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SAMPLE TEST # 4

Solve the following exercises. Show your work. (No credit will be given for an answer with
no supporting work shown.)

Ex. 1. Transform the following system of equations into a single second order equation in
terms of x1. Then give the initial condition for the resulted equation that corresponds to the
given initial conditions. Do not solve.
x′1 = −0.5x1 + 2x2; x′2 = −2x1 − 0.5x2; x1(0) = −2, x2(0) = 2.

Solution: From the first equation we get x2 = 0.5x′1 + 0.25x1. Substituting this to the
second equation gives (0.5x′1 + 0.25x1)

′ = −2x1 − 0.5(0.5x′1 + 0.25x1), which in turn leads
to 0.5x′′1 + 0.25x′1 = −2x1 − 0.25x′1 − 0.125x1. Multiplying this equation by 8 produces
4x′′1 + 2x′1 = −16x1 − 2x′1 − x1, so 4x′′1 = −4x′1 − 17x1.

Clearly x1(0) = −2. To calculate x′1(0) we put t = 0 to the first equation and use given
boundary values: x′1(0) = −0.5x1(0) + 2x2(0) = −0.5(−2) + 2 · 2 = 5.

Answer: 4x′′1 = −4x′1 − 17x1; x1(0) = −2; x′1(0) = 5.

Ex. 2. Use eigenvalues and eigenvectors to find the general solution of the given systems of
differential equations. The solution must be expressed in terms of real-valued functions.

(a) x′ =

(
1 −2
3 −4

)
x

Solution: The eigenvalues are obtained as roots of the equation

det

(
1− r −2

3 −4− r

)
= 0, that is, (1− r)(−4− r) + 6 = 0, or r2 + 3r− 4 + 6. Hence,

(r + 2)(r + 1) = 0, leading to the eigenvalues −1 and −2.

The eigenvalue r = −1 leads to the eigenvector equation

(
2 −2
3 −3

)(
ξ1

ξ2

)
=

(
0
0

)
,

so 2ξ1 − 2ξ2 = 0. Thus, ξ2 = ξ1,

(
ξ1

ξ2

)
=

(
ξ1

ξ1

)
= ξ1

(
1
1

)
, and the eigenvector is(

1
1

)
.

The eigenvalue r = −2 leads to the eigenvector equation

(
3 −2
3 −2

)(
ξ1

ξ2

)
=

(
0
0

)
,

so 3ξ1 − 2ξ2 = 0. Thus, ξ2 = 1.5ξ1,

(
ξ1

ξ2

)
=

(
ξ1

1.5ξ1

)
= ξ1

(
1

1.5

)
, and the

eigenvector is

(
1

1.5

)
.

Answer: x = c1

(
1
1

)
e−t + c2

(
1

1.5

)
e−2t.
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(b) x′ =

(
1 2
−5 −1

)
x

Solution: The eigenvalues are obtained as roots of the equation

det

(
1− r 2
−5 −1− r

)
= 0, that is, (1−r)(−1−r)+10 = 0, or r2−1+10 = 0. Hence,

we have two complex the eigenvalues: ±3i.

Eigenvalue r = 3i leads to eigenvector equation

(
1− 3i 2
−5 −1− 3i

)(
ξ1

ξ2

)
=

(
0
0

)
,

so (1− 3i)ξ1 + 2ξ2 = 0. Thus, ξ2 = (1.5i− 0.5)ξ1,(
ξ1

ξ2

)
=

(
ξ1

(1.5i− 0.5)ξ1

)
= ξ1

(
1

1.5i− 0.5

)
,

and the eigenvector is

(
1

1.5i− 0.5

)
. Since the real part of the eigenvalue is 0, this

leads to the complex solution x(1)(t) =

(
1

1.5i− 0.5

)
e0t(cos 3t + i sin 3t). Therefore

x(1)(t) =

(
cos 3t + i sin 3t

(−0.5 cos 3t− 1.5 sin 3t) + i(1.5 cos 3t− 0.5 sin 3t)

)
and

x(1)(t) =

(
cos 3t

−0.5 cos 3t− 1.5 sin 3t

)
+ i

(
sin 3t

1.5 cos 3t− 0.5 sin 3t

)
.

Answer: x(t) = c1

(
cos 3t

−0.5 cos 3t− 1.5 sin 3t

)
+ c2

(
sin 3t

1.5 cos 3t− 0.5 sin 3t

)
.

