MATH 261.007
Instr. K. Ciesielski
Spring 2010

Bernouli Equations handout

Format: $y^{\prime}+p(t) y=g(t) y^{n}$.
Solution:
(a) For $n=0$ and $n=1$ this is linear equation. For other n use substitution $v=y^{1-n}$.
(b) Since $y=v^{\frac{1}{1-n}}$, taking the derivative we get $y^{\prime}=\frac{1}{1-n} v^{\frac{1}{1-n}-1} v^{\prime}=\frac{1}{1-n} v^{\frac{n}{1-n}} v^{\prime}$.
(c) Substituting this to $y^{\prime}+p(t) y=g(t) y^{n}$ we get
$\frac{1}{1-n} v^{\frac{n}{1-n}} v^{\prime}+p(t) v^{\frac{1}{1-n}}=g(t)\left(v^{\frac{1}{1-n}}\right)^{n}$.
(d) Multiplying this by the reciprocal of $\frac{1}{1-n} v^{\frac{n}{1-n}}$, that is by $(1-n) v^{-\frac{n}{1-n}}$, we get $v^{\prime}+(1-n) p(t) v^{\frac{1}{1-n}} v^{-\frac{n}{1-n}}=(1-n) g(t) v^{\frac{n}{1-n}} v^{-\frac{n}{1-n}}$, that is, $v^{\prime}+(1-n) p(t) v=(1-n) g(t)$, since $\frac{1}{1-n}-\frac{n}{1-n}=1$. Algebra always leads to the linear equation!
(e) Next, solve (for v) the linear equation $v^{\prime}+(1-n) p(t) v=(1-n) g(t)$.
(f) Using again equation $y=v^{\frac{1}{1-n}}$, find the formula for y from the formula for v found in (e).

