SYLLABUS Foundations of Geometry, MATH 535 Spring 2015

INSTRUCTOR:	Dr. Krzysztof Chris Ciesielski	
OFFICE HOURS:	M, W 5:30-6:50pm	
OFFICE:	308G Armstrong Hall	
CLASS MEETING TIMES:	M, W 7:00-8:15pm	
CLASS MEETING PLACE:	415 Armstrong Hall	
OFFICE PHONE NUMBER:	293-4367	
WEB PAGE: <u>http://www.ma</u>	ath.wvu.edu/~kcies/teach/current/CurrentTeaching.html	
TEXT: The Found	indations of Geometry and the Non-Euclidean Plane by George	
Edward Martin, Springer Verlag, ISBN: 0387906940. I will use the 4th edition of 1998, but		
there seems to be little difference between this addition and earlier additions. Our		
bookstore will not have this book. So, order this on line from either		
http://www.springer-ny.com or http://www.amazon.com		
TENTATIVE GRADING SCHEME:	Homework & Quizzes	30%
	Mid Term Test	30%
	Final Test	40%
FINAL EXAM:	The final exam will be comprehensive.	
TENTATIVE GRADING SCALE:	A 85-100%	-
	B 75-85%	
	C 64-75%	
	D 55-65%	
	F below 55%	0

Excerpt from Graduate catalog:

Math 535: (Designed especially for secondary mathematics teachers; others admitted with departmental approval obtained before registration.) Incidence geometrics with models; order for lines and planes; separation by angles and by triangles; congruence; introduction to Euclidean geometry.

The main goal of the course is to teach its participants a good understanding of the axiomatic approach to the *Euclidean geometry*. To achieve this goal, we will discuss in some generality what the *axiomatic theory* is and what it means that its axioms are *consistent* and *independent*. Our main concern will certainly be the Euclidean axioms. But to understand them well we will be introducing the axioms very slowly, one by one, and will discuss in details the geometrical theories based on these few axioms. To show that the axioms are independent (and consistent) we will discuss many different geometrical *models*, referred often as the *incidence geometrics models*.