MATH 251.006
Instr. K. Ciesielski
Spring 2009

SAMPLE TEST \# 3

Solve the following exercises. Show your work.

Ex. 1. Show that the following limit does not exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{3 x^{2}+4 y^{2}}=
$$

Ex. 2. Compute the first order partial derivatives of $h(x, y, z)=e^{2 x+3 z} \sin x \tan y$.

Ex. 3. Compute the second order partial derivatives of $g(u, v)=\ln (u+2 v)-\sin u \cos v$.

Ex. 4. Find an equation of the plane tangent to the surface $z=\ln x-\sin y$ at the point $P(1, \pi / 2,-1)$.

Ex. 5. Find the absolute maximum and the absolute minimum of the function $f(x, y)=$ $4 x^{2}+2 x y+y^{2}$ on the region bounded below by the parabola $y=x^{2}$ and above by the line $y=9$.

Ex. 6. Find the gradient of $g(x, y, z)=x^{2}+e^{y z}+\cos (x+2 y)$.

Ex. 7. Find the first octant point on the surface $x y z=8$ which is the closest to the point $P(0,0,0)$.

Ex. 8. Find the directional derivative of $f(x, y)=\sin x \cos y$ at the point $P(\pi / 3,-2 \pi / 3)$ in the direction of the vector $\mathbf{v}=\langle 4,-3\rangle$.

Ex. 9. Find the volume of the solid bounded by the surfaces: $z=x^{2}+3 y^{2}, x=0, y=1$, $y=x$, and $z=0$.

Ex. 10. Evaluate the integrals:
(a) $\int_{-1}^{2} \int_{-y}^{0}\left(x+2 y^{2}\right) d x d y=$
(b) $\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y=$

