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ABSTRACT

Applications of the Covering Property Axiom

Andrés Millán Millán

The purpose of this work is two-fold. First, we present some consequences
of the Covering Property Axiom CPA of Ciesielski and Pawlikowski which
captures the combinatorial core of the Sacks’ model of the set theory. Second,
we discuss the assumptions in the formulation of different versions of CPA.

As our first application of CPA we prove that under the version CPAgame
cube

of CPA there are uncountable strong γ-sets on R. It is known that Martin’s
Axiom (MA) implies the existence of a strong γ-set on R. Our result is
interesting since that CPAgame

cube implies the negation of MA.
Next, we use the version CPAgame

prism of CPA to construct some special
ultrafilters on Q. An ultrafilter on Q is crowded provided it contains a filter
basis consiting of perfect sets in Q. These ultrafilters have been constructed
under various hypotheses. We study the properties of being P -point, Q-
point, and ω1-OK point and their negations, and prove under CPAgame

prism the
existence of an ω1-generated crowded ultrafilter satisfying each consistent
combination of these properties. We also refute an earlier claim by Ciesielski
and Pawlikowski by proving under CPAgame

prism that there are 2c-many crowded
c-generated Q-points.

We also study various notions of density, central to the foundation of
CPA and defined in the set of all perfect subsets of a Polish space X . These
notions involve the concepts of perfect cube and iterated perfect set on Cα.
If X is a Polish space, we say that F ⊆ Perf(X ) is α-cube (α-prism) dense
provided for every continuous injection f : Cα → X there exists a perfect
cube (iterated perfect set) C ⊆ Cα such that f [C] ∈ F .

We prove that for every α < ω1 and every Polish space X there exists a
family F such that F is β-prism dense for every β < α but |X \⋃F| = c.
Therefore, any attempt of strengthening of axiom CPAprism by replacing
prism-density with any proper subclass of these densities leads to a false
statement. The proof of this theorem is based in the following result: Any
separately nowhere-constant function defined on a product of Polish spaces is
one-to-one on some perfect cube.



Acknowledgement

I want to thank my thesis advisor professor Krzysztof Chris Ciesielski for
his patience, guidance, and encouragement; the Mathematics Department
at West Virginia University for its support and high academic level; and
the members of my committee, professors John Atkins, Krzysztof Ciesielski,
Sam Nadler, Jerzy Wojciechowski, and Cun-Quan Zhang. Also, I would like
to thank my family and friends in Morgantown and Venezuela. Finally, I
would like to say a word of love to my wife and daughter whose inconditional
support allowed me to fullfill this project.

iii



A la memoria de mi madre



Contents

1 Introduction and preliminaries 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Overview of the results . . . . . . . . . . . . . . . . . . 1
1.1.2 Historical background . . . . . . . . . . . . . . . . . . 3

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The Covering Property Axiom . . . . . . . . . . . . . . . . . . 6

1.3.1 Cubes, prisms, and densities in Perf(X ) . . . . . . . . 6
1.3.2 Axioms CPAcube and CPAprism . . . . . . . . . . . . . 8
1.3.3 Games and Strategies . . . . . . . . . . . . . . . . . . . 9
1.3.4 Axioms CPAgame

cube and CPAgame
prism . . . . . . . . . . . . . 9

2 γ-sets and strong γ-sets. 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Strong γ-sets in R . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Ultrafilters on Q 17
3.1 Preliminaries and introduction . . . . . . . . . . . . . . . . . . 17

3.1.1 Ideals, filters, and ultrafilters on X . . . . . . . . . . . 17
3.1.2 The spaces βω and ω∗ . . . . . . . . . . . . . . . . . . 18
3.1.3 Special points in X∗ . . . . . . . . . . . . . . . . . . . 19

3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Some important lemmas . . . . . . . . . . . . . . . . . . . . . 24
3.4 An ω1-generated crowded bad point . . . . . . . . . . . . . . . 30
3.5 A crowded Q-point which is not an ω1-OK point . . . . . . . . 32
3.6 Crowded ω1-generated ω1-OK points . . . . . . . . . . . . . . 36
3.7 Crowded Q-points with a large character . . . . . . . . . . . . 51

v



4 Separately nowhere constant functions 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Separately nowhere constant functions . . . . . . . . . . . . . 57
4.3 Cube and prism densities . . . . . . . . . . . . . . . . . . . . . 62
4.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



Chapter 1

Introduction and preliminaries

1.1 Introduction

1.1.1 Overview of the results

The purpose of this work is two-fold. First, we present some consequences
of the axiom CPA of Ciesielski and Pawlikowski, in its versions CPAgame

cube

and CPAgame
prism, which captures the combinatorial core of the Sacks’ model.

Second, we discuss the assumptions in the formulation of different versions
of CPA. As our first application of CPA we prove, in Chapter 2, that under
CPAgame

cube there are uncountable strong γ-sets on R. Strong γ-sets belong to
the realm of the small subsets of R. To be precise, recall that a family U
of open subsets of R is a cover of Z ⊆ [R]<ω, the set of finite subsets of R,
provided for every A ∈ Z there is a U ∈ U with A ⊆ U ; an S ⊆ R is a strong
γ-set provided there exists an increasing sequence 〈kn < ω : n < ω〉 such
that for every sequence 〈Jn : n < ω〉, where each Jn is an cover of [R]kn , there
exists a 〈Dn ∈ Jn : n < ω〉 such that S ⊆ ⋃

n<ω

⋂
m>n Dm. In reference [18]

F. Galvin and A. Miller showed that MA implies the existence of a strong
γ-set on R. Our result is interesting since that CPAgame

cube implies the total
failure of Martin’s Axiom, and in particular, ¬MA.

As our second application we use CPAgame
prism, in Chapter 3, to construct

the examples of special ultrafilters on ω and Q. Recall that a filter on a
non-empty set X is a non-trivial family U ⊆ P(X) that is closed under finite
intersections and supersets and that an ultrafilter is a maximal filter. If in
addition U does not contain finite sets, then U is called non-principal or
free. A non-principal ultrafilter U on a countably infinite set X is called
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a P -point if for every partition P of X into pieces not in U there exists a
U ∈ U that contains at most one element of every piece; if in the definition
of P -point we restrict ourselves to the partitions into finite pieces, we obtain
the definition of a Q-point. The existence of these ultrafilters is consistent
with and independent of ZFC. We will also consider a class of weak P -points
called ω1-OK points which actually exist in ZFC (see [27]).

An ultrafilter on Q is crowded provided it contains a filter basis consiting
of perfect sets in Q, where the topolgy on Q is the relativization of the usual
topology on R. Although it is an open problem to decide if the existence of
such ultrafilters follows from ZFC, they have been constructed under various
hypothesis like MA [14], b = c [13] or CPAgame

prism [9].
For ω1-generated ultrafilters1, we consider the properties of being P -point,

Q-point, or ω1-OK point and their negations, and prove for every combination
of these, the existence under CPAgame

prism of an ultrafilter with precisely that
combination of properties, as long they do not contradict with each other.
Moreover, we prove that, when considered on Q, such ultrafilters can be
crowded as well.

In one of these constructions we refute a claim of Ciesielski and Paw-
likowski from [9] by proving that under CPAgame

prism there are 2c-many crowded
c-generated Q-points.

In Chapter 4 we consider various notions of density defined in the family
of all perfect subsets of a Polish space X . If 0 < α < ω1, a perfect cube in
Cα is a set C of the form

∏
ξ<α Cξ, where each Cξ is homeomorphic to the

Cantor set C. This notion can be generalized to that of iterated perfect set
in Cα. Then, if X is a Polish space, we say that F ⊆ Perf(X ) is α-cube
(α-prism) dense provided for every continuous injection f : Cα → X there
exists a perfect cube (iterated perfect set) C ⊆ Cα such that f [C] ∈ F .

We prove that for every α < ω1 and every Polish space X there exists a
family F such that F is β-prism dense for every β < α but |X \⋃F| = c. This
shows that any attempt of strenghtening of axiom CPAprism by replacing
the prism density with any proper subclass of these densities leads to a
stamement which is false in ZFC.

The main tool to prove this theorem is the following result: Any separately
nowhere-constant function defined on a product of Polish spaces is one-to-one
on some perfect cube. Where a function defined on a product of Polish spaces
is separately nowhere-constant provided it is not constant on any section.

1These are the ultrafilters with a filter basis of cardinality ω1
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1.1.2 Historical background

Set Theory began in the late XIXth century with the work of Georg Cantor
about trigonometric series. At some point during his research Cantor had
to consider infinite sets of real numbers. His studies led him to state the
Continuum Hipothesis (CH). In 1904, Ernst Zermelo stated the Axiom of
Choice (AC) and used it to prove that every set can be well-ordered [47].
Both statements were proved consistent relative to the other axioms of Set
Theory (ZF)2 by K. Gödel in [20], [21], and [22]. In 1960’s, P.J. Cohen
proved the independence of CH and AC by showing that their negations are
also consistent with ZF [6]. Gödel’s extremely important work was based on
the detailed study of L, the class of constructible sets, which he proved to be
a transitive model for the theory ZFC+GCH3. On the other hand, Cohen’s
proof made use of the method of forcing, a very powerful technique created
by him that have provided a plethora of consistency results.

Roughly speaking, forcing arguments start with a ground model M of
ZFC, like L, and a forcing notion which is a partially ordered set 〈P,≤〉 that
will force the existence of certain generic object G in a model extension M [G]
of M . If 〈P,≤〉 is rich enough, then G /∈ M .

