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Real Analysis 2, Math 651, Spring 2005

Krzysztof Chris Ciesielski

1/12/05: sec 3.1 and my article:

How good is the Lebesgue measure?,

Math. Intelligencer 11(2) (1989), 54-58.

N = {1, 2, 3, . . .}.
Measure (on Rn) is a function m from a family M of subsets of Rn into

[0,∞]. Desired properties for a measure:

(i) M is a σ-algebra on Rn with [0, 1] ∈M.

(i+) M = P(Rn).

(ii) m([0, 1]) = `([0, 1]) = 1.

(iii) (measure m is countably additive) If 〈En ∈ M:n ∈ N〉, then we have
m (
⋃

nEn) =
∑

nm(En).

(iii−) (m is finitely additive) If E,F ∈M, then m(E ∪ F ) = m(E) +m(F ).

(iv) (m is translation invariant) If E ∈ M and x ∈ Rn, then x + E ∈ M
and m(x+ E) = m(E).

(iv+) (m is isometrically invariant) If E ∈M and and i is an isometry of Rn,
then i[E] ∈M and m(i[E]) = m(E).

Facts discussed:

• There is no measure satisfying (i+)-(ii)-(iii)-(iv). (To be shown later.)

• Lebesgue measure we will construct will satisfy (i)-(ii)-(iii)-(iv)+. (We
will construct it only for n = 1, but it works also for any n.)

• There are many measures satisfying (i+)-(iii)-(iv+). E.g. m ≡ 0, m ≡
∞, m being counting measure.

• There are measures satisfying (i+)-(ii)-(iii−)-(iv). E.g. m ≡ 0, m ≡ ∞,
m being counting measure.
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• There are measures satisfying (i+)-(ii)-(iii−)-(iv+) for n ≤ 2, but there
are no such measures for n ≥ 3 (by Banach-Tarski Paradox.)

• The existence of measures satisfying (i+)-(ii)-(iii) cannot be (easily)
decided with the framework of usual axioms of set theory.

1/13/05: sec 3.2.

Homework:

Ex. 1. Prove that for any measure m:M→ [0,∞] satisfying (i)-(ii)-(iii)-(iv)
we have also

(ii+) every interval J belongs to M and m(J) is equal to its length `(J).

Hint Prove the statement showing the following steps.

1. Every interval J belongs to M.

2. m({x}) = 0 for every x ∈ R.

3. m([0, 2−n)) = 2−n for every n = 0, 1, 2, . . ..

4. m([a, b)) = `([a, b)) for every a, b ∈ R, a < b.

5. m(J) = `(J) for every interval J .

We proved defined outer measure m∗ and proved Proposition 1, page 56
that m∗(J) = `(J) for every interval J .

1/19/05: sec 3.2 and 3.3

Proposition 2, page 57: Outer measure m∗ is subattitive: for every sets
An ⊂ R we have m∗ (

⋃
nAn) =

∑
nm(∗An).

Corollary 3, page 58: If A ⊂ R is countable, then m∗(A) = 0.

Corollary 4, page 58: The interval [0, 1] is not countable.
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Proved Proposition 5. Asked to try Exercise 8 for the next day,

A set E ⊂ R is measurable (E ∈M) provided for every A ⊂ R

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ẽ)

or, equivalently,
m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ẽ).

A (Lebesgue) measure m is equal to m∗ restricted to M.

We need to show that M is a σ-algebra containing all intervals. This will be
done in the following steps.

(1) If E ∈M, then Ẽ ∈M, as the definition is symmetric in E and Ẽ.

(2) ∅,R ∈M.

(3) (Lemma 6) If m∗(E) = 0, then E ∈M.

1/20/05: sec 3.3

(4) (Lemma 7) If E1, E2 ∈M, then E1 ∪ E2 ∈M.

(5) (Corollary 8) M is an algebra on R.

(6) (Lemma 9)m is finitely additive. Moreover, if E1, . . . , En ∈M are pair-
wise disjoint and A ⊂ R, then m∗ (A ∩ [

⋃n
i=1Ei]) =

∑n
i=1m

∗ (A ∩ Ei).

(7) (Theorem 10) M is a σ-algebra on R containing all sets of outer mea-
sure 0.

(8) (Lemma 11) (a,∞) ∈M.

(9) (Theorem 12) M contains all Borel sets.

(10) (Exercise 9) M is translation invariant.

Proposition 13: m is countably additive.

Homework. Exercises 7 & 8 page 58 and exercise 9, page 64.
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Solution to Exercise 1: Prove that for any measure m:M→ [0,∞] satis-
fying (i)-(ii)-(iii)-(iv) we have also “every interval J belongs to M and m(J)
is equal to its length `(J).”
Proof. Step 1: Every interval J belongs to M. By (iv), for every x ∈ R
we have [x, x + 1] = x + [0, 1] ∈ M and so, by the property (iii), the sets
[x,∞) =

⋃∞
n=0[x+n, x+n+ 1] and (−∞, x] =

⋃∞
n=1[x−n, x−n+ 1] belong

to M. Thus, by (i), R = (−∞,∞) = (−∞, 0]∪ [0,∞) ∈M and so, for every
x ∈ R, the intervals (−∞, x) = R \ [x,∞) and (x,∞) = R \ (−∞, x] are in
M. We proved that every unbounded interval is in M. Since every bounded
interval is an intersection of two of such intervals, the claim of Step 1 follows.

Step 2: m({x}) = 0 for every x ∈ R. Let a = m({0}) ∈ [0,∞]. By (iv)
for every x ∈ R we have m({x}) = m(x + {0}) = m({0}) = a. Since⋃∞

n=1{2−n} ⊂ [0, 1], by (ii) and monotonicity of m we get∑∞
n=1 a =

∑∞
n=1m({2−n}) = m (

⋃∞
n=1{2−n}) ≤ m([0, 1]) = 1.

Thus, a = 0 and the claim of Step 2 follows.

Step 3: m([0, 2−n)) = 2−n for every n = 0, 1, 2, . . .. For n = 0 this is true,
since, by (iii), m([0, 1)) = m([0, 1)) + 0 = m([0, 1)) +m({1}) = m[0, 1] = 1.
So, assume that for some n we have m([0, 2−n)) = 2−n. We will prove this
for n+1. Indeed, by (iv), additivity and the inductive assumption, we have

2 m
([

0, 2−(n+1)
))

= m
([

0, 2−(n+1)
))

+m
(
2−(n+1) +

[
0, 2−(n+1)

))
= m

([
0, 2−(n+1)

))
+m

([
2−(n+1), 2−n

))
= m

([
0, 2−(n+1)

)
∪
[
2−(n+1), 2−n

))
= m

([
0, 2−n

))
= 2−n.

Thus, m
([

0, 2−(n+1)
))

= 2−(n+1) and, by induction, we conclude that the
claim of Step 3 holds true.

Step 4: m([0, x)) = x for every x ∈ [0, 1]. Let .i1i2 . . . be a binary represen-
tation of x, that is, in ∈ {0, 1} for every n and x =

∑∞
n=1 in/2

n. Put x0 = 0

and for every k = 1, 2, . . . put xk =
⋃k

n=1 in/2
n and Ik = [xk−1, xk). Notice

that the intervals Ik are pairwise disjoint and that [0, x) =
⋃∞

k=1 Ik. Note also
that m(Ik) = m(xk−1 + [0, ik/2

k)) = m([0, ik/2
k)) = ik/2

k, where for ik = 1
this follows from Step 3, and for ik = 0 it is obvious, since then Ik = ∅. Thus,
by (iii), we have m([0, x)) = m (

⋃∞
k=1 Ik) =

∑∞
k=1m(Ik) =

∑∞
k=1 ik/2

k = x,
concluding the argument for Step 4.



