MATH 16
Instr. K. Ciesielski
Spring 2000

SAMPLE TEST \# 3

Solve the exercises. Show your work.

Ex. 1. Solve the initial value problem: $y^{\prime}=e^{x-y}, \quad y(0)=1$.
Ex. 2. Find the arc length of the curve: $\quad y=x^{2}-\frac{\ln x}{8}, \quad 1 \leq x \leq 4$.
Ex. 3. Find the area of the surface obtained by rotating the curve $y=x^{2}$ from $(1,1)$ to $(2,4)$ about the y-axis.

Ex. 4. Find the centroid of the region bounded by the curves $y=\cos x, y=0, x=0$, and $x=\pi / 2$.

Ex. 5. Eliminate the parameter from the equations $x=\sin t$ and $y=\sin ^{2} t$. Sketch its graph.

Ex. 6. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $x=t^{2}$ and $y=t^{3}-3 t$.
Ex. 7. Find the surface area generated by rotating the curve $x=e^{t}-t, y=4 e^{t / 2}, 0 \leq t \leq 1$, about the x-axis.

Ex. 8. Change to polar coordinates. Simplify your answer.
$x^{2}+y^{2}=2 x+4$.
Ex. 9. Change to Cartesian (rectangular) coordinates. Simplify your answer. $r=2 \cos \theta-3 \sin \theta$.

Ex. 10. Find the slope of the tangent line to the curve: $r=1+\sin \theta$ for $\theta=\pi / 3$.
Ex. 11. Find the area of the region that lies inside the curve $r=3 \sin \theta$ and outside the curve $r=1+\sin \theta$.

Ex. 12. Find the equation of the parabola with focus $(1,-1)$ and directrix $y=5$.