Forcing has been used to establish the independence of many important
mathematical statements like, Souslin Hypothesis, Borel’s Conjecture, Ka-
plansky’s Conjecture, and Whitehead’s Problem. However, although it has
been greatly refined and simplified, sometimes forcing arguments may require
deep metamathematical ideas and be very technical and involved.

In 1970, D. A. Martin and R. Solovay [33] isolated a single principle
which encoded the essence of a large family of forcing notions, the class
of all countable chain condition (ccc) partial orders. This principle, known
as Martin’s Axiom (MA) was proved consistent relative to ZFC+¬CH by
R. Solovay and S. Tennenbaum in [43]. Something similar was made for
the model L by R. Jensen [25] who isolated several combinatorial principles
in order to capture the set-theoretical core of this model. One of these
principles, ♦ (diamond), is relevant to the solution of Souslin Problem.

As these results appeared, mathematicians became familiar with those
principles proved to be consistent with the usual axioms of set theory and
started to apply them to get the consistency and independence of many state-
ments in classical mathematics. This is why CH, MA, and ♦ and their vari-

2Zermelo-Fraenkel axioms for the Set Theory.
3ZFC=ZF+AC, GCH = Generalized Continuum Hypothesis: ∀κ 2κ = κ+.
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ants have became popular among many mathematicians working in different
areas particularly, set-theoretical topologists, real analysts, and homological
algebrists.

In [42] G. Sacks defined a forcing notion consisting of perfect sets of
real numbers ordered by inclusion. The generic object G for this forcing
notion produces a real number xG, called a Sacks real, which is not in the
ground model M but it has the following minimality property4: If A ∈
M [G] = M [xG] is any set of ordinals, then either xG ∈ M [A]5 or A ∈ M .
There are essentially two different ways of adding many Sacks reals to a model
of Set Theory. One way consist of adding all the Sacks reals simultaneously
by using a product of many Sacks forcings. This method is called adding
Sacks reals side-by-side. The other way is to add one real at a time by using
an iterated forcing construction. To this thesis, the most relevant of these
constructions is the one starting with a model of ZFC+CH and adding ω2

Sacks reals iteratively with countable support6. The model so obtained is
called the iterated Sacks model or the iterated perfect-set model and it is
denoted by S. In 1979 J. Baumgartner and R. Laver proved that in this
model, every selective ultrafilter is generated by ω1-many sets and every
selective ultrafilter in the ground model generates a selective ultrafilter in
the extension. Since the equality 2ω1 = ω2 may hold in S, this result implies
that in S, there are only such a model ω2-many selective ultrafilters. Another
interesting result about S is the fact proved by A. Miller in [38], that every
A ⊆ R such that |A| = c can be continuously mapped onto [0, 1].

Associated to R (the continuum) are some cardinals called the cardinal
characteristics or cardinal invariants of the continuum. These cardinals are
uncountable and, in general, they are defined as the minimum size of a certain
families in [ω]ω, ωω, or P(R). In presence of MA all these cardinals are equal
to c. However, all of them are equal to ω1 in S (see [4]). This gives to S
certain canonical character among all the models of ZFC.

In [9] K. Ciesielski and J. Pawlikowski isolated a single mathematical
principle to capture the combinatorial core of S. They call it the Covering
Property Axiom and denoted it CPA. However, they used mainly a weakened,
but still prominent, version of it denoted CPAgame

prism. They claimed that even
this weaker version of CPA captures the combinatorial core of S, at least

4See [24, Theorem 64].
5M [A] is the least model of ZFC containing M and A.
6For the terminology of forcing and iterated forcing see [30] or [24].
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from the point of view of the cardinal invariants of the continuum. This
claim is supported for two facts. First, Ciesielski and Pawlikowski proved
that essentially every relevant fact that holds in S follows from CPAgame

prism

(see [10]). Second, it is a result of J. Zapletal [46] that for every tame7

cardinal invariant κ, if the inequality κ < c holds in any forcing extension of
a model of ZFC, then κ < c already follows from CPAgame

prism. Reference [10]
contains a formulation of the full CPA and a proof that it holds in S.

1.2 Notation

Throughout what follows we will use standard terminology and notation as
in [24]. In particular, lowercase letters i, j, k, l,m, n, r will represent non-
negative integers. Lowercase greek letters will denote ordinals which will be
identified with the set of its predecesors. Therefore, 2 = {0, 1} and ω will
denote the first infinite ordinal and the set of non-negative integers {0, 1, . . . },
respectively. The first uncountable cardinal will be denoted as ω1 and we will
use κ to denote any other uncountable cardinal. If X and Y are non-empty
sets the symbol Y X will denote the set of all functions from X to Y . In
particular, if X = ω, then Y ω will represent the set of all infinite sequences
of elements in Y . This set can be topogized by taking the discrete topology
on Y and then the product topology. If Y = 2 then we obtain the familiar
Cantor space that will be denoted by C. If Y = ω then we obtain the Baire
space ωω. The characteristic function of a set A ⊆ ω will be denoted as χA.
The symbol |X| will denote the cardinality of X and P(X), [X]<ω, [X]ω and
[X]m will represent the set of all subsets of X, the set of all finite subsets of
X, the set of all subsets of X of cardinality ω, and the set of all subsets of
X of cardinality m, respectively. The cardinality of the set of real numbers
R will be denoted as c. The set of rational numbers will be denoted as usual
by Q. Letters A, B, I, J , and K will denote, in general, the families of
sets like countable collections in [X]ω for a suitable X, basis or subbases
for topologies, ideals and filters. Topological spaces will be denoted as X ,
Y , and Z. If X is a topological space, then C(X ) will denote the space
of all real valued continuous functions on X with the topology of pointwise
convergence. If X is a topological space and A ⊆ X , we will denote by Ā the
closure of A and by bd(A) its boundary. A Polish space is a separable and

7See reference [46] for the definition of tame cardinal invariant.
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completely metrizable space. The spaces R, C, ωω are examples of Polish
spaces. Our references for the theory of Polish spaces are [31] and [26].

1.3 The Covering Property Axiom

In this section we define the main notions needed for the formulation of the
main versions of the Covering Property Axiom and we state some results of
crucial importance for the subsequent chapters.

1.3.1 Cubes, prisms, and densities in Perf(X )

The framework of CPA rests on the concept of a cube and prism. For every
Polish space X consider the set

Perf(X ) = {C ⊆ X : C is homeomorphic to C}.

If 0 < α < ω1 is an ordinal a perfect α-cube is a set C ⊆ Cα of the form
C =

∏
ξ<α Cξ such that Cξ ∈ Perf(C) for every ξ < α. If α = ω we call C

a perfect cube. A set C ∈ Perf(X ) is called an α-cube on X if there exists a
perfect α-cube and a continuous injection f : Cα → X such that P = f [C].

If 0 < α < ω1 is an ordinal let Φprism(α) be the set of all continuous
injections f : Cα → Cα with the property that

f(x) ¹ ξ = f(y) ¹ ξ ⇐⇒ x ¹ ξ = y ¹ ξ for all ξ < α and x, y ∈ Cα.

Then, we define Pα = {range(f) : f ∈ Φprism(α)} and Pω1 =
⋃

0<α<ω1
Pα. The

elements of Pω1 are called the iterated perfect sets. The simplest elements of
Pα are of the form C =

∏
ξ<α Cξ, where Cξ ∈ Perf(C) for every ξ < α. We

refer to them as perfect cubes.
Observe that the set Φprism(α) can be also described as the family of all

continuous injections f : Cα → Cα such that for every β < α

f ¹¹ β
def
= {〈x ¹ β, y ¹ β〉 : 〈x, y〉 ∈ f}

is a one-to-one function from Cβ into Cβ. For example, if α = 3 = {0, 1, 2}
then f ∈ Φprism(α) provided there exist continuous functions f0 : C → C,
f1 : C2 → C, and f2 : C3 → C such that

f(x0, x1, x2) = 〈f0(x0), f1(x0, x1), f2(x0, x1, x2)〉

6



for all x0, x1, x2 ∈ C and maps f0, 〈f0, f1〉, and f are one-to-one. Note that
Φprism(α) is closed under compositions and that for every 0 < β < α if
f ∈ Φprism(α), then f ¹¹ β ∈ Φprism(β).

The following properties can be easily deduced from these definitions.
(For (D) see [10, (3.13)].) Here πβ is the projection from Cα, for some α ≥ β,
onto the first β coordinates, that is, πβ(x) = x ¹ β.

(A) Every perfect cube in Cα belongs to Pα.

(B) If P ∈ Pα+1 and x ∈ πα[P ], then |({x} × C) ∩ P | = c.

(C) If 0 < β < α and P ∈ Pα, then πβ[P ] ∈ Pβ.

(D) If 0 < β < α, then Q = {x ∈ P : πβ(x) ∈ R} ∈ Pα for every P ∈ Pα

and R ∈ Pβ with R ⊂ πβ[P ].

If X is a Polish space, then a prism in X is a pair 〈f, P 〉 where f : E → X
is injective and continuous, E ∈ Pω1 , and P = f [E]. Function f can be
considered as a coordinate system imposed on P . We will usually abuse this
terminology and refer to P itself as a prism. In this case function f , given
only implicitly, will be referred to as a witness function for P . If the domain
of the witness function of a prism P happens to be a perfect cube, we will
sometimes refer also to P as a cube in X .

If 〈f, P 〉 is a prism, then we say that Q is its subprism provided there
exists an iterated perfect set E ⊆ dom(f) such that Q = f [E]. We will refer
to Q as a subcube of P when E is a perfect cube.

Remark 1.1 If we need to prove that a prism P contains a subprism Q with
some “nice property,” we can always assume that the witness function f for
P is defined on the entire set Cα.