Real Analysis 2, Math 651, Spring 2005 April 26, 2005 5

Step 5: m([a, b)) = b − a = `([a, b)) for every a, b ∈ R, a < b. First note
that m([0, x)) = x for every x > 0. If x < 1 this follows from Step 4. So,
assume that x ≥ 1 and let n ∈ {1, 2, 3, . . .} be maximal such that n ≤ x.
Then x− n ∈ [0, 1) and [0, x) = [n, x) ∪

⋃n
k=1[k − 1, k), and all the intervals

in this representations and disjoint. So, by Step 4,

m([0, x)) = m

(
[n, x) ∪

n⋃
k=1

[k − 1, k)

)

= m([n, x)) +
n∑

k=1

m([k − 1, k))

= m(n+ [0, x− n)) +
n∑

k=1

m(k − 1 + [0, 1))

= (x− n) + n · 1 = x.

The general case follows, asm([a, b)) = m(a+[0, b−a)) = m([0, b−a)) = b−a.
Step 6: m(J) = `(J) for every interval J . Let a < b be real numbers. Then
m((a, b)) = 0 + m((a, b)) = m({a}) + m((a, b)) = m([a, b)) = b − a and
m([a, b]) = m([a, b)) +m({b}) = m([a, b)) = b − a. Since for every bounded
interval J there are a < b such that (a, b) ⊆ J ⊆ [a, b] for such J we have
b − a = m((a, b)) ≤ m(J) ≤ m([a, b]) = b − a and so m(J) = b − a = `(J).
Thus, m(J) = `(J) holds for every bounded interval J . To prove that it
also holds for any unbounded interval, notice that for every a ∈ R we have
m((a,∞)) ≥ m (

⋃∞
n=1[a+ n, a+ n+ 1)) =

∑∞
n=1m (a+ n+ [0, 1)) = ∞ and

m((−∞, a)) ≥ m (
⋃∞

n=1[a− n, a− n+ 1)) =
∑∞

n=1m (a− n+ [0, 1)) = ∞.
Since any unbounded interval J contains an interval of the form (a,∞) or
(−∞, a), we conclude that for such J we have m(J) ≥ ∞. Therefore, we
have m(J) = ∞ = `(J).

Exercise 8 page 58: Prove that if m∗(A) = 0, then m∗(A ∪B) = m∗(B).
Proof. (Too complicated.) Clearly m∗(B) ≤ m∗(A ∪ B). Fix an ε > 0.
Then there exist the families {I2n} and {I2n+1} of open intervals such that
A ⊂

⋃
n I2n and B ⊂

⋃
n I2n+1 with the property

∑
n `(I2n) ≤ m∗(A) + ε = ε

and
∑

n `(I2n+1) ≤ m∗(B) + ε. Then A ∪B ⊂
⋃

n In and

m∗(A ∪B) ≤
∑

n `(In) =
∑

n `(I2n) +
∑

n `(I2n+1) ≤ ε+m∗(B) + ε.

So, m∗(B) ≤ m∗(A ∪B) ≤ m∗(B), proving the result.
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1/26/05: sec 3.3

Proposition A Let m be an arbitrary measure satisfying (i) and (iii). Let
E1 ⊆ E2 ⊆ · · · be measurable. Then m (

⋃
nEn) = limn→∞m(En).

Proof. Let E0 = ∅ and Fk = Ek \ Ek−1 for every k = 1, 2, 3, . . .. Then
m (
⋃

nEn) = m (
⋃

n Fn) =
∑∞

n=1m (Fn) = limk→∞
∑k

n=1m (Fn). Therefore,

m (
⋃

nEn) = limk→∞
∑k

n=1m (Fn) = limk→∞m
(⋃k

n=1 Fn

)
= limk→∞m (Ek)

finishing the proof.

Proposition B (version of Proposition 14 page 62) Let m be an arbi-
trary measure satisfying (i) and (iii). Let F1 ⊇ F2 ⊇ · · · be measurable.
If m(F1) <∞, then m (

⋂
n Fn) = limn→∞m(Fn).

Proof. Note that if A ⊆ B are measurable and m(B) <∞ then

m(B \ A) = m(B)−m(A),

since m(B) = m(A ∪ (B \ A)) = m(A) +m(B \ A).
Let En = F1 \ Fn. Then En’s satisfy Proposition A. Thus

m(F1)−m

(⋂
n

Fn

)
= m

(
F1 \

⋂
n

Fn

)

= m

(⋃
n

En

)
= lim

n→∞
m(En)

= lim
n→∞

m(F1 \ Fn)

= lim
n→∞

[m(F1)−m(Fn)]

= m(F1)− lim
n→∞

m(Fn).

So, m (
⋂

n Fn) = limn→∞m(Fn).

Ex. 11: If E1, E2 ∈M, then m(E1 ∪ E2) +m(E1 ∩ E2) = m(E1) +m(E2).

Homework. Exercise 11, page 64.

Proposition 15, with the proof: (i)=⇒ (ii)=⇒(iv)=⇒(i).
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1/27/05: sec 3.3

Proof of Proposition 15: (ii)⇔(iii), (iv)⇔(v), and (i)⇔(vi).

Proof of (i)=⇒(vi): Fix ε > 0. Let {In:n ∈ N} be a family of open intervals
such that E ⊂

⋃
n In and

∑
n `(In) < m∗(E) + ε/2. Let V =

⋃
n In. Then

m(V ) = m (
⋃

n In) ≤
∑

nm(In) =
∑

n `(In) < m(E) + ε/2. As m∗(E) <∞,
we conclude that m(V \ E) = m(V )−m(E) < ε/2.

By Proposition A we have limN→∞m
(⋃N

n=1 In

)
= m (

⋃∞
n=1 In) = m(V ).

Thus, there is an N for which m(V )−m
(⋃N

n=1 In

)
< ε/2. Let U =

⋃N
n=1 In.

Then U is a finite union of open intervals. We will show that it satisfies (vi).
For this first note that µ(V ) <∞ implies m(V \ U) = m(V )−m(U) < ε/2.
Thus, since V contains U and E,

m∗(U4E) ≤ m∗(U\E)+m∗(E\U) ≤ m∗(V \E)+m∗(V \U) ≤ ε/2+ε/2 = ε.

Proof of (vi)=⇒(i): In fact, it is enough to show that (vi) implies (ii). So,
fix an ε > 0. By (vi) there exists an open set U (which is a finite union of
intervals) such that m∗(U4E) < ε/4. Then, m∗(E \ U) ≤ m(U4E) < ε/4,
since E \ U ⊂ U4E. Thus, there exists an open set W ⊃ E \ U such that
m∗(W ) < m∗(E \ U) + ε/4 < e/4 + ε/4 = ε/2. Let V = U ∪W . Then V is
open and contains E. Moreover,

m∗(V \ E) = m∗((U \ E) ∪ (W \ E))

≤ m∗(U \ E) +m∗(W \ E)

≤ m∗(U4E) +m∗(W )

< ε/4 + ε/2 < ε.

So, V satisfies (ii).

Solved Ex 14(a): Show that Cantor ternary set has measure zero.

Homework. Exercise 14(b), page 64.
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2/2/05: sec 3.4 and 3.5

Construction of a non-measurable (Vitali) set as in How good is the Lebesgue
measure? page 55
(see http://Jacobi.math.wvu.edu/ kcies/Other/ElectronicReprints/12.pdf):

For x ∈ R let Ex = {y ∈ R: y − x ∈ Q} = x + Q. Notice that Ex is
an equivalence class of x with respect to the equivalence relation ∼ on R
defined as x ∼ y if and only if y − x ∈ Q. Thus E = {Ex:x ∈ R} is a family
of non-empty pairwise disjoint sets, and so is E0 = {Ex∩ [0, 1]:x ∈ R}. So, by
the Axiom of Choice, there exists a set V such that V ∩E contains precisely
one element for every E ∈ E0.

