Solutions (without Ex. 2) to the SAMPLE TEST # 1

Ex. 1(a) $y' = \frac{e^x - e^{-x}}{3 + 4y}, y(0) = 1.$ **Labeling** This is separable equation, since $\frac{dy}{dx} = \frac{e^x - e^{-x}}{3 + 4y}$ is equivalent to $\int (3+4y) \, dy = \int (e^x - e^{-x}) \, dx.$ **Solution** $3u + 2u^2 = e^x + e^{-x} + C$. This is a general implicit solution. From the initial condition y(0) = 1 (y = 0 for x = 0) we have $3 \cdot 1 + 2 \cdot 1^2 = e^0 + e^0 + C_2$ that is, 5 = 1 + 1 + C, so C = 3. So, particular implicit solution is $3y + 2y^2 = e^x + e^{-x} + 3$. Ex. 1(b) $\frac{y}{x} + 6x + (\ln x - 2)\frac{dy}{dx} = 0, x > 0.$ **Labeling** This is *exact equation*, since for $M(x, y) = \frac{y}{x} + 6x$ and $N(x, y) = \ln x - 2$ their partial derivatives $\frac{\partial M}{\partial y} = \frac{1}{x}$ and $\frac{\partial N}{\partial x} = \frac{1}{x}$ are equal. **Solution** $\Psi(x, y) = \int M(x, y) \, dx = \int (\frac{y}{x} + 6x) \, dx = y \ln x + 3x^2 + K(y).$ To find K(y), note that $\frac{\partial \Psi}{\partial y} = N$, that is, $1 \ln x + 0 + K'(y) = (\ln x - 2)$. Thus, K'(y) = -2 and K(y) = -2y + c. So, $\Psi(x, y) = y \ln x + 3x^2 - 2y + c$. The general solution is of the implicit form $\Psi(x,y) = C$, which, in our case is $y\ln x + 3x^2 - 2y = C.$ (In this particular case, the explicit form of y can also be found.) Ex. 1(c) $ty' - y = t^2 e^{-t}, t > 0$ **Labeling** This is *linear equation* y' + p(t)y = g(t), since it is equivalent to $y' - \frac{1}{t}y = te^{-t}$, with $p(t) = -\frac{1}{t}$ and $g(t) = te^{-t}$. Solution $\mu(t) = \exp(\int p(t) dt) = \exp(\int -\frac{1}{t} dx) = e^{-\ln t} = t^{-1}.$ $y(t) = \frac{1}{\mu(t)} \int \mu(t)g(t) \, dt = t \left(\int t^{-1} t e^{-t} \, dt \right) = t \left(\int e^{-t} \, dt \right) = t \left(-e^{-t} + C \right).$ Thus $y(t) = -te^{-t} + Ct$ constitutes the general solution. Ex. 1(d) $\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$ **Labeling** This is a homogeneous equation y' = h(y/x), since it is equivalent to the equation $y'(x) = \frac{(x^2+3y^2)/x^2}{2xy/x^2} = \frac{1+3(y/x)^2}{2(y/x)} = h(y/x)$ with $h(z) = \frac{1+3z^2}{2z}$. We make substitution v = y/x, leading to y = xv and y' = v + xv'. **Solution** Using substitution with $y' = \frac{1+3(y/x)^2}{2(y/x)}$ we get $v + xv' = \frac{1+3v^2}{2v}$, that is, xv' is equal to $\frac{1+3v^2}{2v} - v = \frac{1+3v^2-2v^2}{2v} = \frac{1+v^2}{2v}$. Thus, $x\frac{dv}{dx} = \frac{1+v^2}{2v}$. This is a separable equation, equivalent to $\int \frac{2v}{1+v^2} dv = \int \frac{1}{x} dx$. In both integrals, numerator is the derivative of denominator, so $\ln(1+v^2) = \ln |x| + C$. Thus, $\exp(\ln(1+v^2)) = \exp(\ln |x| + C)$, that is, $1+v^2=e^C|x|$. Putting $K=\pm e^C$ we get $1+v^2=Kx$. Since v=y/x, the final general implicit solution is

 $1 + (y/x)^2 = Kx$. (In this case, it can be also solved for y.)