Proof. Indeed, assume that we can find a desired subprism Q of a prism P
as long as its witness function f is defined on the entire set Cα. Next, take
an arbitrary witness function g from E ∈ Pα onto P and let h ∈ Φprism(α)
be onto E. Then f = g ◦ h is a continuous injection from Cα onto P ,
so by the above assumption we can find a subprism Q of 〈f, P 〉 with the
“nice property” we are after. To finish the argument it is enough to note
that Q is also a subprism of 〈g, P 〉. Indeed, since Q = f [E0] for some
E0 ∈ Pα, there exists an h0 ∈ Φprism(α) onto E0. But then h ◦ h0 ∈ Φprism(α)

7



and Q = f [E0] = (g ◦ h)[h0[C
α]] = g[h ◦ h0[C

α]] is a subprism of 〈g, P 〉 as
h ◦ h0[C

α] ∈ Pα.

Since in the game defined below we will need to consider singletons in the
same position as prisms as defined above, in what follows singletons will be
considered as prisms. If P is a singleton in X then its only subprism is P
itself.

The following theorem is one of the principal tools for finding subprism
of a prism, so also for using CPA. This result is a refinement of a theorem
proved independently by H.G. Eggleston [15] and M.L. Brodskĭı [5].

Proposition 1.2 (K. Ciesielski and J. Pawlikowski, [10, claim 1.1.5]) Let
0 < α < ω1 and consider Cα with its usual topology and its usual product
measure. If G is a Borel subset of Cα which is either of second category or of
positive measure, then G contains a perfect cube E. In particular E ∈ Pα.

Strictly speaking, in [10, claim 1.1.5] (see also [9, claim 2.3]) the result is
proved only for α = ω. But this easily implies the above version.

We will need also the following fusion lemma, which is an easy compilation
of Lemmas 3.1.1 and 3.1.2 from [10]. The proof of the compilation is identical
to that of [10, cor. 3.1.3].

Proposition 1.3 (K. Ciesielski and J. Pawlikowski [10]) Let 0 < α < ω1

and for every n < ω let Dn ⊆ [Pα]<ω be a family of pairwise disjoint sets
such that ∅ ∈ Dn, Dn is closed under refinements, and

(†) for every E ∈ Dn and E ∈ Pα which is disjoint with
⋃ E there exists

an E ′ ∈ Pα ∩ P(E) such that {E ′} ∪ E ∈ Dn.

Then for every n < ω there is a family En = {Ek : k < 2n} ∈ Dn of pairwise
disjoint sets such that E =

⋂
n<ω

⋃ En ∈ Pα.

1.3.2 Axioms CPAcube and CPAprism

Let X be a Polish space, 0 < α < ω1 and let E ⊆ Perf(X ). We say E is
cube-dense provided for every continuous injection f : Cω → X there exists
a perfect cube C such that f [C] ∈ E . Similarly we say that E is prism-dense
provided for every 0 < α < ω1 and every continuous injection f : Cα → X
there exists an iterated perfect set C ∈ Pα such that f [C] ∈ E . These notions
will be generelized and compared in Chapter 4.
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CPAcube: c = ω2 and for any Polish space X and E ⊆ Perf(X ) cube-dense
there exists an E0 ∈ [E ]≤ω1 such that |X \⋃ E0| ≤ ω1.

CPAprism: c = ω2 and for any Polish space X and E ⊆ Perf(X ) prism-dense
there exists an E0 ∈ [E ]≤ω1 such that |X \⋃ E0| ≤ ω1.

1.3.3 Games and Strategies

For a Polish space X consider the following game GAMEprism(X ) of length
ω1 played by two players, Player I and Player II. At each stage ξ < ω1 of
the game Player I can play an arbitrary prism Pξ in X (i.e., Pξ is either a
singleton in X or it belongs to Perf(X ) and comes with a witness function)
and Player II must respond by playing a subprism Qξ of Pξ. The game
〈〈Pξ, Qξ〉 : ξ < ω1〉 is won by Player I provided

X =
⋃

ξ<ω1

Qξ;

otherwise Player II wins. A strategy for Player II is any function S such
that S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) is a subprism of Pξ for every partial game
〈〈Pη, Qη〉 : η < ξ〉. We say that a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 is played according
to a strategy S for Player II provided Qξ = S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) for every
ξ < ω1. A strategy S for Player II is a winning strategy provided Player II
wins any game played according the strategy S. Similarly, we can define the
game GAMEcube(X ) where instead of prisms each player play a cube in X
and strategies are defined along the same lines but replacing the word prism
by cube. This leads us to the main versions of CPA.

1.3.4 Axioms CPAgame
cube and CPAgame

prism

The following principles capture the combinatorial core of the iterated perfect
set model.

CPAgame
prism: c = ω2 and for any Polish space X Player II has no winning
strategy in the game GAMEprism(X ).

CPAgame
cube : c = ω2 and for any Polish space X Player II has no winning
strategy in the game GAMEcube(X ).

9



These axioms are consequences of a slightly more general principle, similar in
spirit, called CPA, see [10]. Its importance comes from the following theorem.

Proposition 1.4 (K. Ciesielski and J. Pawlikowski [10, thm. 7.2.1]) CPA
holds in the iterated perfect set model. In particular, CPA is consistent with
ZFC set theory.

The proof that CPAgame
prism holds in S can be also found in [9, thm. 5.3]. The

following diagram shows the logical dependence between the different versions
of CPA discussed in this work. It is not known if any of this implications is
reversible.

CPA =⇒ CPAgame
prism =⇒ CPAgame

cube

⇓ ⇓
CPAprism =⇒ CPAcube

10



Chapter 2

γ-sets and strong γ-sets.

2.1 Introduction

We say that a topological space X is Fréchet if for every x ∈ Ā ⊆ X , there
exists a sequence in A which converges to x1. It is natural to ask about what
properties of X imply that the space C(X ) is Fréchet.

Definition 2.1 If X is a topological space and J is a family of open subsets
of X then J is an ω-cover of X if and only if every finite subset of X is
contained in an element of J .

Definition 2.2 A topological space X has the γ-property if and only if for
every ω-cover J of X there exists a sequence 〈Dn : n < ω〉 ∈ J ω such that

X ⊆
⋃
m

⋂
n>m

Dn.

In [34] and [19] is shown that C(X ) is Fréchet if and only if X has the
γ-property.

Definition 2.3 X ⊆ R is a γ-set provided that X has the γ-property con-
sidered as a topological space with the subsespace topology inherited from
the usual topology on R.

1See [16] for more about sequential spaces.

11



In [18] Galvin and Miller used Martin’s axiom to construct several kinds of
uncountable γ-sets. These have been extensively studied in the literature of
singular subsets of R. See for example [39], [2], [41].

Recall that X ⊆ R is a strongly measure zero set provided X +G 6= R for
every meager subset G of R and a X ⊆ R is a strongly meager set provided
X + G 6= R for every measure zero subset G of R. This a notion that are
dual of each other.

Now, although every γ-set is a strong measure zero set, T. Bartoszysńki
and I. Reclaw [2] constructed, under Martin’s axiom, a γ-set T in R that is
not strongly meager. The existence of such a set under axiom CPAgame

cube has
been proved by Ciesielski and Pawlikowski in [7].

In the next section we will show that axiom CPAgame
cube also implies the

existence of an uncountable γ-set X ⊆ R that is strongly meager.

2.2 Strong γ-sets in R
Definition 2.4 Let X be a Polish space with topology τ . We say that U ⊆ τ
is a cover of Z ⊆ [X ]<ω provided for every A ∈ Z there is a U ∈ U with
A ⊆ U .

Following [18] we say that

Definition 2.5 A set S ⊆ X is a strong γ-set provided there is an increasing
sequence 〈kn < ω : n < ω〉 such that for every sequence 〈Jn ⊆ τ : n < ω〉,
where each Jn is an cover of [X ]kn , there is a sequence 〈Dn ∈ Jn : n < ω〉
with X ⊆ ⋃

n<ω

⋂
m>n Dm.

It is proved in [18] that every strong γ-set X ⊆ R is strongly meager. The
goal of this section is to construct, under CPAgame

cube , an uncountable strong
γ-set in P(ω). So, after indentifying P(ω) with its homeomorphic copy in R,
this will be uncountable γ-set in R which is strongly meager. Under Martin’s
axiom such a strong γ-set of cardinality continuum was constructed in [18].

Let B0 be a countable basis for the topology of P(ω) and let B be the
collection of all finite unions of elements from B0. Since every open cover
of [P(ω)]k, k < ω, contains a refinament from B, in the definition of strong
γ-set it is enough to consider only sequences 〈Jn : n < ω〉 with Jn ⊆ B.

Now, consider B with the discrete topology. Since B is countable, the
space Bω, considered with the product topology, is a Polish space and so is

12



X = (Bω)ω. For J ∈ X we will write Jn instead instead of J(n). It is easy
to see that a subbasis for the topology of X is given by the clopen sets:

{J ∈ X : Jn(m) = B},
where n,m < ω and B ∈ B.

For the reminder of this section fix an increasing sequence 〈kn : n < ω〉
such that kn ≥ n2n + n for every n < ω. Then we have the following lemma.

Lemma 2.1 Let X ∈ [ω]ω and let F a countable subset of P(ω) such that
[ω]<ω ⊆ F . Assume that P is a compact subset of X such that for every
J ∈ P and n < ω the family Jn[ω] = {Jn(m) : m < ω} covers [F ]kn . Then,
there exists a set Y ∈ [X]ω and for each J ∈ P a sequence 〈DJ

n ∈ Jn : n < ω〉
such that F ∪ Y ∗ ⊆ ⋃

n<ω

⋂
m>n DJ

m.