Step 1 (Exercises 15 page 66): If E ⊂ V is measurable then m(E) = 0.

Indeed, as
∑

q∈Q∩[0,1]m(q + E) = m
(⋃

q∈Q∩[0,1] q + E
)
≤ m([0, 2]) = 2

and m(q + E) = m(E), we must have m(E) = 0 as set Q ∩ [0, 1] is infinite.

Step 2: V cannot be measurable.

By way of contradiction assume V ∈M. Then, by Step 1, m(V ) = 0 and
we would have

m(R) = m

(⋃
q∈Q

q + V

)
=
∑
q∈Q

m(q + V ) = 0,

a contradiction.

Solve Exercise 16 page 66, by noting that if m∗(A) > 0, then one of the sets
A ∩ (q + V ), q ∈ Q, must be non-measurable.

Homework (bonus). Exercise 17, page 66.

Proposition 18, page 66.

Note that (i) is equivalent to: f−1(U) ∈M for every open set U ⊂ [−∞,∞].

Let E ∈M and f :E → [−∞,∞]. We say that f is measurable if one of the
above conditions hold.

Solve Exercise 19, page 70.
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2/3/05: sec 3.5

Exercise 24, page 71: If f :E → [−∞,∞] is measurable, then f−1(B) ∈ M
for every Borel set B ⊂ [−∞,∞].

Let F = {S ⊂ [−∞,∞]: f−1(B) ∈ M}. Then F contains all open sets and
is a σ-algebra. So, it contains all Borel sets.

Proposition 19, page 67.

Theorem 20, page 68.

Discuss Exercises 25 and 28, page 71.

Define almost everywhere (abbreviated as a.e.)

Proposition 21, page 69.

Proposition 22, page 69.

Homework (project). Exercise 23, page 71: prove Prop. 22, page 69.

Define simple function.

Homework. Exercise 20, page 70.
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2/9/05: sec 3.6 and 4.2

Three Littlewood’s Principles

Every measurable E ⊂ R of finite measure is nearly a
finite union of intervals

Proposition 15(vi): For every ε > 0 there is an U ⊂ [a, b] which is a finite
union of open intervals such that m(U4E) < ε.

Also, other parts of Proposition 15. E.g., For every ε > 0 there is a closed
F ⊂ E with m(E \ F ) < ε

Every measurable function f : [a, b] → [−∞,∞] is nearly
continuous

Proposition 22 (part): For every measurable function f : [a, b] → R and ε > 0
there is a continuous function h: [a, b] → R such that

m({x ∈ [a, b]: |f(x)− h(x)| ≥ ε}) < ε.

Lusin’s Theorem (Exercise 31, page 74): For every measurable function
f : [a, b] → R and ε > 0 there is a continuous function h: [a, b] → R such that

m({x ∈ [a, b]: f(x) 6= h(x)}) < ε.

Every convergent sequence fn: [a, b] → [−∞,∞] of mea-
surable functions is nearly uniformly convergent.

Egoroff’s Theorem (Exercise 30, page 73): Let E be measurable of finite
measure and assume that the sequence fn:E → R of measurable functions
converges to f :E → R a.e. on E. Then for every η > 0 there is an A ⊂ E
with m(A) < η such that fn converges uniformly to f on E \ A.
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Proofs

Proposition 15 was proved.

Proposition 24, page 73 (Weak version of Egoroff’s Theorem): Let E be
measurable set of finite measure and assume that the sequence fn:E → R of
measurable functions converges to the function f :E → R a.e. on E. Then
for every ε, δ > 0 there is an A ⊂ E with m(A) < δ and an N such that
|fn(x)− f(x)| < ε for every x ∈ E \ A and n ≥ N .

Proof: As in the text, for Proposition 23.

Proof of Egoroff’s Theorem: For every n ∈ N use Prop. 24 with ε = 1/n and
δn = 2−nη to find an appropriate An ⊂ E. Then A =

⋃
nAn works.

Proof of Proposition 22: left as an exercise.

Proof of Lusin’s Theorem: For every n ∈ N use Prop. 22 with ε = 2−n−1δ
to find an An ⊂ [a, b] such that m(An) < 2−n−1δ and a continuous function
hn: [a, b] → R such that |f(x) − hn(x)| < 2−n−1δ for every x ∈ [a, b] \ An.
Let A =

⋃
nAn. Then m(A) < δ/2 and 〈hn〉 converges to f uniformly on

[a, b] \ A. In particular, f is continuous on [a, b] \ A. (Uniform limit of
continuous functions is continuous.) By Proposition 15(iii) there is a closed
set F ⊂ [a, b] \ A such that m(([a, b] \ A) \ F ) < δ/2. Let B = [a, b] \ F .
Then m(B) ≤ m(A) +m(([a, b] \ A) \ F ) < δ and f � F is continuous. Let
h: [a, b] → R be a continuous extension of f � F . Then h is as desired, as
{x ∈ [a, b]: f(x) 6= h(x)} ⊂ [a, b] \ F = B.

2/10/05: sec 4.1 and 4.2

Remark. Lusin’s Theorem is true for every measurable function f :E → R.
First notice that this is true for E = R by applying our version of Lusin’s
Theorem to f � [n, n+1] for every n ∈ Z. Then glue the pieces together. For
arbitrary E extend f to R by assigning value 0 on Ẽ and then apply version
with E = R.
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Remark. In Lusin’s Theorem the set {x ∈ [a, b]: f(x) 6= h(x)} cannot be
required to have measure 0. For example, this is the case for f : [0, 2] → {0, 1}
defined as f(x) = 1 if and only if x ∈ [0, 1]. (That is, f is the characteristic
function of [0, 1].)

Remark. In Egoroff’s Theorem the assumption that E has finite measure is
essential, even if all functions are continuous. For example, take fn: R → R,
defined ad f(x) = x/n.

For E ⊂ R a characteristic function χ
E of E is defined as χE(x) = 1

for x ∈ E and χ
E(x) = 0 for x ∈ R \ E. A function ψ: R → R is a

simple function provided ψ =
∑n

i=1 ai
χ

Ei
for some n ∈ N, a1, . . . , an ∈ R,

and E1, . . . , En ∈ M. Moreover, if each Ei is an interval, then ψ is a step
function.

Fact. ψ: R → R is a simple function if and only if ψ is measurable and ψ[R]
is finite.

For a simple function ψ: R → R let {a1, . . . , an} = ψ[R] \ {0} and for every
i ∈ {1, . . . , n} let Ai = ψ−1({ai}). Then ψ =

∑n
i=1 ai

χ
Ai

is the canonical
representation of ψ.

For a simple function ψ: R → R with m (ψ−1(R \ {0})) <∞ we define∫
ψ(x) dx =

n∑
i=1

aim(Ai),

where ψ =
∑n

i=1 ai
χ

Ai
is the canonical representation of ψ. Also, for E ∈M,∫

E

ψ(x) dx =

∫
(χE · ψ)(x) dx.

We will assume that 0 · ∞ = 0! Then 0 can be between ai’s.

Fundamental Fact. If ψ: R → R is a simple function with the property
that m (ψ−1(R \ {0})) < ∞, then

∫
ψ(x) dx =

∑k
i=1 bim(Ei) for every rep-

resentation ψ =
∑k

i=1 biχEi
of ψ.

Proof: Prove Lemma 1 and Proposition 2 from page 78.
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2/16/05: sec 4.1 and 4.2

For a function f :E → [−∞,∞] we define support supp(f) of f as a set
{x ∈ E: f(x) 6= 0}. Recall that for a simple function ψ =

∑n
i=1 ai

χ
Ai

with
m(supp(f)) <∞ and E ∈M we have:∫

ψ(x) dx =
n∑

i=1

aim(Ai) &

∫
E

ψ(x) dx =

∫
(χE · ψ)(x) dx.

