MATH 251
Instr. K. Ciesielski
Spring 2014

SAMPLE TEST \# 3

Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.)

Ex. 1. Show that the following limit does not exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+7 y^{4}}
$$

Ex. 2. Compute the first order partial derivatives of $f(x, y, z)=z e^{x^{2}} \cos y$.

Ex. 3. Compute all second order partial derivatives of $g(s, t)=e^{5 t}+t \sin (3 s)$.

Ex. 4. Find an equation of the plane tangent to the surface $z=x^{2}-5 y^{3}$ at the point $P(2,1,-1)$.

Ex. 5. Find the absolute maximum and the absolute minimum of the function $f(x, y)=$ $x^{3}-x y$ on the region bounded below by parabola $y=x^{2}-1$ and above by line $y=3$. You will get credit only if all critical points are found.

Ex. 6. Find the volume of the solid bounded above by the surface $z=28 x y$, bounded below by $x y$-plane, and which is above the region bounded by $y=x^{6}$ and $y=x$.

Ex. 7. Evaluate $\int_{0}^{1} \int_{0}^{x} 4 e^{x^{2}} d y d x$

Ex. 8. Find the point on the cone $z=\sqrt{x^{2}+y^{2}}$ which is the closest to the point $(4,-8,0)$.

Ex. 9. Find the directional derivative of $f(x, y)=10 e^{y} \sin x$ at the point $P(\pi / 4,0)$ in the direction of the vector $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$.

Ex. 10. Find the gradient of $g(x, y, z)=x^{2}+e^{y z}+\cos (x+2 y)$.