Proof. Let {Fn : n < ω} be an enumeration of [ω]<ω such that Fn ⊆ n
for all n < ω and let F = {fn : n < ω}. We will construct inductively the
sequences 〈sn ∈ X : n < ω〉 and 〈{DJ

n ∈ Jn[ω] : J ∈ P} : n < ω〉 such that for
every n < ω, J ∈ P and A ⊆ ω we have

(i) {fi : i < n} ⊆ DJ
n and sn < sn+1;

(ii) if i < j ≤ n + 1 and A ∩ sn+1 = Fi then A ∈ DJ
j .

We choose s0 ∈ X and {DJ
n ∈ Jn[ω] : J ∈ P} arbitrarily. Then conditions

(i) and (ii) are trivially satisfied. Next, assume that the sequence {si : i ≤ n}
is already constructed. We will construct sn+1 and sets DJ

n+1 as follows.
Let

Q = {q ∈ [ω]<ω : q \ {s0, . . . , sn} = Fi for some i ≤ n}.
Then |Q| ≤ (n + 1)2n+1 and |Q ∩ {f0, . . . , fn}| ≤ kn+1.

Fix J ∈ P . Since Jn[ω] covers [F ]≤kn+1 , there exists a D̄J
n+1 ∈ Jn+1[ω]

containing Q ∪ {f0, . . . , fn}. Since D̄J
n+1 is open and covers the finite set Q,

there is an sJ
n+1 > sn in X such that for every q ∈ Q

{x ⊆ ω : x ∩ sJ
n+1 = q ∩ sJ

n+1} ⊆ D̄J
n+1.

Notice that

for every A ⊆ ω and s̄n+1 ≥ sJ
n+1 condition (ii) holds. (∗)

13



Indeed, assume that (A ∩ s̄n+1) \ {s0, . . . , sn} = Fi for some i < j ≤ n + 1.
If j ≤ n then n ≥ 1 and since Fi ⊆ i ⊆ sn−1 we have

(A ∩ sn) \ {s0, . . . , sn−1} = (A ∩ sn) \ {s0, . . . , s̄n−1} = Fi.

By the inductive assumption, A ∈ DJ
j . If j = n+1 then q = A∩s̄n+1 ∈ Q. So

A ∈ {x ⊆ ω : x ∩ s̄n+1 = q ∩ s̄n+1} ⊆ {x ⊆ ω : x ∩ sJ
n+1 = x ∩ sJ

n+1} ⊆ D̄J
n+1,

finishing the proof of (?).
For each J ∈ P let mJ < ω be such that Jn+1(m

J) = D̄J
n+1 and define

UJ = {K ∈ X : Kn+1(m
J) = D̄J

n+1}. Then UJ is an open neighborhood of
J . In particular {UJ : J ∈ P} is an open cover of the compact set P , so
there exists P0 ∈ [P ]<ω such that P ⊆ ⋃{UJ̄ : J̄ ∈ P0}. Choose sn+1 ∈ X
such that sn+1 ≥ max{sJ̄

n+1 : J̄ ∈ P0}. Moreover, for every J ∈ P choose

J̄ ∈ P0 such that j ∈ UJ̄ and define DJ
n+1 = D̄J̄

n+1. It is easy to see that,
by (?), conditions (i) and (ii) are preserved. This completes the inductive
construction.

Put Y = {sn : n < ω}. To see that it satisfies the lemma pick an arbitrary
J ∈ P . We will show that F ∪ Y ∗ ⊆ ⋃

n<ω

⋂
m>n DJ

m.
Clearly F ⊆ ⋃

n<ω

⋂
m>n DJ

m since, by (i), fn ∈ DJ
m for every m > n. So,

fix an A ∈ Y ∗. Then, A \ Y = Fi for some i < ω. Let n < ω be such that
i < n and sn > max(Fi). Then, for every m > n we have i < m < m + 1
and (A ∩ sm+1) \ {s0, . . . , sm} = Fi. So, by (ii), we have A ∈ DJ

m+1 for every
m > n. Thus, A ∈ ⋂

m>n DJ
m.

Lemma 2.2 If F ⊆ P(ω) is countable, then the set

XF = {J ∈ X : Jn[ω] covers [F ]kn for every n < ω}

is Borel in X .

Proof. This follows from the fact that

XF =
⋂
n<ω

⋂

A∈[F ]kn

⋃
m<ω

⋃
A⊆B∈B

{J ∈ X : Jn(m) = B}

since each set {J ∈ X : Jn(m) = B} is clopen in X . Thus, XF is a Gδ-set.

Theorem 2.3 CPAgame
cube implies that there exists an uncountable strong γ-

set in P(ω).
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Proof. For α < ω1 and an ⊆∗-decreasing sequence V = {Vξ ∈ [ω]ω : ξ < α}
let W (V) ∈ [ω]ω be such that W (V) (∗ Vξ for all ξ < α. Moreover, if
P ∈ Perf∗(X ) is a cube, then we define a subcube Q = Q(V , P ) of P and an
infinite subset Y = V (V , P ) of X = W (V) as follows. Let F = V ∪ [ω]<ω and
choose a subcube Q of P such that either Q ∩ XF = ∅ or Q ⊆ XF . This can
be done by 1.2 since XF is Borel. If Q ∩ XF = ∅ we put Y = X. Otherwise
apply Lemma 2.1 to find Y .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q({Vη : η < ξ}, Pξ),

where sets Vη are defined inductively by Vη = V ({Vζ : ζ < η}, Pη). By
CPAgame

cube strategy S is not a winning strategy for Player II. So there is a
game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according S in which Player II loses, that is,
X =

⋃
ξ<ω1

Qξ. Let V = {Vξ : ξ < ω1} be a sequence associated with this
game, which is strictly (∗-decreasing, and let T = V ∪ [ω]<ω. We claim that
T is a strong γ-set.

Indeed, let 〈Un ⊆ B : n < ω〉 be such that Un covers [T ]kn for every
n < ω. Let α < ω1 be such that J ∈ Qα. Then J ∈ X[ω]<ω∪{Vη : η<α}, so we
must have used Lemma 2.1 to get the subcube Qα. In particular, there is a
sequence 〈DJ

n ∈ Jn[ω] = Un : n < ω〉 such that ([ω]<ω ∪ {Vη : η < α}) ∪ (Vα)∗

is contained in
⋃

n<ω

⋂
m>n DJ

m. Therefore, T ⊆ ⋃
n<ω

⋂
m>n DJ

m, whenever
{Vη : α ≤ η < ω1} ⊆ (Vα)∗.

Since every homemorphic image of a strong γ-set is evidently a strong
γ-set, we can conclude immediately the following.

Corollary 2.4 CPAgame
cube implies that there exists an uncountable γ-set which

is strongly meager.

It is worth mentioning that a construction of an uncountable γ-set in P(ω)
under axiom CPAgame

cube can also be obtained by using an approachn similar
to that used in [41]. In order to do this, we need the following definitions
and facts. for a fixed sequence k̄ = 〈kn ∈ ω : n < ω〉 we say that a family
A ⊆ (P(ω))ω is k̄-centered provided for every n < ω any kn-many sets from
{A(n) : A ∈ A} has a common point and B ⊆ ωω is a quasi-intersection of
A ⊆ (P(ω))ω provided for every A ∈ A for all but infinitely-many n < ω we
have B(n) ∈ A(n). Now, if K∗ is the family of all continuous from P(ω) to
(P(ω))ω, then, the following is true:
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A set X ⊆ P(ω) is a strong γ-set if and only if there exists an increasing
sequence k̄ = 〈kn ∈ ω : n < ω〉 such that for every f ∈ K∗, if f [X] is k̄-
centered, then f [X] has a quasi-intersection.

With this characterization in hand we can construct an uncountable strong
γ-set in P(ω) by applying CPAgame

cube to the Polish space K∗.
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Chapter 3

Ultrafilters on Q

In this chapter symbol X will represent a countably infinite set.

3.1 Preliminaries and introduction

3.1.1 Ideals, filters, and ultrafilters on X

A (non-trivial) ideal on X is a non-empty family I ⊆ P(X) such that

(I1) X /∈ I,

(I2) A ∪B ∈ I provided A, B are in I, and

(I3) if A ⊆ B and B ∈ I, then A ∈ I.

The dual notion of an ideal on X is that of a filter on X. A (non-trivial)
filter on X is a family F ⊆ P(X) such that

(F1) ∅ /∈ F ,

(F2) A ∩B ∈ F provided A, B are in F , and

(F3) if A ⊆ B and A ∈ F , then B ∈ F .

The duality between these two notions becomes evident by the fact that
if I is an ideal on X, the corresponding dual filter of I is the set

FI = {X \ A : A ∈ I}.

17



Similarly, given any filter F on X, the corresponding dual ideal is the set

IF = {X \ A : A ∈ F}.
If I ⊆ P(X) is an ideal, we will consider the family of I-positive subsets of
X defined by I+ = P(X) \ I.

The set [X]<ω of finite subsets of X is an ideal that we will denote Ifin.
Its dual filter Fcofin is the family of the complements of the finite sets and it
is called the cofinite filter or Fréchet filter.

The main subject of this section is that of ultrafilter on X. An ultrafilter
U on X is a filter on X which is not strictly contained in any other filter
on X. This is, U is maximal with respect to ⊆. Its dual notion is that of
prime ideal ; however, all our concerns will be always directed to ultrafilters
on some suitable X. The maximality condition on an ultrafilter U implies,
in particular, that if F ∈ [U ]<ω and

⋃
F ∈ U , then F ∩U 6= ∅. The following

proposition provides a technique of constructing ultrafilters in ZFC.