Simple Fact (motivational). If f : [a, b] → R is bounded, then f is Rie-
mann integrable if and only if

inf
{∫

[a,b]
ψ:ψ ≥ f is step function

}
= sup

{∫
[a,b]

ϕ:ϕ ≤ f is step function
}

.

If the equation holds, then the Riemann itegral of f is equal to this number.

Definition. If E ∈ M is of finite measure and f :E → R is bounded
measurable, then the (Lebesgue) integral of f over E is defined as∫

E

f(x) dx = inf

{∫
E

ψ:ψ ≥ f is simple function

}
= sup

{∫
E

ϕ:ϕ ≤ f is simple function

}
.

IMPORTANT REMARK. If f is simple, then we have two different for-
mulas for

∫
E
f =

∫
E
f(x) dx. However, they coincide!

Proposition 3, page 79. If E ∈ M is of finite measure and f :E → R is
bounded, then f is measurable if and only if

inf

{∫
E

ψ:ψ ≥ f is simple function

}
=sup

{∫
E

ϕ:ϕ ≤ f is simple function

}
.

Go over the proof of Proposition 3. Notice that, at the end of the proof,
ψ∗ − ϕ∗ ≥ 1

ν
χ

∆ν , so 1
n
>
∫

(ψn − ϕn) ≥
∫

(ψ∗ − ϕ∗) ≥
∫

1
ν
χ

∆ν = 1
ν
m(∆ν).

Thus, m(∆ν) <
ν
n

for every n, that is, m(∆ν) = 0.

Proposition 4, page 81. If f :E → R is bounded and Riemann integrable,
then f is measurable and the Riemann and Lebesgue integrals of f are equal.
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2/17/05: sec 4.2 and 4.3

Proposition 5, page 82. Lebesgue integral is linear etc.

Bounded Convergence Theorem (Proposition 6, page 83.) Let E ∈
M be of finite measure and let 〈fn〉 be a sequence of measurable functions
from E into R which are pointwise convergent to f :E → R. If there exists
a number M ∈ R such that |fn(x)| ≤ M for every n ∈ N and x ∈ E, then∫

E
f = limn

∫
E
fn.

Proposition 7, page 85. A bounded function f : [a, b] → R is Riemann in-
tegrable if and only if the set {x ∈ [a, b]: f is discontinuous at x} has measure
zero.

For measurable f :E → [0,∞] we define
∫

E
f(x) dx as

sup

{∫
E

h:h ≤ f is bounded, measurable, and m(h−1(R \ {0}) <∞
}
.

Remark. If f is bounded and measurable with m(f−1(R \ {0}), then we
have two different formulas for

∫
E
f =

∫
E
f(x) dx. However, they coincide.

Homework. Exercise 4, page 89.

Proposition 8, page 85. The integral of non negative function is linear.
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2/23/05: sec 4.3

Fatou’s Lemma (Theorem 9, page 86. If fn:E → [0,∞] are measurable
and converge a.e. to f , then∫

E

f ≤ lim inf
n

∫
E

fn.

Monotone Convergence Theorem (Theorem 10, page 87). If the
functions fn:E → [0,∞] are measurable and 〈fn〉 is an increasing sequence
(in sense of ≤) converging to f , then

∫
E
f = limn

∫
E
fn.

Exercise 7(a), page 89. The inequality in Fatou’s Lemma can be strict.

Exercise 7(b), page 89. The Monotone Convergence Theorem does not
hold for decreasing sequences.

Go over Exercise 6, page 89.

Go over Corollary 11 and Proposition 12, page 87.

A measurable function f :E → [0,∞] is integrable provided
∫

E
f <∞.

Go over Propositions 13 and 14, page 88.
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2/24/05: sec 4.4

If f :E → [−∞,∞], then we define f+, f−:E → [0,∞] by

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.

Note that if f is measurable, then so are f+ and f−. Also,

f = f+ − f− and |f | = f+ + f−.

A measurable function f :E → [−∞,∞] is integrable (over E) provided so
are f+ and f−. In this case we define∫

E

f =

∫
E

f+ −
∫

E

f−.

Go over Exercise 10(a), page 93.

IMPORTANT REMARK. If m(E) <∞ and f is bounded, then we have
two different formulas for

∫
E
f =

∫
E
f(x) dx. However, they coincide!

Proposition 15, page 90. The integral of integrable function is linear.

Lebesgue (Dominated) Convergence Theorem (Theorem 16, p. 91).
If g:E → [0,∞] is integrable, the functions fn:E → [−∞,∞] are measurable
and such that |fn| ≤ g for every n = 1, 2, 3, . . ., and functions fn converge to
f :E → [−∞,∞] a.e., then

∫
E
f = limn

∫
E
fn.

Theorem 17, p. 92. Assume that gn:E → [0,∞] is a sequence of in-
tegrable functions which converge a.e. to an integrable g:E → [0,∞]. If
functions fn:E → [−∞,∞] are measurable, such that |fn| ≤ gn for every
n = 1, 2, 3, . . ., and functions fn converge to f :E → [−∞,∞] a.e., then∫

E
g = limn

∫
E
gn implies

∫
E
f = limn

∫
E
fn.

Homework. Exercise 14, page 93.
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Solution to Exercise 23, page 71.

Lemma a. Let f :E → [−∞,∞] be measurable such that m(E) < ∞ and
A = {x ∈ E: f(x) /∈ R} has measure zero. Then for every ε > 0 there is an
M > 0 such that the set AM = {x ∈ E: f(x) /∈ (−M,M)} has measure less
than ε/3.

Proof. Notice that E ⊃ A1 ⊃ A2 ⊃ A3 · · · and that
⋂∞

m=1Am = A.
Since minmm(Am) = m (

⋂∞
m=1Am) = m(A) = 0, there exists an M with

m(AM) < ε/3.

Lemma b. Let f :E → [−∞,∞] be measurable such that m(E) < ∞. For
every ε > 0 and M > 0 there exists a simple function ψ:E → [−M,M ] such
that |f(x)− ψ(x)| < ε for every x in the set B = {x ∈ E: |f(x)| < M}.

Proof. Let n be such that 2M/n < ε and let δ = 2M/n. For i = 0, 1, . . . , n
let ai = −M + iδ and note that −M = a0 < · · · < an = M . For i = 1, . . . , n
let Ei = f−1((ai−1, ai]) and notice that it is measurable as a preimage of a
Borel set. In addition, the sets Ei are pairwise disjoint and we also have
B = f−1((−M,M)) ⊂ f−1((−M,M ]) =

⋃n
i=1 f

−1((ai−1, ai]) =
⋃n

i=1Ei.
Define ψ =

⋃n
i=1 ai

χ
Ei

. Then ψ is simple and and every x ∈ B belongs to
some Ei, for which we have ai − δ = ai−1 < f(x) ≤ ai = ψ(x). In particular,
|f(x)− ψ(x)| < δ < ε.

Notation. For f, g:E → [−∞,∞] we put [f 6= g] = {x ∈ E: f(x) 6= g(x)}.

Lemma c. For every simple function ψ =
∑n

i=1 ai
χ

Ei
from [a, b] into [m,M ]

there is a step function g: [a, b] → [m,M ] such that m([ψ 6= g]) < ε/3.

Proof. Let δ = ε/3n. For every i = 1, . . . , n there is a set Ui which is
a union of open disjoint intervals such that m(Ui4Ei) < δ. Then ai

χ
Ui

is
a step function and [ai

χ
Ui
6= ai

χ
Ei

] = Ui4Ei has measure less then δ. Let
g =

∑n
i=1 ai

χ
Ui

. Then g is a step function, as a finite union of step functions,
and we have [ψ 6= g] ⊂

⋃n
i=1[ai

χ
Ui
6= ai

χ
Ei

]. Therefore

m([ψ 6= g]) ≤
∑n

i=1m([ai
χ

Ui
6= ai

χ
Ei

]) <
∑n

i=1 δ = ε/3.
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Lemma d. For every step function g: [a, b] → [m,M ] there is a continuous
function h: [a, b] → [m,M ] such that m([g 6= h]) < ε/3.

