Solutions (without Ex. 2) to the SAMPLE TEST \# 1

Ex. 1(a) $y^{\prime}=\frac{e^{x}-e^{-x}}{3+4 y}, y(0)=1$.
Labeling This is separable equation, since $\frac{d y}{d x}=\frac{e^{x}-e^{-x}}{3+4 y}$ is equivalent to $\int(3+4 y) d y=\int\left(e^{x}-e^{-x}\right) d x$.
Solution $3 y+2 y^{2}=e^{x}+e^{-x}+C$. This is a general implicit solution.
From the initial condition $y(0)=1(y=0$ for $x=0)$ we have $3 \cdot 1+2 \cdot 1^{2}=e^{0}+e^{0}+C$, that is, $5=1+1+C$, so $C=3$. So, particular implicit solution is $3 y+2 y^{2}=e^{x}+e^{-x}+3$.
Ex. 1 (b) $\frac{y}{x}+6 x+(\ln x-2) \frac{d y}{d x}=0, x>0$.
Labeling This is exact equation, since for $M(x, y)=\frac{y}{x}+6 x$ and $N(x, y)=\ln x-2$ their partial derivatives $\frac{\partial M}{\partial y}=\frac{1}{x}$ and $\frac{\partial N}{\partial x}=\frac{1}{x}$ are equal.
Solution $\Psi(x, y)=\int M(x, y) d x=\int\left(\frac{y}{x}+6 x\right) d x=y \ln x+3 x^{2}+K(y)$.
To find $K(y)$, note that $\frac{\partial \Psi}{\partial y}=N$, that is, $1 \ln x+0+K^{\prime}(y)=(\ln x-2)$.
Thus, $K^{\prime}(y)=-2$ and $K(y)=-2 y+c$. So, $\Psi(x, y)=y \ln x+3 x^{2}-2 y+c$.
The general solution is of the implicit form $\Psi(x, y)=C$, which, in our case is $y \ln x+3 x^{2}-2 y=C$.
(In this particular case, the explicit form of y can also be found.)
Ex. 1(c) $t y^{\prime}-y=t^{2} e^{-t}, t>0$.
Labeling This is linear equation $y^{\prime}+p(t) y=g(t)$, since it is equivalent to $y^{\prime}-\frac{1}{t} y=t e^{-t}$, with $p(t)=-\frac{1}{t}$ and $g(t)=t e^{-t}$.
Solution $\mu(t)=\exp \left(\int p(t) d t\right)=\exp \left(\int-\frac{1}{t} d x\right)=e^{-\ln t}=t^{-1}$.
$y(t)=\frac{1}{\mu(t)} \int \mu(t) g(t) d t=t\left(\int t^{-1} t e^{-t} d t\right)=t\left(\int e^{-t} d t\right)=t\left(-e^{-t}+C\right)$.
Thus $y(t)=-t e^{-t}+C t$ constitutes the general solution.
Ex. 1(d) $\frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{2 x y}$
Labeling This is a homogeneous equation $y^{\prime}=h(y / x)$, since it is equivalent to the equation $y^{\prime}(x)=\frac{\left(x^{2}+3 y^{2}\right) / x^{2}}{2 x y / x^{2}}=\frac{1+3(y / x)^{2}}{2(y / x)}=h(y / x)$ with $h(z)=\frac{1+3 z^{2}}{2 z}$. We make substitution $v=y / x$, leading to $y=x v$ and $y^{\prime}=v+x v^{\prime}$.
Solution Using substitution with $y^{\prime}=\frac{1+3(y / x)^{2}}{2(y / x)}$ we get $v+x v^{\prime}=\frac{1+3 v^{2}}{2 v}$, that is, $x v^{\prime}$ is equal to $\frac{1+3 v^{2}}{2 v}-v=\frac{1+3 v^{2}-2 v^{2}}{2 v}=\frac{1+v^{2}}{2 v}$.
Thus, $x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}$. This is a separable equation, equivalent to $\int \frac{2 v}{1+v^{2}} d v=\int \frac{1}{x} d x$. In both integrals, numerator is the derivative of denominator, so
$\ln \left(1+v^{2}\right)=\ln |x|+C$. Thus, $\exp \left(\ln \left(1+v^{2}\right)\right)=\exp (\ln |x|+C)$, that is,
$1+v^{2}=e^{C}|x|$. Putting $K= \pm e^{C}$ we get $1+v^{2}=K x$. Since $v=y / x$, the final general implicit solution is
$1+(y / x)^{2}=K x$. (In this case, it can be also solved for y.)