Proposition 3.1 If S is any infinte set and F ⊆ P(X) has the finite inter-
section property, then F can be extended to an ultrafilter on S.

Ultrafilters on a fixed X can be classified into principal or fixed ultrafilters
and non-principal or free ultrafilters. The first are generated by a singleton in
X. That means that if U ⊆ P(X) is a principal ultrafilter, then there exists
an x ∈ X such that U = {A ⊆ X : x ∈ A}. Therefore, we can identify any
principal ultrafilter with the singleton that generates it and the set X with
the set of principal ultrafilters on it. It is also easy to see that an ultrafilter
U on X is principal if and only if U ∩ Ifin 6= ∅ and that U is non-principal if
and only if Fcofin ⊆ U .

Given a non-principal ultrafilter U on X we say that B ⊆ U is a base for
U if every member of U contains a member in B. The character of U is the
cardinal number defined by

χ(U) = min {|B| : B is a base for U}.
It is an easy exercise to show that χ(U) is always an uncountable cardinal.

3.1.2 The spaces βω and ω∗

We will give a structure of topological space to the set

βω = {U : U is an ultrafilter on ω}
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by considering the family {V (A) : A ∈ P(ω)} as a basis for the topology on
βω, where V (A) = {U ∈ βω : A ∈ U} for every A ∈ P(ω). The sets V (A)
have the following properties:

(a) V (∅) = ∅ and V (ω) = βω,

(b) V (ω \ A) = βω \ V (A),

(c) V (A ∩B) = V (A) ∩ V (B) for every A,B ∈ P(ω), and

(d) V (A ∪B) = V (A) ∪ V (B) for every A,B ∈ P(ω).

Property (c) indicates that the family {V (A) : A ∈ P(ω)} is a base for a
topology τ on βω. This topology makes the pair 〈βω, τ〉 a compact, Hausdorff
space containing a homeomorphic copy of the discrete space ω. It turns out
that 〈βω, τ〉 is homemorphic to the Stone-Čech compactification of ω. Since
(the homeomorphic copy of) ω is open in βω it turns out that the remainder
ω∗ = βω \ ω is also a compact Hausdorff space which is homeomorphic to
Stone space of the Boolean algebra P(ω)/Ifin.

The literature about remainders of Stone-Čech compactifications is enor-
mous. Among the many problems arising from this subject a great deal of
effort has been dedicated to solve the general problem of its homogeneity.
Recall that a topological space 〈S, τ〉 is homogeneous provided for any two
points x, y ∈ S there exists an autohomeomorphism h : S → S such that
h(x) = y. Very informally, this means that we cannot distinguish points in
〈S, τ〉. All of them have the same topological behavior1. A natural problem
in topology is to find out what properties of a space S transfer to S∗. For
example, is S∗ always homogeneous when S is? The negative answer to this
general question was provided by W. Rudin in [44]. In that paper he pro-
duced, under CH, two points in ω∗ that behave very differently.Therefore,
there could not be a autohomeomorphism of ω∗ carrying one onto the other.

3.1.3 Special points in X∗

Given a topological space 〈S, τ〉, we say that an x ∈ S is a P -point if the
intersection of countably-many neighborhoods of x contains a neighborhood
of x. If we take a countably infinite set X with the discrete topology, then

1The interval (0, 1), the Cantor space 2ω, and the Hilbert cube, for example, are ho-
mogeneous spaces; the interval (0, 1] is not.

19



X∗ is homeomorphic to ω∗ and P -points can be defined in a purely combi-
natorial fashion. Since we are mainly concerned with the ultrafilters on X
as combinatorial entities, we will concentrate on this aspect when we dicuss
their properties and barely mention its topological translation.

Definition 3.1 A non-principal ultrafilter U on X is a P -point if for every
partition P of X such that U ∩P 6= ∅ there exists an X ∈ U such that X ∩P
is finite for each P ∈ P .

In his paper [44] W.Rudin used CH to construct a P -point on ω. Since in
ZFC there is always a non-P -point2 this proves the non-homogeneity of ω∗

because no homeomorphism h : ω∗ → ω∗ carries a P -point onto a non-P -
point.

Although Rudin’s proof exhibited two points in ω∗ that behave differently
his proof was considered “dishonest” since it used CH, which is unprovable
from ZFC.

In [17] Z. Froĺık gave a ZFC proof of the non-homogeneity of ω∗. This
proof is not “honest” because it does not show why ω∗ is not homogeneous.
The first “honest” proof of the non-homogenity of ω∗ was provided by Kunen
in [27]. The idea behind Kunen’s proof is the same as Rudin’s. The impor-
tant difference is that Kunen was able to produce in ZFC a different kind of
singular point, namely a weak P -point.

Definition 3.2 If 〈S, τ〉 is a topological space, an x ∈ S is a weak P -point
if x is not in the closure of any countable subset of S.

It is easy to show that there always exist points in X∗ that are not weak
P -points. Working in ω, let {Un : n < ω} be a countable family of non-
principal ultrafilters on ω and let V be any non-principal ultrafilter on ω.
Consider W ⊆ P(ω) given by

A ∈ W ↔ {n < ω : A ∈ Un} ∈ V
By using the definition of basic sets in ω∗ it is immediate that W is a non-
principal ultrafilter and that W ∈ {Un : n < ω}. A completely different
situation is to show in ZFC that there exist weak P -points. In order to do
this Kunen introduced the notion of a κ-OK point for any infinite cardinal κ.

2If P = {Pn : n < ω} is a partition of ω into infinite pieces consider the filter given by
F = {A ⊆ ω : ∀∞ n < ω Pn ⊆ A}. Then, no ultrafilter U extending F can be a P -point.
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Definition 3.3 Let κ be an infinite cardinal and let U be a non-principal
ultrafilter on X. We say that U is a κ-OK point provided that for every
〈Vn ∈ U : n < ω〉 there exists a 〈Uξ ∈ U : ξ < κ〉 such that for every n < ω
and ξ0 < · · · < ξn ⋂

i≤n

Uξi
⊆∗ Vn.

Ordinary ultrafilters are ω-OK points and the condition of being a κ-
OK point gets stronger as κ increases. The next two propositions solve the
homegeneity problem in ZFC for ω∗.

Proposition 3.2 (Kunen [27]) Every P -point is a κ-OK point for every κ
and every ω1-OK point is a weak P -point.

Proposition 3.3 (Kunen [27]) There are c-OK points in ω∗. Moreover, there
are 2c-many of these ultrafilters and they can be made of character c.

Although Kunen’s proof solved the homogeneity problem for ω∗ the ques-
tion wether P -point exists in ZFC remained open for many years. A negative
solution to this question was provided by S. Shelah who found a model of
ZFC without P -points [45].

Other ultrafilters relevant to this work are Q-points and selective ultra-
filters.

Definition 3.4 A non-principal ultrafilter U on X is called a Q-point on
X provided that for every infinite partition P of X into finite sets either
U ∩ P 6= ∅ or there exists a U ∈ U such that |U ∩ P | ≤ 1 for every P ∈ P .
Such an U is called a partial selector of P .

Definition 3.5 A non-principal ultrafilter U on X is called selective on X
provided that for every infinite partition P of X either U ∩ P 6= ∅ or U
contains a partial selector of P .

It is easy to check that a non-pricipal ultrafilter U on X is selective3 if
and only if it is simultaneously a P -point and a Q-point. As in the case of
P -points the existence of Q-points and selective ultrafilters follows from CH
and Martin’s axiom.

Some years before Shelah proved the consistency of non-existence of P -
points K. Kunen and A. Miller proved, respectively, the following theorems.

3Selective ultrafilters are also called Ramsey in the literature.
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Proposition 3.4 (Kunen [29]) Let M be a transitive model of ZFC plus
GCH. There is a generic extension of M in which there are no selective
ultrafilters.

Proposition 3.5 (Miller [37]) There are not Q-points in Laver’s model of
ZFC for the Borel Conjecture.

Consider Q with the subspace topology inherited from the usual topology
on R. A set B ⊆ Q is scattered if every non-empty subset of B has isolated
points. It is easy to see that the scattered subsets of Q form an ideal, which
we will denote by IS.

The following facts will be used in what follows. For the proofs see [9] or
[10, Fact 5.5.1].

Fact 3.6 (K. Ciesielski, J. Pawlikowski [9, 10]) Every non-scattered set B ⊆
Q contains a subset from Perf(Q).

Let J be an ideal on a countable set X. Then we define J + = P(X)\J .
We say that J is weakly selective if for every A ∈ J + and f : A → X there
exists a B ∈ P(A) ∩ J + such that f ¹ B is either one-to-one or constant.

Fact 3.7 (K. Ciesielski, J. Pawlikowski [9, 10]) The ideals [ω]<ω and IS are
weakly selective.

An ultrafilter U on Q is crowded provided it contains a basis consisting
of perfect sets. These ultrafilters were considered by E. K. van Douwen
as examples of particularly nice points in Q∗. He proved that they exist
under Martin’s Axiom in [14]. This result has been generalizad by Čoplakova
and Hart in [13]. In that paper they show that the existence of a crowded
ultrafilter follows from the equality b = c. Is is well known that it holds
in Laver’s model for Borel’s conjecture where all ultrafilters have character
c. In [9] Ciesielski and Pawlikowski showed that under CPAgame

prism crowded
ultrafilters of character ω1 exist. To construct their example Ciesielski and
Pawlikowski made use of the following result. A proof can be found in [9,
lem. 4.9(b)] or in [10, lem. 5.3.4(b)], where [X]ω comes with a subspace
topology of P(X), with P(X) being identified with 2X via characteristic
function.