Proof. Let g =
∑n

i=1 ai
χ

Ji
, where Ji’s are pairwise disjoint intervals. Let

δ = ε/3n. For every i = 1, . . . , n let Ii be a closed interval (possible empty)
which is contained in the interior of Ji and such that m(Ji \Ii) < δ and let hi

be a continuous hat-like function that agrees with ai
χ

Ji
on the complement

of Ji \ Ii. Let h =
∑n

i=1 hi. Then h is continuous and we have

[g 6= h] ⊂
⋃n

i=1[ai
χ

Ji
6= hi] =

⋃n
i=1(Ji \ Ii).

So, m([g 6= h]) ≤
∑n

i=1m(Ji \ Ii) <
∑n

i=1 δ = ε/3.

Proof of Proposition 22. Let M be as in Lemma a, ψ be as in Lemma b,
g be as in Lemma c, and h be as in Lemma d. Then

{x ∈ E: |f(x)− h(x)| ≥ ε} ⊂ {x ∈ E: |f(x)− ψ(x)| ≥ ε} ∪ [ψ 6= h]

⊂ B̃ ∪ [ψ 6= h]

⊂ AM ∪ [ψ 6= g] ∪ [g 6= h],

so m({x ∈ E: |f(x)− h(x)| ≥ ε}) ≤ m(AM) +m([ψ 6= g]) +m([g 6= h]) < ε.

3/2/05: sec 4.5

Let E ∈M and f, fn:E → [−∞,∞] be measurable.

uniform convergence fn ⇒ f provided

∀ε > 0 ∃N ∀x ∈ E ∀n ≥ N |fn(x)− f(x)| < ε.

pointwise convergence fn → f provided

∀x ∈ E ∀ε > 0 ∃N ∀n ≥ N |fn(x)− f(x)| < ε.

almost everywhere convergence fn → f a.e., provided there exists an
A ⊂ E such that m(A) = 0 and

∀ε > 0 ∃N ∀x ∈ E \ A ∀n ≥ N |fn(x)− f(x)| < ε.
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convergence in measure fn → f in measure, provided

∀ε > 0 ∃N ∀n ≥ N m({x ∈ E: |fn(x)− f(x)| ≥ ε}) < ε.

Theorem

(a) fn ⇒ f =⇒ fn → f =⇒ fn → f a.e.

(b) If m(E) <∞, then fn → f a.e. =⇒ fn → f in measure.

(c) If m(E) <∞, then fn ⇒ f =⇒
∫

E
|fn − f | → 0.

(d)
∫

E
|fn − f | → 0 =⇒ fn → f in measure.

Moreover, none of these implications can be reversed.

Proof. (a) is obvious. (b) follows from Proposition 3.23. (c) is very easy.
Show (d) by contradiction.

The fact that convergence in measure does not imply any of the other
convergences is justified by the following example.

Let {fn: [0, 1] → [0, 1]} be a enumeration of

{2nχ
[k·2−n,(k+1)·2−n]:n = 1, 2, 3, . . . & k = 0, 1, . . . , 2n − 1}.

Then fn converges to f ≡ 0 in measure, but it does not converge pointwise
and

∫
|fn − f | → 1 6= 0.

Proposition 20, page 96 Fatou Lemma, Monotone Convergence Theorem,
and Dominated Convergence Theorem remain valid if convergence a.e. is
replaced by the convergence in measure.

Proof. Check this at home.

Proposition 18, page 95 If fn → f in measure, then there exists a subse-
quence 〈fnk

〉k which converge to f a.e.

Proof. Go over it.

Corollary 19, page 96 Let fn, f :E → R be measurable and m(E) < ∞.
Then fn → f in measure if and only if every subsequence 〈fnk

〉k of 〈fn〉n
contain a farther subsequence 〈fnki

〉i which converges a.e. to f .

Proof. Bonus Homework Exercise. (Exercise 23, page 96.) Will accept
it till the end of March.
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Solution to Exercise 14, page 93.

Part (a). Under the hypothesis of Theorem 17,
∫
|f − fn| → 0.

Proof. Since |fn| ≤ gn a.e., then |f | = limn |fn| ≤ limn gn = g a.e. Thus,
by Exercise 10,

∫
|f | ≤

∫
|g| < ∞, so |f | is integrable. Then functions

Gn = gn + |f | and G = g + |f | are integrable as well and∫
G =

∫
g +

∫
|f | = lim

n

∫
gn +

∫
|f | = lim

n

∫
Gn.

Also, if Fn = |fn − f |, then Fn ≤ |fn| + |f | ≤ gn + |f | = Gn. Since Fn → 0
a.e., functions Gn, G, Fn, and F ≡ 0 satisfy the assumptions of Theorem 17.
Thus, limn

∫
Fn =

∫
F = 0.

Part (b). Let fn, f :E → [−∞,∞] be integrable such that fn → f a.e. Then∫
|f − fn| → 0 if and only if

∫
|fn| →

∫
|f |.

Proof. “=⇒” By a version of triangle inequality | |f | − |fn| | ≤ |f − fn| we
have

0 ≤
∣∣∣∣∫ (|f | − |fn|)

∣∣∣∣ ≤ ∫ | |f | − |fn| | ≤
∫
|f − fn|,

where the second inequality follows from Exercise 10(a). Therefore, by
squeeze theorem,

∣∣∫ |f | − ∫ |fn|
∣∣ =

∣∣∫ (|f | − |fn|)
∣∣→ 0. So,

∫
|fn| →

∫
|f |.

“⇐=” If Gn = |fn| and G = |f |, then functions Gn, G, fn, and f satisfy the
assumptions of Theorem 17, and so

∫
|f − fn| → 0 follows from part (a).

Remark. The conclusion of Theorem 17,
∫

(f − fn) → 0 does not imply∫
|f − fn| → 0.

Proof. Indeed, let fn(x) = x
n
· χ[−n,n]. Then fn are integrable and they

converges to f ≡ 0. Also,
∫

R fn =
∫

R f = 0. However,
∫

R |fn−f | = 2
∫ n

0
x
n

= n
does not converge to 0.
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3/3/05: sec. 5.1–5.3

Main next goal: to prove that for any integrable f : [a, b] → R
d

dx

∫ x

a

f(y) dy = f(x) for almost all x.

Main notion needed (section 5.2): f is of bounded variation (f ∈ BV ) pro-
vided its total variation

T = sup

{
t =

k∑
i=1

|f(xi)− f(xi−1)|: a = x0 < x1 < · · · < xk = b

}
is finite.

Fact: Every monotone f is of bounded variation.

Proof. Clearly every t is equal to |f(b)− f(a)|.

Theorem A (Theorem 5, page 103): f ∈ BV if and only if f = g − h for
some increasing g and h.

Theorem B (Theorem 3, page 100): If f : [a, b] → R is increasing, then f is
differentiable almost everywhere, f ′ is measurable, and∫ b

a

f ′(x) dx ≤ f(b)− f(a).

Theorems A and B will be proved later. Now, we will use them to show the
main theorem of this part.

Section 5.3: Fix integrable f : [a, b] → R and put F (x) =
∫ x

a
f(t) dt.

Lemma A (Lemma 7, page 105): F is of bounded variation.

Lemma B (Lemma 8, page 105): If F ≡ 0, then f(x) = 0 a.e.

Lemma C (Lemma 9, page 106): If f is bounded, then F ′(x) = f(x) a.e.

3/9/05: TEST

Homework: Solve the remaining two Test exercises at home.
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Solutions to midterm test exercises

Ex. 1. Let {An}∞n=1 be a sequence of subsets of R (not necessarily measur-
able) such that An ⊆ An+1 for every n. Show that

lim
n→∞

m∗(An) = m∗

(
∞⋃

k=1

Ak

)
.

