Theorem 136 (Cor 21.6: Euclid’s Proposition I.27) If two lines are cut by
transversal such that a pair of alternate interior angles are congruent, then
the two lines are parallel.

Theorem 137 (Cor 21.7: Euclid’s Proposition I.28) If two lines are cut
by transversal such that a pair of corresponding angles are congruent or
such that the interior angles intersecting the same side of transversal are
supplementary, then the two lines are parallel.

Note that none of the last two theorems claim that the implication can
be reversed. The reversibility is actually equivalent to:

Euclid’s Parallel Postulate: If A and D are on the same side of
←→
BC and

m∠ABC +m∠BCD < π, then
−→
BA and

−→
CD intersect.

In Elements Euclid use the postulate to prove

Theorem 138 (Pege 242: Euclid’s Proposition I.29) If A and D are on the

same side of
←→
BC and

←→
AB‖

←→
CD, then m∠ABC +m∠BCD = π.

Euclid’s Parallel Postulate is equivalent to our Axiom 6:

Playfair’s Parallel Postulate: If point P is off line `, then there exists
a unique line through P that is parallel to `.

Notice that the statement of Playfair’s Parallel Postulate is almost iden-
tical to Theorem 18.3. The only difference is the uniqueness requirement!

Theorem 139 Under Axioms 1-5, the following are equivalent:

(i) Euclid’s Parallel Postulate,

(ii) Euclid’s Proposition I.29,

(iii) Playfair’s Parallel Postulate.

Proof. Prove (see pages 242 and 243) that: (i) implies (ii), (ii) implies (iii),
and (iii) implies (i).

Either of the Parallel Postulates independent of Axioms 1-5. The model
satisfying Axioms 1-5 and the negation of Playfair’s Parallel Postulate is the
Cayley-Klein Incidence Plane model M13.
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Class of April 20:
Recall that the following are equivalent under Axioms 1-5.

• Euclid’s Parallel Postulate: If A and D are on the same side of
←→
BC and m∠ABC +m∠BCD < π, then

−→
BA and

−→
CD intersect.

• Euclid’s Proposition I.29: If A and D are on the same side of
←→
BC

and
←→
AB‖

←→
CD, then m∠ABC +m∠BCD = π.

• Playfair’s Parallel Postulate: If point P is off line `, then there
exists a unique line through P that is parallel to `.

New material:

Recall/complete the proof that Playfair’s Parallel Postulate implies Eu-
clid’s Parallel Postulate.

Theorem 140 Euclid’s Parallel Postulate is independent of Axioms 1-5.

Sketch of proof. Clearly Axioms 1-5 and Euclid’s Parallel Postulate are
satisfied in the Euclidean’s (Cartesian) Incidence Plane model M1.

We will show, following section 23.2, that Axioms 1-5 and the negation
of Playfair’s Parallel Postulate are satisfied in the Cayley-Klein Incidence
Plane model M13: P = {(x, y) ∈ R2 : x2 + y2 < 1}, lines – ` ∩ P 6= ∅, where
` standard Euclidean line in the plane.

Axiom 1 and the negation of Playfair’s Parallel Postulate are ob-
vious in M13.

Axiom 2, Ruler Postulate: It is satisfied with the standard Euclidean
distance d. To see this, choose a line ` in R2 intersecting S1 = {(x, y) ∈
R2 : x2 + y2 = 1} at two distinct points S and T . Then, for f` : ` ∩ P → R,

f`(P ) =
1

2
ln
d(P, T )

d(P, S)

we have desired: PQ = |f`(P )− f`(Q)| for every P and Q on ` ∩ P .

Define h : P×P → R for M13 as h(P, P ) = 0 and, for P 6= Q and ` =
←→
PQ,

h(P,Q) = |f`(Q)− f`(P )| = 1

2
ln
d(P, S)d(Q, T )

d(P, T )d(Q,S)
.



Found. Geometry, Math 535, Spring 2015; updated: April 21, 2015 43

Axiom 3, PSP: To see this notice that if A−B−C in M13, then A−B−C
in M1. Now if ` is a line in M13 with equation Ax + By + C = 0, then H1

and H2 are given, respectively, by the inequalities Ax + By + C > 0 and
Ax+By + C < 0.

Sets H1 and H2 are convex (in M1, so in M13), as intersection convex
sets: half-planes and a disk. The fact that

PQ ∩ ` 6= ∅ for every P ∈ H1 and Q ∈ H2 such that P 6= Q

follows from the same fact in M1.

Axiom 4, the Protractor Postulate follows from Axioms 1-3, so we
need not prove it. However, it also follow from our argument below.

Axiom 5, SAS: Here we will sketch the proof that MIRROR holds in M13.
As, under Axioms 1-3, MIRROR implies SAS, this will finish the argument.