(c) x′ =

(
6 −3
3 0

)
x

Solution: The eigenvalues are obtained as roots of the equation

det

(
6− r −3

3 −r

)
= 0, that is, (6− r)(−r) + 9 = 0, r2 − 6r + 9 = 0, or (r − 3)2 = 0.

Hence, we have one double eigenvalue: r = 3.

The first eigenvector equation is

(
3 −3
3 −3

)(
ξ1

ξ2

)
=

(
0
0

)
, so 3ξ1 − 3ξ2 = 0. Thus,

ξ2 = ξ1,

(
ξ1

ξ2

)
=

(
ξ1

ξ1

)
= ξ1

(
1
1

)
, and the eigenvector is ξ =

(
1
1

)
. This gives the

first fundamental solution x(1) = ξe3t =

(
1
1

)
e3t. Recall that the second fundamental

solution is of the form x(2) = ξte3t + ηe3t, where η is one of the solutions of the system(
3 −3
3 −3

)(
η1

η2

)
= ξ, that is,

(
3 −3
3 −3

)(
η1

η2

)
=

(
1
1

)
. Hence, 3η1 − 3η2 = 1,

that is, η1 = η2 + 1/3. So, η =

(
η2 + 1/3

η2

)
= η2

(
1
1

)
+

(
1/3
0

)
. One of these

solutions is when η2 = 0, giving η =

(
1/3
0

)
.
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Answer: x(t) = c1

(
1
1

)
e3t + c2

[(
1
1

)
te3t +

(
1/3
0

)
e3t

]
.

Ex. 3. Solve the following boundary value problem or show that it does not have a solution.
y′′ + 4y = 0, y(0) = 0, y(π) = 0.

Solution: The characteristic function of our equation is r2+4 = 0 and has solution r = ±2i.
Thus, the general solution of the equation is of the form y(t) = c1 cos 2t + c2 sin 2t. For t = 0
this leads to the equation y(0) = c1 cos 0 + c2 sin 0, that is, 0 = c11 + c20. Thus c1 = 0 and
y(t) = c2 sin 2t. For t = π this leads to the equation y(π) = c2 sin 2π, that is, 0 = c20, which
holds for any value of c2. Thus, the boundary value problem has infinitely many solutions,
each of the form y(t) = c sin 2t, where c is an arbitrary constant.

Ex. 4. Determine whether the method of separation of variables can be used to replace the
partial differential equation uxx + uxt + ut = 0 by a pair of ordinary differential equations. If
so, find the ordinary differential equations. Do not solve them.

Solution: We assume that u is of the form u(x, t) = X(x)T (t). Then we have uxx = X ′′T ,
uxt = X ′T ′, and ut = XT ′. Substituting this to the equation gives X ′′T + X ′T ′ + XT ′ = 0.
So, X ′′T + (X ′ + X)T ′ = 0 and X ′′T = −(X ′ + X)T ′. Thus, X′′

X′+X
= −T ′

T
and this quantity

is equal to a constant, which we denote by λ. Thus the method of separation of variables can
be used to our partial differential equation and it leads to the pair of ordinary differential
equations X ′′ = λ(X ′ + X) and T ′ = −λT .

Ex. 5. Solve the heat equation: ut = 9uxx, u(0, t) = u(2, t) = 0, u(x, 0) = 13 for 0 < x < 2.

Solution: The general solution of the heat equation

ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f(x) for 0 < x < L

is given by u(x, t) =
∑∞

n=1 cne
−n2π2α2t/L2

sin nπx
L

, where cn = 2
L

∫ L
o f(x) sin nπx

L
dx. In our case

L = 2 and α2 = 9, reducing the solution to u(x, t) =
∑∞

n=1 cne
−n2(9π2/4)t sin nπx

2
, where

cn =
2

2

∫ 2

0
u(x, 0) sin

nπx

2
dx =

∫ 2

0
13 sin

nπx

2
dx

= −13
2

nπ
cos

nπx

2

∣∣∣∣2
0

= − 26

nπ
(cos nπ − cos 0)

=
26

nπ
(cos 0− cos nπ) =

{
0 n is even

52/(nπ) n is odd
.

This leads us to a final solution

u(x, t) =
∞∑

n=1,3,5,...

52

nπ
e−n2(9π2/4)t sin

nπx

2
=

∞∑
k=0

52

(2k + 1)π
e−(2k+1)2(9π2/4)t sin

(2k + 1)πx

2
,

where either of the two formats is acceptable as an answer.
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