Ex. 1(e) $x^2y' = y^3 - 2xy, x > 0.$

Labeling This is a *Bernouli equation* $y' + p(x)y = q(x)y^n$, since it is equivalent to the equation $y' + \frac{2}{x}y = \frac{1}{x^2}y^3$ with $p(x) = \frac{2}{x}$, $q(x) = \frac{1}{x^2}$, and n = 3. We make substitution $v = y^{1-3}$, leading to $y = v^{-1/2}$ and $y' = -\frac{1}{2}v^{-3/2}v'$.

Solution Using substitution with $y' + \frac{2}{x}y = \frac{1}{x^2}y^3$ we get $-\frac{1}{2}v^{-3/2}v' + \frac{2}{x}v^{-1/2} = \frac{1}{x^2}(v^{-1/2})^3$. So, $-\frac{1}{2v^{3/2}}v' + \frac{2}{x}\frac{1}{v^{1/2}} = \frac{1}{x^2}\frac{1}{v^{3/2}}$. Multiplication by $-2v^{3/2}$ results in linear ODE: $v' - \frac{4}{x}v = -\frac{2}{x^2}$. Here $\mu(x) = \exp(\int -\frac{4}{x} dx) = \exp(-4\ln|x|) = x^{-4}$. Therefore, $v(x) = \frac{1}{\mu(x)}\int \mu(x)g(x) dx = x^4\left(\int x^{-4}(-\frac{2}{x^2}) dx\right) = x^4\left(\int -2x^{-6} dx\right) = x^4(\frac{2}{5}x^{-5} + C)$. Using again $y = v^{-1/2}$, we get $y = (x^4(\frac{2}{5}x^{-5} + C))^{-1/2}$. (This can be farther simplified to $y = (x^4(\frac{2}{5x^5} + C))^{-1/2} = (\frac{x^4}{5x^5}(2 + 5Cx^5))^{-1/2} = (\frac{5x}{2+5Cx^5})^{1/2} = \sqrt{\frac{5x}{2+cx^5}}$.) Ex. 1(f) $\frac{dy}{dx} + y = \frac{1}{1+e^x}$. Labeling This is *linear equation* y' + p(x)y = g(x) with p(x) = 1 and $g(x) = \frac{1}{1+e^x}$. Solution $\mu(x) = \exp(\int p(x) dx) = \exp(\int 1 dx) = e^x$. $y(x) = e^{-x} \int \mu(x)g(x) dx = e^{-x} \int e^x \frac{1}{1+e^x} dx = e^{-x} \int \frac{e^x}{1+e^x}} dx$. Since in $\frac{e^x}{1+e^x}$ numerator is the derivative of denominator, we have

 $\int \frac{e^x}{1+e^x} dx = \ln(1+e^x) + C.$ Thus, $y(x) = e^{-x}(\ln(1+e^x) + C) = \frac{\ln(1+e^x) + C}{e^x}$ constitutes the general solution of our ODE.

Ex. 2. Solution in class.

Ex. 3. This is linear ODE $y' + \frac{\cos x}{x^2 - x - 6}y = \frac{e^x}{x^2 - x - 6}$ with $p(x) = \frac{\cos x}{(x - 3)(x + 2)}$ and $g(x) = \frac{e^x}{(x - 3)(x + 2)}$. Functions p and g are undefined at -2 and 3, and are continuous on the remaining intervals $(-\infty, -2), (-2, 3), (-2, 3), (-2, 3)$. In the initial condition y(2) = 0 we have fixed value of y for x = 2. Since number 2 is in the interval (-2, 3), this interval constitutes the answer.

Ex. 4. We have y(0) = -2 and y' = f(t, y) with $f(t, y) = \frac{4-ty}{1+y^2}$. Hence $y(0.1) \approx -1.92$, as $y(0.1) = y(0+h) \approx y(0) + hy'(0) = y(0) + hf(0, -2) = -2 + 0.1\frac{4-0}{1+(-2)^2} = -2 + 0.08$.

Ex. 5. Let S(t) denotes the amount of salt in the tank, in pounds, after t minutes.

Initially we have S(0) = 100. Rate in is $r_{in} = 1lb/gal \cdot 3gal/min = 3$ (in lb/min). Rate out is $r_{out} = 2gal/min \cdot S(t)/$ "current tank solution holding" $= 2S(t)/(200+(3-2)t) = \frac{2S}{200+t}$ (in lb/min). Since $S' = r_{in} - r_{out}$, our ODE is $S' = 3 - \frac{2S}{200+t}$.

ANSWER: $S' = 3 - \frac{2S}{200+t}$, S(0) = 100.