Solution. Certainly for every natural n we have m∗(An) ≤ m∗ (
⋃∞

k=1Ak)
as An ⊂

⋃∞
k=1Ak. Thus limn→∞m∗(An) ≤ m∗ (

⋃∞
k=1Ak). So, it is enough to

prove the converse inequality.
If there is an n such that m∗(An) = ∞ the inequality is obvious. So

assume that m∗(An) <∞ for every n and fix an ε > 0. By induction we will
construct a sequence 〈Un:n = 1, 2, . . .〉 of open sets such that for every n we
have

An ⊂ Un ⊂ Un+1 and m(Un)−m∗(An) < ε.

It is easy to find a required open set U1 ⊃ A1 by using the definition of
m∗. So, assume that we already have constructed Un. We need to find an
open Un+1 containing An+1 ∪ Un such that m(Un+1) − m∗(An+1) < ε. Let
δ = ε− (m(Un)−m∗(An)) > 0 and, by the definition of m∗, find an open Vn

containing An+1 \ Un such that m(Vn) −m∗(An+1 \ Un) < δ. We will show
that Un+1 = Un ∪ Vn is as desired.

Indeed, clearly it is open and contains An+1 ∪ Un. The inequality is
justified by

m(Un+1) − m∗(An+1)

= m(Un ∪ Vn)−m∗(An+1) (subadditivity of m)

≤ m(Un) +m(Vn)−m∗(An+1) (measurability of Un)

= m(Un) +m(Vn)− [m∗(An+1 ∩ Un) +m∗(An+1 \ Un)]

= [m(Un)−m∗(An+1 ∩ Un)] + [m(Vn)−m∗(An+1 \ Un)]

< [m(Un)−m∗(An+1 ∩ Un)] + δ (as An ⊂ An+1 ∩ Un)

≤ [m(Un)−m∗(An)] + δ

= [m(Un)−m∗(An)] + ε− (m(Un)−m∗(An)) = ε.

This finishes the inductive construction.
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Now, since ε+m∗(An) > m(Un) and U1 ⊂ U2 ⊂ · · · are measurable from
a result proved in class (related to proposition 14) we get

ε+ lim
n→∞

m∗(An) ≥ lim
n→∞

m(Un) = m∗

(
∞⋃

k=1

Uk

)
≥ m∗

(
∞⋃

k=1

Ak

)
.

Since this holds for any ε > 0, we get limn→∞m∗(An) ≥ m∗ (
⋃∞

k=1Ak).

Ex. 2. For A ⊂ R and b ∈ R let bA = {b a: a ∈ A}. Show that

(a) m∗(bA) = |b|m∗(A);

(b) if A is measurable, then so is bA.

Solution. (a) If b = 0, then m∗(bA) = m∗({0}) = 0 = 0m∗(A) (unless
A = ∅, in which case the equation is obvious). So, assume that b 6= 0.

First notice that if {In}n is a countable sequence of intervals covering A,
then {b In}n covers bA. In particular, m∗(bA) ≤

∑
n `(b In) = |b|

∑
n `(In).

So
1

|b|
m∗(bA) ≤ inf

A⊂
S

n In

∑
n

`(In) = m∗(A).

Thus m∗(bA) ≤ |b|m∗(A).
Applying this inequality to bA in place of A and to b−1 in place of b we

get also
m∗(A) = m∗(b−1 (bA)) ≤ |b|−1m∗(bA)

justifying the converse inequality.
(b) Once again, it is obvious if b = 0. So, assume b 6= 0.
Let ε > 0. We will find an open set U ⊃ bA with m∗(U \ bA) < ε. Since

A is measurable, there exists an open V ⊃ A such that m∗(V \ A) < ε/|b|.
But then, U = b V is an open set containing bA and, by part (a),

m∗(U \ bA) = m∗(b V \ bA) = m∗(b (V \ A)) = |b|m∗(V \ A) < ε

finishing the proof.

Ex. 3. Let f : R → [−∞,∞] be integrable and define function F : R → R by
a formula F (x) =

∫ x

−∞ f for every x ∈ R. Show that F is continuous.
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Solution. Note that |f | is integrable. (Exercise 10 page 93.) Fix an ε > 0.
We need to find a δ > 0 such that |F (x) − F (y)| < ε for every y with
|x− y| < δ.

By Proposition 14, page 88, there exists a δ > 0 such that
∫

A
|f | < ε

for every A ∈ M with m(A) < δ. We will show that such δ is as desired.
Indeed, if y ∈ (x− δ, x] and we put A = [y, x), then

|F (x)− F (y)| =
∣∣∣∫(−∞,x)

f −
∫

(−∞,y)
f
∣∣∣ =

∣∣∣∫[y,x)
f
∣∣∣ ≤ ∫[y,x)

|f | =
∫

A
|f | < ε.

Similarly, if y ∈ [x, x+ δ) and we put A = [x, y), then

|F (x)− F (y)| =
∣∣∣∫(−∞,x)

f −
∫

(−∞,y)
f
∣∣∣ =

∣∣∣∫[x,y)
f
∣∣∣ ≤ ∫[x,y)

|f | =
∫

A
|f | < ε.

This finishes the argument.

Ex. 4. Let E ⊂ R be Lebesgue measurable and let f :E → [−∞,∞] be a
measurable function such that

∫
E

[f(x)]2 dx = 0. Show that f(x) = 0 for
almost all x ∈ E.

Solution. Let A = {x ∈ E: f(x) 6= 0} and by way of contradiction assume
that m(A) > 0. Since A is a union of sets An = {x ∈ E: [f(x)]2 > 1/n},
there is an n for which m(An) > 0. But then [f(x)]2 ≥ 1/n · χAn and so∫

E
[f(x)]2 ≥

∫
E

1/n ·χAn = 1/n ·m(An) > 0 contradicting our assumption.

Ex. 5. Is it true that the product f · g of two integrable functions f and g
must be integrable? Prove it, or give a counterexample.

Solution. The answer is NO. Indeed, let f : (0, 1] → R, f(x) = 1
2
√

x
and

notice that f is integrable since
∫
f < ∞. Indeed, if fn = fχ[1/n,1], then by

the Lebesque monotone convergence theorem we have∫
f = lim

n

∫
fn = lim

n

∫ 1

1/n

f = lim
n

[
√
x]11/n = lim

n
(1− 1/

√
n) = 1.

However, for g = f the product (f · g)(x) = 1
4x

is not integrable, since∫
f ·g = lim

n

∫
fgχ[1/n,1] = lim

n

∫ 1

1/n

1

4x
= lim

n

1

4
[lnx]11/n = lim

n

1

4
(1−lnn−1) = ∞.
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3/10/05: sec. 5.1–5.3

Theorem (Theorem 10, page 107): F ′(x) = f(x) a.e. for any integrable f .

Proof. Use Lemma C and Theorems A and B.

Section 5.2: Prove Lemma 4 and Theorem 5 (our Theorem A) from
page 103.

Read at home Lemma 1 (Vitali) from page 98.

3/16/05 and 3/16/05: No classes, Spring Break

3/23/05: sec. 5.1

Homework Solve Exercise 10, page 104.

Section 5.1: A collection of nondegenerate intervals J covers E ∈ M in
sense of Vitali provided for every x ∈ E and ε > 0 there exists an I ∈ J
such that x ∈ I and `(I) < ε.

Vitali Lemma (Lemma 1, page 98). Let E ⊂ R be such that m∗(E) <
∞ and let J be a cover of E in sense of Vitali. Then for every ε > 0
there is a finite collection {I1, . . . , IN} of disjoint intervals from J such that

m∗
(
E \

⋃N
n=1 In

)
< ε.