Ex. 1(e) $x^{2} y^{\prime}=y^{3}-2 x y, x>0$.
Labeling This is a Bernouli equation $y^{\prime}+p(x) y=q(x) y^{n}$, since it is equivalent to the equation $y^{\prime}+\frac{2}{x} y=\frac{1}{x^{2}} y^{3}$ with $p(x)=\frac{2}{x}, q(x)=\frac{1}{x^{2}}$, and $n=3$. We make substitution $v=y^{1-3}$, leading to $y=v^{-1 / 2}$ and $y^{\prime} \stackrel{x}{=}-\frac{1}{2} v^{-3 / 2} v^{\prime}$.
Solution Using substitution with $y^{\prime}+\frac{2}{x} y=\frac{1}{x^{2}} y^{3}$ we get $-\frac{1}{2} v^{-3 / 2} v^{\prime}+\frac{2}{x} v^{-1 / 2}=\frac{1}{x^{2}}\left(v^{-1 / 2}\right)^{3}$. So, $-\frac{1}{2 v^{3 / 2}} v^{\prime}+\frac{2}{x} \frac{1}{v^{1 / 2}}=\frac{1}{x^{2}} \frac{1}{v^{3 / 2}}$. Multiplication by $-2 v^{3 / 2}$ results in linear ODE: $v^{\prime}-\frac{4}{x} v=-\frac{2}{x^{2}}$.
Here $\mu(x)=\exp \left(\int-\frac{4}{x} d x\right)=\exp (-4 \ln |x|)=x^{-4}$. Therefore, $v(x)=\frac{1}{\mu(x)} \int \mu(x) g(x) d x=x^{4}\left(\int x^{-4}\left(-\frac{2}{x^{2}}\right) d x\right)=x^{4}\left(\int-2 x^{-6} d x\right)=x^{4}\left(\frac{2}{5} x^{-5}+C\right)$.
Using again $y=v^{-1 / 2}$, we get
$y=\left(x^{4}\left(\frac{2}{5} x^{-5}+C\right)\right)^{-1 / 2}$.
(This can be farther simplified to

$$
\left.y=\left(x^{4}\left(\frac{2}{5 x^{5}}+C\right)\right)^{-1 / 2}=\left(\frac{x^{4}}{5 x^{5}}\left(2+5 C x^{5}\right)\right)^{-1 / 2}=\left(\frac{5 x}{2+5 C x^{5}}\right)^{1 / 2}=\sqrt{\frac{5 x}{2+c x^{5}}} .\right)
$$

Ex. 1 (f) $\frac{d y}{d x}+y=\frac{1}{1+e^{x}}$.
Labeling This is linear equation $y^{\prime}+p(x) y=g(x)$ with $p(x)=1$ and $g(x)=\frac{1}{1+e^{x}}$.
Solution $\mu(x)=\exp \left(\int p(x) d x\right)=\exp \left(\int 1 d x\right)=e^{x}$.
$y(x)=e^{-x} \int \mu(x) g(x) d x=e^{-x} \int e^{x} \frac{1}{1+e^{x}} d x=e^{-x} \int \frac{e^{x}}{1+e^{x}} d x$.
Since in $\frac{e^{x}}{1+e^{x}}$ numerator is the derivative of denominator, we have
$\int \frac{e^{x}}{1+e^{x}} d x=\ln \left(1+e^{x}\right)+C$. Thus,
$y(x)=e^{-x}\left(\ln \left(1+e^{x}\right)+C\right)=\frac{\ln \left(1+e^{x}\right)+C}{e^{x}}$ constitutes the general solution of our ODE.
Ex. 2. Solution in class.
Ex. 3. This is linear ODE $y^{\prime}+\frac{\cos x}{x^{2}-x-6} y=\frac{e^{x}}{x^{2}-x-6}$ with $p(x)=\frac{\cos x}{(x-3)(x+2)}$ and $g(x)=\frac{e^{x}}{(x-3)(x+2)}$. Functions p and g are undefined at -2 and 3 , and are continuos on the remaining intervals $(-\infty,-2),(-2,3)$, and $(3, \infty)$. In the initial condition $y(2)=0$ we have fixed value of y for $x=2$. Since number 2 is in the interval $(-2,3)$, this interval constitutes the answer.

Ex. 4. We have $y(0)=-2$ and $y^{\prime}=f(t, y)$ with $f(t, y)=\frac{4-t y}{1+y^{2}}$. Hence $y(0.1) \approx-1.92$, as $y(0.1)=y(0+h) \approx y(0)+h y^{\prime}(0)=y(0)+h f(0,-2)=-2+0.1 \frac{4-0}{1+(-2)^{2}}=-2+0.08$.

Ex. 5. Let $S(t)$ denotes the amount of salt in the tank, in pounds, after t minutes.
Initially we have $S(0)=100$. Rate $i n$ is $r_{i n}=1 l b / \mathrm{gal} \cdot 3 \mathrm{gal} / \mathrm{min}=3$ (in $\mathrm{lb} / \mathrm{min}$). Rate out is $r_{\text {out }}=2 \mathrm{gal} / \mathrm{min} \cdot S(t) /$ "current tank solution holding" $=2 S(t) /(200+(3-2) t)=\frac{2 S}{200+t}$ (in $l b / \min$). Since $S^{\prime}=r_{\text {in }}-r_{\text {out }}$, our ODE is $S^{\prime}=3-\frac{2 S}{200+t}$.

ANSWER: $S^{\prime}=3-\frac{2 S}{200+t}, S(0)=100$.