Proposition 3.8 (K. Ciesielski, J. Pawlikowski [9, 10]) Let X be countably
infinite and let J ⊆ P(X) be a weakly selective ideal. For every prism P ⊆
[X]ω and every A ∈ J + there exist a subprism Q of P , a B ∈ P(A) ∩ J +,
and an i < 2 such that g ¹ B is constant equal to i for every g ∈ Q.
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P -point Q-point ω1-OK point Existence Reference
− − − under CPAgame

prism Theorem 3.18

− − + under CPAgame
prism Theorem 3.35

− + − under CPAgame
prism Corollary 3.22

− + + under CPAgame
prism Corollary 3.37

+ − − No, in ZFC Proposition 3.2
+ − + under CPAgame

prism [9] or [10]

+ + − No, in ZFC Proposition 3.2
+ + + under CPAgame

prism [9] or [10]

Table 3.1: Existence of different ultrafilters. All constructed ultrafilters are
non-principal and ω1-generated. Moreover, the first four examples can be
made also crowded.

3.2 Main results

In this chapter we establish, under CPAgame
prism, the existence of a nonselec-

tive Q-point (i.e., a Q-point which is not a P -point) by constructing an ω1-
generated crowded Q-point which is also an ω1-OK point (Corollary 3.37).
This improves a previous construction of ours [7] of an ω1-generated crowded
Q-point on Q. We also prove, under CPAgame

prism, that there exist crowded
ω1-generated Q-points that are not ω1-OK points (Corollary 3.22), crowded
ω1-generated ω1-OK points which are neither P -points nor Q-points (The-
orem 3.35), and crowded ω1-generated ultrafilters on ω that are neither Q-
points nor ω1-OK points (Theorem 3.18). These complete all the logical
implications between being a P -point, a Q-point, or an ω1-OK point as Ta-
ble 3.1 shows.

Besides the properties explicitly listed in Table 3.1 we consider also two
other properties: being ω1-generated (with ω1 < c) and being crowded.

As mentioned above, the first four examples from Table 3.1 are also
crowded. On the other hand that no other example from Table 3.1 can
be crowded, since a crowded ultrafilter cannot be a P -point [9, prop. 4.25].
It is also easy to see that we can destroy the property of being crowded with-
out changing any of the remaining properties. To see this, note that if U is
an ultrafilter on Q and f is a bijection between Q and a scattered subset S
of Q, then V = {A ⊆ Q : f−1(A) ∈ U} is a noncrowded ultrafilter that has
the remaining properties identical to that of U .
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One of the key features of our examples is that they are all ω1-generated
with ω1 < c. This cannot be achieved in ZFC, since in many models of
ZFC, for example under MA, every non-principal ultrafilter on a countable
set has character c. On the other hand, every example cited in Table 3.1
can be constructed under MA if we are willing to settle for c-generated fil-
ters. An interesting issue is whether under CPAgame

prism the examples from
Table 3.1 must be ω1-generated. The answer is positive for the last example
from the table, since Ciesielski and Pawlikowski proved (see [9, cor. 2.7] or
[10, cor. 1.5.4]) that under CPAgame

prism every selective ultrafilter is ω1-generated.
There is some indication suggesting that CPAgame

prism implies that every P -point
is ω1-generated. This would take care of the bottom half of the table. In the
last section of this chapter we present the construction, under CPAgame

prism, of
many crowded Q-points of character c. These particular examples are not
weak P -points so they cannot be ω1-OK points (See Proposition 3.2). The
existence of an example of character c as in the fourth row in the table is left
open. The first two examples from Table 3.1 do not need to be ω1-generated.
By Proposition 3.16 the Fubini product U ⊗ U , where U is a Kunen’s ex-
ample from Proposition 3.3, is as the first ultrafilter from Table 3.1. The
second of these is justified by a slight modification4 of Kunen’s example from
Proposition 3.3.

Finally, let us address a question, whether any of the examples from
Table 3.1 can be constructed in ZFC. The answer is clearly no for all but the
first two examples, since there are models of ZFC with no P -points (see [45])
as well as models of ZFC with no Q-points (see [37]). There are, however,
a ZFC examples for the first two entries of Table 3.1 as mentioned above.
These need not be ω1-generated, as we already noted. Whether they can be
crowded remains unclear, since it is an open problem if there exists a crowded
ultrafilter in ZFC.

3.3 Some important lemmas

Let X be a countably infinite set. If F ⊆ [X]ω is nonempty, we say that F
has the strong finite intersection property, SFIP, provided that |⋂ F | = ω
for every nonempty F ∈ [F ]<ω. The following is a very well known and easy

4Let F0 be the dual filter of the ideal I0 = {A ⊆ ω : limn→∞|A ∩ Pn| < +∞}, where
{Pn : n < ω} is the partition of ω such that Pn = {m < ω : 2n − 1 ≤ m < 2n+1 − 1}.
Construct a c by c independent linked family w.r.t F0 and follow the argument from [27].
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fact.

Lemma 3.9 If F ⊆ [X]ω is nonempty, countable, and has the SFIP, then
there exists a C(F) ∈ [X]ω such that C(F) ⊆∗ B for every B ∈ F .

Proof. If F is finite, we put C(F) =
⋂F ; otherwise F = {Bn : n < ω}

and we can pick inductively bn ∈
⋂

k≤n Bk such that bn /∈ {bk : k < n}. The
set C(F) = {bn : n < ω} works.

Let X be a countably infinite set. If the set ZX = [X]<ω \ {∅} has the
discrete topology then the product space ZX = (ZX)ω is a Polish space and
the sets U〈n,a〉 = {z ∈ Z : z(n) = a}, where a ∈ [ω]<ω and n < ω, constitute
a subbasis for the product topology. Consider the set

PX = {z ∈ ZX : {z(k) : k < ω} is a partition of ω}.

If X = ω we will drop the indexes, that is, Z = Zω and P = Pω.

Lemma 3.10 PX is a Gδ subset of ZX . Therefore PX is a Polish space
with the relative topology inherited from ZX .

Proof. We can assume that X = ω. If A = {z ∈ Z :
⋃

n<ω z(n) = ω} and
B = {z ∈ Z : {z(n) : n < ω} is pairwise disjoint} then P = A ∩ B. The set
A is Gδ because A =

⋂
k∈ω

⋃
n<ω

⋃ {U〈n,a〉 : a ∈ [ω]<ω & k ∈ a}. The set B
is Gδ since it can be written as

⋂
m<n<ω

⋃ {U〈m,a〉 ∩ U〈n,b〉 : a ∩ b = ∅}. Thus,
P is Gδ in Z.

Definition 3.6 Let X be a countably infinite set and let J ⊆ P(X) be an
ideal on X containing all the singletons. We say that J is Q-like provided
that for every A ∈ J + there exists a countable family {An ∈ [A]ω : n < ω}
such that no set {bn : n < ω} belongs to J provided bn ∈ An for every n < ω.

Lemma 3.11 Let X be a countably infinite set, let J be a Q-like ideal on
X and let {An ∈ J + : n < ω} be arbitrary. If P is a prism on PX , then
there exist a subprism Q of P and {Bn ∈ P(An) ∩ J + : n < ω} such that
|(⋃n<ω Bn) ∩ z(k)| ≤ 1 for every z ∈ Q and k < ω. Moreover, if P is a cube
then Q can be chosen as a subcube of P .
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Proof. We can suppose that X = ω. Let 〈Am
n ∈ [An]ω : m < ω〉 be the

sequence associated to An in the definition of Q-like for every n < ω and
let Γ: ω × ω → ω be any bijection. Define a sequence 〈A∗

r : r < ω〉 by A∗
r =

A∗
Γ(m,n) = Am

n provided Γ(m,n) = r.

Case (a): If P = {z} then, define a sequence 〈br ∈ ω : r < ω〉 induc-
tively such that br ∈ A∗

r \
⋃{z(k) : k < ω & z(k) ∩ {b0, . . . , br−1} 6= ∅} for ev-

ery r < ω. This is possible because the A∗
r is infinite and the set of forbidden

points is an union of finitely-many finite sets. Put Bn = {bΓ(m,n) : m < ω}.
Therefore, Bn ∈ P(An) ∩ J + for every n < ω and |(⋃n<ω Bn)∩ z(k)| ≤ 1 for
every k < ω.

Case (b): If P ∈ Perf(Pω), let f be a witness function for P . By Re-
mark 1.1 we can assume that f acts from Cα onto P . Thus, P is a cube. It
is enough to find its subcube with the desired properties.

Let µ be the standard product probability measure on Cα. We construct,
by induction on r < ω, a sequence 〈Kr : r < ω〉 of open subsets of Cα and two
sequences, 〈br ∈ A∗

r : r < ω〉 and 〈Dr ∈ [ω]<ω : r < ω〉, such that for every
r < ω:

(i) br > max
(
{bi : i < r} ∪⋃

j<r Dj

)
,

(ii) µ(Kr) ≥ 1− 2−(r+2), and

(iii) f(h)(k) ⊆ Dr for every h ∈ Kr and k < ω for which br ∈ f(h)(k).

If this construction is possible, put Bn = {bΓ(m,n) : m < ω} for every
n < ω and B = {br : r < ω} and notice that B =

⋃
n<ω Bn. Then, clearly

Bn ∈ P(An) ∩ J + since that J is Q-like and bΓ(m,n) ∈ Am
n for every m < ω.