For a line ` in M13 (with equation Ax + By + C = 0) we will define a
mapping (reflexion) σ` : P → P satisfying MIRROR for `.

The formula is given on page 282. Geometrically, if ` passes through
(0, 0), then σ` is the standard reflection with respect to `.

If ` does not pass through (0, 0) and ` (with equation Ax+By +C = 0)
intersects S1 at S and T in R2, then the lines mS and mT tangent to S1

and containing, respectively, S and T are not parallel. Let R be a point of
intersection of mS and mT . It can be checked that R = (−A/C,−B/C).
(Compare Figure 23.2.)

If P ∈ P , let F , the foot of P , be the point of intersection, in M1, of

` with
←→
PR. If P = F we define σ`(P ) = P . Otherwise, P ′ = σ`(P ) is the

only point on
←→
PR ∩P that is on the opposite side of ` than P and such that

h(P ′, F ) = h(P, F ). The algebraic formula for σ` can be found on page 282.
It needs to be proved that σ`:

• is a collineation (i.e., a bijection from P onto P) — clear;

• fixes ` pointwise — obvious;

• interchanges the half-planes of ` — clear;

• preserves distance h — obvious for points on lines through R; other
cases require some algebra, see pages 282-283;

• preserves angle measure — see pages 283-284.
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Class of April 22:

Note: Euclid’s postulates and axioms are not strong enough to conclude all
his Propositions! (See e.g. page 124.) The axioms we presented are!

Some results on Saccheri quadrilaterals with little or no proofs.

Definition 32 (Def 21.9) �ABCD is a Saccheri quadrilateral provided
m(∠A) = m(∠D) = π/2 and AB = CD. Read the rest of the definition.

Theorem 141 (Thm 21.10) If �ABCD is a Saccheri quadrilateral then:
�ABCD is a quadrilateral convex; m(∠B) = m(∠C); and AC ' BD.

The opposite sides of a rectangle are congruent.

Proof. Convexity: see Thm 21.8. See also Fig 21.9.
AC ' BD and m(∠ABD) = m(∠DCA) follows from SAS.
Then, by SSS, m(∠CBC) = m(∠ACB), so m(∠B) = m(∠C).

Theorem 142 (Thm 21.11) If �ABCD is a Saccheri quadrilateral then a
line through mid points of the bases is perpendicular to each base.

Theorem 143 (Cor 21.12) If �ABCD is a Saccheri quadrilateral, then its
bases are parallel.

Definition 33 (Def 22.2)

Hypothesis of the Acute Angle: There exists a Saccheri quadrilateral
with acute upper basis angles.

Hypothesis of the Right Angle: There exists a Saccheri quadrilateral with
right upper basis angles.

Hypothesis of the Obtuse Angle: There exists a Saccheri quadrilateral
with obtuse upper basis angles.

Theorem 144 (Cor 22.10, Saccheri’s Propositions V, VI, and VII)

• Hypothesis of the Acute Angle implies that every Saccheri quadrilateral
has acute upper basis angles.

• Hypothesis of the Right Angle implies that every Saccheri quadrilateral
has right upper basis angles.

• Hypothesis of the Obtuse Angle implies that every Saccheri quadrilat-
eral has obtuse upper basis angles.
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Theorem 145 (Thm 22.12, Saccheri’s Propositions IX) Let 4ABC have a
right angle at C.

(i) Hypothesis of the Acute Angle implies that m∠A+m∠B < π/2.

(ii) Hypothesis of the Right Angle implies that m∠A+m∠B = π/2.

(iii) Hypothesis of the Obtuse Angle implies that m∠A+m∠B > π/2.

Theorem 146 (Cor 22.13, Saccheri’s Propositions IX) If 4ABC, then

(i) Hypothesis of the Acute Angle implies that m∠A+m∠B+m∠C < π.

(ii) Hypothesis of the Right Angle implies that m∠A+m∠B+m∠C = π.

(iii) Hypothesis of the Obtuse Angle implies that m∠A+m∠B+m∠C > π.

Proof. Follows easy from the above theorem.

Theorem 147 (i) Hypothesis of the Acute Angle is consistent with Ax-
ioms 1-5 of Euclid’s Absolute Geometry.

(ii) Hypothesis of the Right Angle is consistent with Axioms 1-5 of Euclid’s
Absolute Geometry.

(iii) Hypothesis of the Obtuse Angle contradicts Axioms 1-5 of Euclid’s
Absolute Geometry.

Proof. (i) is justified by the Cayley-Klein Incidence Plane model M13.
(ii) is justified by the Cartasian Incidence Plane model M1.
(iii) is proved as Thm 22.18. (See also Cor. 22.19.)

The remaining two classes we will be used for review.