Proof. It is enough to prove the lemma for J consisting of closed intervals.
Indeed, if this is the case, that we can apply this form of the lemma to
J̄ = {cl(I): I ∈ J } to find I1, . . . , IN ∈ J with disjoint closures and such

that m∗
(
E \

⋃N
n=1 In

)
= m∗

(
E \

⋃N
n=1 cl(In)

)
< ε. Thus, we can assume

that J contains only closed intervals.
Also notice that if U ⊃ E is open, then JU = {I ∈ J : I ⊂ U} is still a

cover of E in sense of Vitali.
For the rest of the proof follow the text.
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Define derivates D+f(x), D−f(x), D+f(x), and D−f(x). E.g.,

D−f(x) = lim inf
h→0+

f(x)− f(x− h)

h
.

f is differentiable at x iff D+f(x) = D−f(x) = D+f(x) = D−f(x) ∈ R.

Prove Theorem 3 (our Theorem B) from page 100.

3/24/05: sec. 5.4

Homework (bonus) Solve Exercise 4, page 102, that is, prove Proposition 2,
page 99.

Prove Theorem 3 (our Theorem B) from page 100.

This completes the proof that for any integrable f : [a, b] → R

d

dx

∫ x

a

f(y) dy = f(x) for almost all x.

Problem of this section: For which functions f : [a, b] → R we have∫ x

a

f ′(t) dt = f(x)− f(a) for every x ∈ [a, b]?

Clearly such f must be differentiable a.e. We will show that this holds if and
only if f is absolutely continuous, that is, when for every ε > 0 there is a
δ > 0 such that for every finite sequence {(xi, x

′
i): i = 1, . . . , n} of pairwise

disjoint subintervals of [a, b]

n∑
i=1

(x′i − xi) < δ =⇒
n∑

i=1

|f(x′i)− f(xi)| < ε.

Note that the sum and the difference of two absolutely continuous functions
is absolutely continuous.

Note that Cantor ternary function (see Ex. 15) is not absolutely continuous.
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3/30/05: sec. 5.4

Lemma (essentially Lemma 11 page 108) If f : [a, b] → R is absolutely con-
tinuous, then it is continuous and of bounded variation. In particular, it is
differentiable a.e.

Lemma 13 page 109 If f : [a, b] → R is absolutely continuous and f ′(x) = 0
a.e., then f is constant.

Theorem (essentially Theorem 14 and Corollary 15, page 110) The following
conditions are equivalent for every f : [a, b] → R.

(a) f is an indefinite integral, that is, f(x) = C +
∫ x

a
g(t) dt for some

integrable function g: [a, b] → R.

(b) f is absolutely continuous.

(c) f is differentiable a.e., f ′ is integrable, and f(x) = f(a) +
∫ x

a
f ′(t) dt

for every x ∈ [a, b].

Proof of (a)=⇒(b). Use Proposition 4.14 from page 62. Note that if the
intervals {(xi, x

′
i): i = 1, . . . , n} are pairwise disjoint and A =

⋃n
i=1(xi, x

′
i),

then
∑n

i=1 |f(x′i) − f(xi)| =
∑n

i=1

∣∣∣∫(xi,x′i)
g(t) dt

∣∣∣ ≤ ∑n
i=1

∫
(xi,x′i)

|g(t)| dt =∫
A
|g(t)| dt.

Exercises for section 5.4 that you should try to go over: 12, 14, 16–20.
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3/31/05: sec. 5.5 and 6.1

Go briefly over sec. 5.5.

Define convex and strictly convex function on (a, b).

State and prove Lemma 16, page 113.

State part of Proposition 17, page 113. Prove that for every convex function
all one sided derivatives exist.

State Proposition 18, page 114. Prove it for differentiable function.

State and prove Corollary 19, page 114. Prove it for differentiable function.

State and prove Proposition 20, page 115 — Jensen Inequality. Stress it
for ϕ(x) = ex and ϕ(x) = xp for p ≥ 1.

For measurable f : [0, 1] → [−∞,∞], p ∈ (0,∞), and q ∈ (0,∞] we put

• ||f ||p =
(∫ 1

0
|f |p
)1/p

;

• ||f ||∞ = esssup |f | def
= inf{b: |f | ≤ b a.e.};

• Lq[0, 1] = {f : ||f ||q <∞}.

Solve Exercises 1, 3, and 4, page 119.
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4/6/05: sec. 6.1 and 6.2

For measurable f : [0, 1] → [−∞,∞], p ∈ (0,∞), and q ∈ (0,∞] we put

• ||f ||p =
(∫ 1

0
|f |p
)1/p

;

• ||f ||∞ = esssup |f | def
= inf{b: |f | ≤ b a.e.};

• Lq[0, 1] = {f : ||f ||q <∞}.

Note that ||f ||q = 0 if and only if f = 0 a.e. So, ||f − g||q = 0 if and only if
f = g a.e. Such functions will be identified!

Note that ||αf ||q = |α| ||f ||q for every α ∈ R. Next goal to show that || · ||q
is a norm for q ≥ 1, that is, that ||f + g||q ≤ ||f ||q + ||g||q.

Solve Exercise 2 page 119: limp→∞ ||f || = ||f ||∞. Note that ||f ||p ≤ ||f ||∞.
Also for 0 < a < b < ||f ||∞ and E = {x: |f(x)| ≥ b} we have

||f ||p =

(∫ 1

0

|f |p
)1/p

≥
(∫

E

bp
)1/p

= m(E)1/p · b > a

for p large enough, since limp→∞m(E)1/p = 1.

Note that Lq[0, 1] ⊂ Lp[0, 1] for 0 < p < q ≤ ∞ as for E = {x: |f(x)| < 1}∫ 1

0

|f |p =

∫
E

|f |p +

∫
Ẽ

|f |p ≤ 1 +

∫
Ẽ

|f |q ≤ 1 +

∫ 1

0

|f |q.

Note that the inclusion is strict, as justified by f(x) = 1
xr for q−1 < r < p−1.

Prove Minkowski Inequality (for 1 ≤ p ≤ ∞).

Note that this implies that Lp[0, 1], for 1 ≤ p ≤ ∞, is closed under addition
and constant multiplication. So, it is a linear space.

State Minkowski Inequality for 0 < p < 1.

Suggested exercise: Ex. 5 page 122.

State Hölder Inequality, page 121. Read the proof at home.
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4/7/05: sec. 6.3

Recall the definition of normed linear space. Define sequence convergent in
norm, Cauchy sequence, and Banach space.

Goal: to prove Riesz-Ficher Them that Lp is complete for 1 ≤ p ≤ ∞.

Prove Proposition 5, page 124, and Theorem 6 (Riesz-Ficher), page 125.

Homework Solve Exercises 10 and 11, page 126.

Exercises for Section 6.3 that you should try to go over: 16–18.

4/13/05 and 4/14/05(with extra lecture time):

sec. 6.4 and 6.5

Proposition 8, page 128. For every 1 ≤ p ≤ ∞, f ∈ Lp, and ε > 0 there
is a step function ϕ such that ||f − ϕ||p < ε.

The proof is essentially identical to the proof of Proposition 22, page 69,
which you proved in solving Exercise 23, page 71.

Remark Notice that by Hölder inequality used with g ≡ 1 ∈ Lq for every
f ∈ Lp we have ||f ||1 =

∫
|f | ≤ ||f ||p.

For a normed space 〈X, || · ||〉 any linear function F :X → R is called a linear
functional. We say that F is bounded provided the number,

||F || def
= sup

x∈X

|F (x)|
||x||

,

its norm, is finite.

Next Goal — prove the Riesz Representation theorem: For every
1 ≤ p ≤ ∞, a linear functional on Lp is bounded if and only if there is a
g ∈ Lq such that for every f ∈ Lp.

F (f) =

∫
fg.

Moreover, in such case ||F || = ||g||q.