Condition (ii) implies that µ
(⋂

r<ω Kr

) ≥ 1
2
. Hence, by Proposition 1.2,

there exists a perfect cube C ⊆ ⋂
r<ω Kr. Then Q = f [C] is a subcube of

P and the pair 〈Q, {Bn : n < ω}〉 is as required. To see this, it is enough to
show that |z(k) ∩ B| ≤ 1 for every z ∈ Q and k < ω. Let z = f(h) for some
h ∈ C. By conditions (i) and (iii), for every bj ∈ z(k) = f(h)(k) and r > j
we have that br /∈ z(k). Therefore, no two elements of B are in the same
z(k) or, in other words, |z(k) ∩B| ≤ 1 for every k < ω.

Next, we show that the inductive construction is possible. Let r < ω be
such that the appropriate bi, Ki, and Di are already constructed for every
i < r. We will construct br, Kr, and Dr satisfying (i)–(iii). We pick an
br as an arbitrary element of A∗

r satisfying condition (i). Next, we define
L = {a ∈ [ω]<ω : br ∈ a} and note that

{
f−1

(
U〈t,a〉

)
: 〈t, a〉 ∈ ω × L

}
is a
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partition of Cα into clopen sets. Thus, we can find a finite set S ⊆ ω × L
such that Kr =

⋃ {
f−1

(
U〈t,a〉

)
: 〈t, a〉 ∈ S

}
satisfies condition (ii). Let Dr =⋃{a : 〈t, a〉 ∈ S for some t < ω}. Then clearly, Dr is finite. To see that it

satisfies (iii), take an h ∈ Kr. Then f(h) ∈ U〈t,a〉 for some 〈t, a〉 ∈ S. Let
k < ω be such that br ∈ f(h)(k). Since we have also br ∈ a = f(h)(t), we
conclude that k = t. So, f(h)(k) = f(h)(t) = a ⊆ Dr.

Definition 3.7 Let X be a countably infinite set. We say that an ideal J
on X is prism-friendly provided that it contains all singletons and

(•) given a prism P in 2X and an A ∈ J + there exists a subprism Q of P ,
a B ∈ P(A) ∩ J +, and an i < 2 such that g ¹ B is constant equal i for
every g ∈ Q.

Definition 3.8 Let X be a countably infinite set. We say that an ideal J
on X is rich if it is prism-friendly and

(#) given an A ∈ J + there exists a family A ⊆ P(A) ∩ J + of cardinality
c which is almost disjoint, that is, such that |A ∩ B| < ω for every
distinct A,B ∈ A.

Also, notice that, in ZFC, condition (•) does not imply condition (#).
Indeed, if U is a selective ultrafilter, then its dual ideal IU is weakly selective.
So, see [10], IU is prism-friendly. However, I+

U = U and no two members in
U can be almost disjoint.

Lemma 3.12 The ideals [ω]<ω and IS are Q-like and rich.

Proof. It is easy to see that [ω]<ω is Q-like. To see that IS is also Q-
like pick any A ∈ I+

S . By Fact 3.7 we can assume that A ∈ Perf(Q). Let
B be a countable basis for the topology on Q and let {An : n < ω} be an
enumeration of the set {S ∩ A : S ∈ B & |S ∩ A| = ω}. If bn ∈ An for every
n < ω then B = {bn : n < ω} is dense in A and in consequence, it is in I+

S .
By Fact 3.7, the ideals [ω]<ω and IS are weakly selective so, by Proposi-

tion 3.8, they are prism-friendly. Thus, we need only to check that each of
these ideals satisfies the condition (#) from the definition of rich ideal.

It is well known that (#) holds for [ω]<ω. To check that (#) also holds
for IS, fix a countable basis B for the topology on Q and pick an A ∈ I+

S .
By Fact 3.6, we can assume that A ∈ Perf(Q). Let {Bn : n < ω} be an
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enumeration of BA = {B ∈ B : |B ∩A| = ω} and construct {as : s ∈ 2<ω} by
induction on the length of s in such a way that {as : s ∈ 2n} ∈ [A ∩Bn]2

n

and that {as : s ∈ 2n}∩⋃{at : t ∈ 2<n} = ∅ for every n < ω. If for x ∈ 2ω we
put Ax = {ax¹n : n < ω}, then Ax ∈ I+

S for every x ∈ 2ω, since Ax is dense
in A. Then A = {Ax : x ∈ 2ω} is almost disjoint and satisfies (#).

Definition 3.9 Let X be a countably infinite set and let J ⊆ P(X) be an
ideal on X containing all singletons. The Fubini product of the ideals [ω]<ω

and J is the ideal K on ω×X denoted [ω]<ω ⊗J and defined as the family
of all subsets A of ω ×X such that

supp(A)
def
= {n < ω : (A)n ∈ J +} is finite,

where (A)n = {x ∈ X : 〈n, x〉 ∈ A}.

Lemma 3.13 If J is a Q-like ideal, then K = [ω]<ω ⊗ J is also Q-like.

Proof. Let A ∈ K+. For each n ∈ supp(A) let {Am
n ∈ [(A)n]ω : m < ω}

be a family from the definition of Q-like for (A)n ∈ J +. Then the family
{{n} × Am

n : n ∈ supp(A) & m < ω} satisfies the definition of Q-like for the
set A.

Lemma 3.14 Let X be a countably infinite set, J a prism-friendly ideal
on X, P a prism in 2ω×X , I ∈ [ω]ω, and let 〈An ∈ J + : n ∈ I〉 be arbitrary.
Then, there are a subprism Q of P , a set J ∈ [I]ω, 〈Bn ∈ P(An) ∩ J + : n ∈ J〉,
and an i < 2, such that g ¹ B is constant equal i for every g ∈ Q provided
that B =

⋃{{n} ×Bn : n ∈ J}. In particular, if J is prism-friendly, then so
is K = [ω]<ω ⊗ J .

Proof. We can suppose that I = ω. If P is a singleton the lemma follows
easily from the fact that J is an ideal containing the singletons and the
pigeon hole principle. So, suppose that P ∈ Perf(2ω×X). Let f be a function
witnessing that P is a prism. By Remark 1.1 we can assume that f is defined
on Cα for some 0 < α < ω1. We will construct a subprism Q0 of P and a
sequence 〈Bn ∈ [An]ω ∩ J + : n < ω〉 such that for every n < ω

g ¹ {n} × Bn is constant for every g ∈ Q0. (3.1)

This will be done using Proposition 1.3.
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For each n < ω let Dn be the collection of all pairwise disjoint families
E ∈ [Pα]<ω such that there exists an A〈E,n〉 ∈ [An]ω ∩ I+ with the property
that for every E ∈ E

f(h) ¹ {n} × A〈E,n〉 = f(h
′
) ¹ {n} × A〈E,n〉 for all h, h

′ ∈ E. (3.2)

Clearly, each Dn is closed under refinaments. To see that Dn satisfies
the condition (†) from Proposition 1.3 pick E ∈ Dn and E ∈ Pα such that
E ∩⋃ E = ∅. Decreasing A〈E,n〉, if necessary, we can assume that X \ A〈E,n〉
is infinite. Let bn : ω × X → X be any bijection such that bn(n, a) = a for
every a ∈ A〈E,n〉. This bijection induces a homeomorphism fn : 2ω×X → 2X

defined by fn(g)(x) = g(b−1
n (x)) for every g ∈ 2ω×X and x ∈ X. Clearly, fn is

continuous and injective. Hence, Q∗ = (fn ◦ f)[E] is a prism in 2X . Since J
is prism-friendly, we can find a subprism Q∗∗ of Q∗, an A

′ ∈ [A〈E,n〉]ω ∩ J +,
and an i < 2 such that g[A

′
] = {i} for every g ∈ Q∗∗. But Q∗∗ = fn[E

′
] for

some E
′ ∈ Pα ∩ P(E). So, if we put E ′ = E ∪ {E ′} and A〈E ′ ,n〉 = A

′
we get

that E ′ ∈ Dn and the condition (†) is satisfied. Thus, by Proposition 1.3,
for every n < ω there exists a family En = {Ek : k < 2n} ∈ Dn of pairwise
disjoint sets with E0 =

⋂
n<ω

⋃ En ∈ Pα. We will prove that Q0 = f [E0]
satisfies (3.1) with some sequence 〈Bn : n < ω〉.

To see this fix an n < ω, for each k < 2n pick an hk ∈ Ek, and define
ϕn : A〈En,n〉 → 22n

by ϕn(p)(k) = f(hk)(n, p). Since A〈En,n〉 ∈ I+ and J is an
ideal, we can find an sn ∈ 22n

such that Bn = ϕ−1
n (sn) ∈ J +. To see that Bn

satisfies (3.1), pick a g ∈ Q0. Then there exists a k < 2n and an h ∈ Ek such
that g = f(h). Since Bn ⊆ A〈En,n〉, by (3.2) we have that g ¹ {n} × Bn =
f(hk) ¹ {n} × Bn. In particular, g(p) = f(hk)(n, p) = ϕn(p)(k) = sn(k) for
every p ∈ Bn. So, g ¹ {n} × Bn is constant equal to sn(k) and (3.1) holds.

To finish the proof of the lemma pick a bn ∈ Bn for each n < ω. Then,
the set S = {〈n, bn〉 ∈ {n}×Bn : n < ω} is a selector for {{n}×Bn : n < ω}.
Let I = [ω × X]<ω. Then I is weakly selective and S ∈ I+. If we identify
2ω×X with P(ω×X), then Q0 can be treated as a prism in P(ω×X). Since
[ω×X]ω is residual in P(ω×X), by Proposition 1.2 we can assume that Q0

is a prism in [ω ×X]ω. So, by Proposition 3.8, there exist a subprism Q of
Q0, a set S0 ∈ [S]ω, and an i < 2 such that g[S0] = {i} for every g ∈ Q.
Define J = {n < ω : 〈n, bn〉 ∈ S0}.

