MATH 16 Instr. K. Ciesielski Spring 2000

SAMPLE TEST # 3

Solve the exercises. Show your work.

Ex. 1. Solve the initial value problem: $y' = e^{x-y}$, y(0) = 1.

Ex. 2. Find the arc length of the curve: $y = x^2 - \frac{\ln x}{8}, \quad 1 \le x \le 4.$

Ex. 3. Find the area of the surface obtained by rotating the curve $y = x^2$ from (1,1) to (2,4) about the y-axis.

Ex. 4. Find the centroid of the region bounded by the curves $y = \cos x$, y = 0, x = 0, and $x = \pi/2$.

Ex. 5. Eliminate the parameter from the equations $x = \sin t$ and $y = \sin^2 t$. Sketch its graph.

Ex. 6. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for $x = t^2$ and $y = t^3 - 3t$.

Ex. 7. Find the surface area generated by rotating the curve $x = e^t - t$, $y = 4e^{t/2}$, $0 \le t \le 1$, about the *x*-axis.

Ex. 8. Change to polar coordinates. Simplify your answer.

$$x^2 + y^2 = 2x + 4.$$

Ex. 9. Change to Cartesian (rectangular) coordinates. Simplify your answer.

 $r = 2\cos\theta - 3\sin\theta.$

Ex. 10. Find the slope of the tangent line to the curve: $r = 1 + \sin \theta$ for $\theta = \pi/3$.

Ex. 11. Find the area of the region that lies inside the curve $r = 3\sin\theta$ and outside the curve $r = 1 + \sin\theta$.

Ex. 12. Find the equation of the parabola with focus (1, -1) and directrix y = 5.