SAMPLE TEST \# 4

Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.)

Ex. 1. Transform the following system of equations into a single second order equation in terms of x_{1}. Then give the initial condition for the resulted equation that corresponds to the given initial conditions. Do not solve.
$x_{1}^{\prime}=-0.5 x_{1}+2 x_{2} ; \quad x_{2}^{\prime}=-2 x_{1}-0.5 x_{2} ; \quad x_{1}(0)=-2, \quad x_{2}(0)=2$.
Ex. 2. Use eigenvalues and eigenvectors to find the general solution of the given systems of differential equations. The solution must be expressed in terms of real-valued functions.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right) \mathbf{x}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 2 \\ -5 & -1\end{array}\right) \mathbf{x}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}6 & -3 \\ 3 & 0\end{array}\right) \mathbf{x}$

Ex. 3. Solve the following boundary value problem or show that it does not have a solution. $y^{\prime \prime}+4 y=0, y(0)=0, y(\pi)=0$.

Ex. 4. Determine whether the method of separation of variables can be used to replace the partial differential equation $u_{x x}+u_{x t}+u_{t}=0$ by a pair of ordinary differential equations. If so, find the ordinary differential equations. Do not solve them.

Ex. 5. Solve the heat equation: $u_{t}=9 u_{x x}, u(0, t)=u(2, t)=0, u(x, 0)=13$ for $0<x<2$.