Proof: follow Section 6.5.
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Solutions to exercises 16–18, pages 126–127.

Notice that for 1 ≤ p <∞ convexity of xp implies that for every a, b > 0

(a+ b)p ≤ 2p−1(ap + bp) (1)

as (a+ b)p = 2p(.5a+ .5b)p ≤ 2p(.5ap + .5bp) = 2p−1(ap + bp).

Solution to Ex. 16, page 126. Note that 0 ≤ | ||fn||p−||f ||p | ≤ ||fn−f ||p,
so ||fn − f ||p → 0 implies ||fn||p → ||f ||p. Conversely, by (1), we have
|fn − f |p ≤ 2p−1(|fn|p + |f |p). Let gn = 2p−1(|fn|p + |f |p). Then each gn

is integrable and the sequence 〈gn〉 converges a.e. to g = 2p−1(|f |p + |f |p).
Moreover, since ||fn||p → ||f ||p,

lim
n→∞

∫
gn = lim

n→∞
2p−1

(
||fn||pp +

∫
|f |p
)

= 2p−1

(
||f ||pp +

∫
|f |p
)

=

∫
g.

So, by Th. 17, page 92, limn→∞
∫
|fn − f |p =

∫
limn→∞ |fn − f |p = 0.

Solution to Ex. 18, page 126. Notice that, by (1),

|gnfn − gf |p ≤ (|gnfn − gnf |+ |gnf − gf |)p

≤ 2p−1 (|gnfn − gnf |p + |gnf − gf |p)
≤ 2p−1 (|gn|p|fn − f |p + |f |p|gn − g|p)
≤ 2p−1 (Mp|fn − f |p + |f |p|gn − g|p) .

Thus,
∫
|gnfn − gf |p ≤ 2p−1

(
Mp

∫
|fn − f |p +

∫
|f |p|gn − g|p

)
and so it is

enough to show that limn→∞
∫
|fn − f |p = 0 and limn→∞

∫
|f |p|gn − g|p = 0.

The first of this is just fn → f in Lp. The second follows from the Lebesgue
dominated convergence theorem, since |f |p|gn − g|p converges to 0 a.e. and
|f |p|gn − g|p ≤ |f |p(|gn| + |g|)p ≤ |f |p(2M)p, with the bounding function
|f |p(2M)p is integrable, as

∫
|f |p(2M)p = ||f |||pp(2M)p <∞.

Ex. 17, page 127. Notice that for every 1 ≤ p < ∞, h ∈ Lp, and a
measurable set E ⊂ [0, 1]

||f · χE||p =

(∫
E

|f |p
)1/p

.

In particular, f · χE ∈ Lp.
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We need to show that
∣∣∫ fg − ∫ fng

∣∣ =
∣∣∫ (f − fn)g

∣∣ converges to 0. For
this note that for every measurable set E ⊂ [0, 1], by Hölder inequality,

∣∣∣∣∫ (f − fn)g

∣∣∣∣ =

∣∣∣∣∫ (f − fn)g

∣∣∣∣
=

∣∣∣∣∫
E

(f − fn)g +

∫
Ẽ

(f − fn)g

∣∣∣∣
≤

∣∣∣∣∫ [(f − fn) · χE]g

∣∣∣∣+ ∣∣∣∣∫ (f − fn)[g · χẼ]

∣∣∣∣
≤

∫
(|f − fn| · χE)|g|+

∣∣∣∣∫ (f − fn)[g · χẼ]

∣∣∣∣
≤

∫
|g| sup

x∈E
|f(x)− fn(x)|+

∣∣∣∣∫ (f − fn)[g · χẼ]

∣∣∣∣
≤ sup

x∈E
|f(x)− fn(x)|

∫
|g|+ ||(f − fn)||p||g · χẼ||q

≤ ||g||1 · sup
x∈E

|f(x)− fn(x)|+ (||f ||p + ||fn)||p)
(∫

Ẽ

|g|q
)1/q

≤ ||g||q · sup
x∈E

|f(x)− fn(x)|+ (||f ||p +M)

(∫
Ẽ

|g|q
)1/q

.

Fix an ε > 0. We like to choose E such that (||f ||p +M)
(∫

Ẽ
|g|q
)1/q ≤ ε/2,

that is, that
∫

Ẽ
|g|q ≤

(
ε

2(||f ||p+M)

)q

. Since function |g|q is integrable, by

Proposition 14, page 88, there exists δ such that this inequality holds for any
E with m(Ẽ) < δ.

By Egoroff’s Theorem, there exists measurable E ⊂ [0, 1] such that
m(Ẽ) < δ and fn converges to f uniformly on E. Using this inequal-
ity with this E, we can find an N such that foe every n ≥ N we have
||g||q · supx∈E |f(x)− fn(x)| ≤ ε/2. Thus,

∣∣∫ (f − fn)g
∣∣ ≤ ε for every n ≥ N .

Exercise is false for p = 1. The argument above fails, since then ||g||q
is not expressible by an integral. More precisely, g ≡ 1 belongs to L∞,
the statement of the exercise would in particular imply that

∫
f = lim

∫
fn

for every sequence fn of L1 functions converging a.e. to f ≡ 0, as long as
||fn||1 ≤ 1. However, this is false for the functions fn = cnχJn , where open
intervals Jn are pairwise disjoint and cn is such that ||fn||1 = cn · `(Jn) = 1.
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4/27/05 and 4/28/05 (with extra lecture time)

Prove Hölder Inequality, page 121.

Short discussion of Lebesgue measure on Rn with n ≥ 2. Mention Fubini
Theorem.

Give student evaluations

Solve the exercises from the Ph.D. entrance exam, see below.



Ph.D. Entrance Exam — Real Analysis

April 2005

Choose six of the following:

1. For a bounded set E, define

m∗(E) = b− a−m∗([a, b] \ E),

where [a, b] is an interval containing E, and m∗ denotes the usual outer measure. Prove the
following statements.

(a) If E be the set of all irrational numbers in [0, 1], then m∗(E) = 1.

(b) m∗(E) is independent of the choice of [a, b], as long as it contains E.

(c) m∗(E) ≤ m∗(E).

2. Let E be a measurable set in [0, 1] with mE = c (1
2 < c < 1). Let E1 = E +E = {x+y; x, y ∈

E}. Show that there exists a measurable set E2 ⊂ E1 such that mE2 = 1.

3. Let f(x) be monotone increasing on [0, 1] with f(0) = 0 and f(1) = 1. If the set {f(x);x ∈
[0, 1]} is dense in [0, 1], show that f is a continuous function on [0, 1]. Is it absolutely contin-
uous on [0, 1]? Prove your conclusion.

4. Let fn(x) be a sequence of continuous functions on [0,1] and fn(x) ≥ fn+1(x) (n = 1, 2, · · ·).
For every x ∈ [0, 1], limn→∞ fn(x) < 0. Determine and prove if there is a δ > 0 such that

lim
n→∞ fn(x) ≤ −δ ∀x ∈ [0, 1].

5. Let f ∈ L1(R1) and define

F (t) ≡
∫ ∞

−∞
f(x) sin(xt)dx.

Prove F (t) is continuous in R. Is F (t) uniformly continuous in R? Prove your conclusion.

6. Let {fn} be a sequence of measurable functions on (a, b), and

E = {x ∈ (a, b) : fn(x) is convergent}.
Show that E is measurable.

7. (a) State Fatou’s Lemma.

(b) Show by an example that the strict inequality in Fatou’s Lemma is possible.

(c) Show that Fatou’s Lemma can be derived from the Monotone Convergence Theorem.

8. Suppose f is a non-negative integrable function on [0, 1]. If
∫ 1

0
fn =

∫ 1

0
f for all n = 1, 2, · · · ,

then f(x) must be the characteristic function of some measurable set E ⊂ [0, 1].