To see that the conclusion of the lemma holds take a g ∈ Q and an
〈n, b〉 ∈ B. Then n ∈ J and b ∈ Bn. So, by (3.1), g(n, b) = g(n, bn) = i,
since 〈n, bn〉 ∈ S0.
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Lemma 3.15 Let X be a countably infinite set and let J ⊆ P(X) be an
ideal containing all singletons and satisfying condition (#) from the definition
of a rich ideal. Then the ideal K = [ω]<ω⊗J also satisfies (#). In particular,
if J is rich, then so is K.

Proof. Let A ∈ K+. Then supp(A) is infinite. Let A = {Aξ : ξ < c} ⊆
[supp(A)]ω be an almost disjoint family. Since J satisfies (#), for every n < ω
there exists an almost disjoint family Bn = {Bn

ξ : ξ < c} ⊆ P((A)n) ∩ J +. If
for every ξ < c we define

Uξ =
⋃
{{n} ×Bn

ξ : n ∈ Aξ},

then the family {Uξ : ξ < c} ⊆ P(A) ∩ K+ works. The other part of the
lemma is consequence of this and of Lemma 3.14.

3.4 An ω1-generated crowded bad point

Definition 3.10 If U and V are ultrafilters, then the Fubini product of U
and V is defined as

U ⊗ V = {A ⊆ ω × ω : {n : (A)n ∈ V} ∈ U}.
Proposition 3.16 (Folklore) If U and V are non-principal ultrafilters in ω
then U ⊗ V is a non-principal ultrafilter which is not a P -point, a Q-point,
or even an ω1-OK point.

Proof. It is easy to see that U ⊗ V is a non-principal ultrafilter. To see
that U ⊗ V cannot be a P -point observe that the set {Lm : m < ω} of all
sections Lm = {〈m,n〉 : n ∈ ω} is a partition of ω×ω into infinite pieces not
in U ⊗ V and that every X ∈ U ⊗ V intersects infiniteley many Lm’s on an
infinite set.

To see that U ⊗ V cannot be a Q-point consider the partial partition
{Pn : n < ω} of ω × ω where Pn = {〈m,n〉 : m ≤ n} for every n < ω. Notice
that

⋃
n<ω Pn ∈ U ⊗V . Let P ⊆ [ω× ω]<ω be a partition of ω× ω such that

{Pn : n < ω} ⊆ P . It is easy to see that there is no X ∈ U ⊗ V such that
|X ∩ P | ≤ 1 for every P ∈ P .

To see that U ⊗V is not an ω1-OK point consider {Vn : n < ω} ⊆ U ⊗ V ,
where Vn =

⋃
m>n Lm. By the way of contradiction, suppose that the se-

quence Ū = 〈Uξ ∈ U ⊗ V : ξ < ω1〉 is OK for {Vn : n < ω}. Then, by the
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pigeon hole principle, there exist an m < ω and an X ∈ [ω1]
ω1 such that

(Uξ)m ∈ V for every ξ ∈ X. Pick ordinals ξ1 < ξ2 < · · · < ξm in X. Since Ū
is OK for {Vn : n < ω} we have that

⋂m
i=1 Uξi

⊆∗ Vm ⊆ ω×ω\Lm. Therefore,
|⋂m

i=1 Uξi
∩ Lm| < ω. But also, (

⋂m
i=1 Uξi

)m =
⋂m

i=1(Uξi
)m ∈ V . This implies

that |(⋂m
i=1 Uξi

) ∩ Lm| = ω, which is a contradiction.

Given f, g ∈ ωω we write g ≤∗ f provided that g(n) ≤ f(n) for all but
finitely many n < ω. We say that an F ⊆ ωω is dominating provided that
for every g ∈ ωω there exists an f ∈ F such that g ≤∗ f . The dominating
number d is defined as the minimum cardinality of a dominating family in
ωω. This and other cardinal invariants have been studied extensively in the
literature. See for example [4] or [1]. It is easy to show that ω1 ≤ d ≤ c and
that this is all that can be said in ZFC about the value of d. For instance,
the continuum hipothesis implies that d = ω1 = c, while Martin’s Axiom +
c > ω1 imply that d = c > ω1. See, for example [24].

In [10, sec. 1.3] Ciesielski and Pawlikowski proved that a weak version of
CPAgame

prism, called CPAcube, implies that cof(N ) = ω1 < c. 5 It is known that
this fact implies that d = ω1.

Also, it is not difficult to prove that d = ω1 implies that for every count-
able infinite set X there is an F ⊆ ([ω1]

<ω)X of cardinality ω1 which is
⊆-dominant, that is, such that

for every g ∈ ([ω1]
<ω) there is an f ∈ F with g(x) ⊆ f(x) for all x ∈ X.

This follows from the fact that ([ω1]
<ω)X =

⋃
α<ω1

([α]<ω)X . This is the form
of d = ω1 which we will use in the next proposition.

Proposition 3.17 Assume d = ω1 and let X and Y be countably infinte
sets. If U and V are ω1-generated ultrafilters on X and Y , respectively, then
their Fubini product U ⊗ V is also ω1-generated.

Proof. Let {Uα : α < ω1} and {Vβ : β < ω1} be the bases for U and V ,
respectively. Since d = ω1, there exists a ⊆-dominant family 〈fγ : γ < ω1〉 ⊆
([ω1]

<ω)X . We claim that the family {Wα,γ : 〈α, γ〉 ∈ ω1 × ω1} ⊆ U ⊗ V ,
where Wα,γ =

⋃ {{x} ×⋂
β∈fγ(x) Vβ : x ∈ Uα}, is a basis for U ⊗V . To check

this, pick an A ∈ U ⊗ V . Then, {x ∈ X : {y : 〈x, y〉 ∈ A} ∈ V} ∈ U . Pick
an α < ω1 such that Uα ⊆ {x ∈ X : {y : 〈x, y〉 ∈ A} ∈ V}. Then, given an

5cof(N ) = min{|A| : A ⊆ N ∀X ∈ N ∃Y ∈ A (X ⊆ Y)}, where N is the null ideal on C.
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x ∈ Uα there exists a βx < ω1 such that Vβx ⊆ {y ∈ Y : 〈x, y〉 ∈ A}. This
implies that {x} × Vβx ⊆ A for every x ∈ Uα.

Consider the function g : X → [ω1]
<ω defined as

g(x) =

{
{βx} if x ∈ Uα

∅ otherwise.

Since 〈fγ : γ < ω1〉 is a ⊆-dominant family, there exists a γ < ω1 such that
g(x) ⊆ fγ(x) for every x ∈ Uα. This implies that βx ∈ fγ(x) and that
{x} ×⋂

β∈fγ(x) Vβ ⊆ A for every x ∈ Uα. Hence, Wα,γ ⊆ A.

Theorem 3.18 CPAgame
prism implies that there exists an ω1-generated crowded

ultrafilter which is not a P -point, a Q-point, or even an ω1-OK point.

Proof. CPAgame
prism implies the existence of an ω1-generated crowded ultra-

filter U on Q, see [9, prop. 4.25]. We will show that U ⊗ U is as desired.
By Proposition 3.16, it is not a P -point, a Q-point, or an ω1-OK point.

Also, since CPAgame
prism implies d = ω1, by Proposition 3.17 the ultrafilter U ⊗U

is ω1-generated by some family B.
To see that U ⊗ U can be treated as crowded, consider Q × Q as the

product of 〈Q, τd〉 and 〈Q, τs〉, where τd is the discrete topology and τs is the
standard topology. Then Q×Q is homeomorphic to Q.

For B ∈ B let B̄ = {x : (B)x ∈ B} ∈ U}. Using Fact 3.6, for every x ∈ B̄
we can choose a subset Bx ∈ Perf(Q) of (B)x. Let B∗ =

⋃{{x}×Bx : x ∈ B̄}.
Then B∗ is a perfect subset of Q×Q. Thus, {B∗ : B ∈ B} is a basis of U ⊗U
of cardinality ω1 formed with perfect subsets of Q×Q.

3.5 A crowded Q-point which is not an ω1-OK

point

Definition 3.11 Let X be a countably infinite set and let J ⊆ P(X) be an
ideal on X. If A,B ∈ J + we write A ¹J B if and only if A \B ∈ J .

Definition 3.12 Let X be a countably infinite set and let J ⊆ P(X) be
an ideal on X. We say that J has the extension property provided that for
every ¹J -decreasing sequence 〈An ∈ J + : n < ω〉 there exists an A ∈ J +

such that A ¹J An for every n < ω.
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Let X and J be as above and let K = [ω]<ω ⊗ J . We will consider a
relation v defined on K+ as

A v B ⇔ supp(A) ⊆∗ supp(B) & (A)n ¹J (B)n ∀n ∈ supp(A) ∩ supp(B).

Note that for A,B ∈ K+

A ⊆ B =⇒ A v B =⇒ A ¹K B

but none of these implications can be reversed. Also, it is not difficult to see
that the relation v is not transitive. Nevertheless, we say that for ξ < ω1

a sequence 〈Uη ∈ K+ : η < ξ〉 is v-decreasing provided Uη v Uζ for every
ζ < η < ξ.

Lemma 3.19 Let X be a countably infinite set, let J ⊆ P(X) be an ideal on
X with the extension property, and let K = [ω]<ω⊗J . Then, for every ξ < ω1

and every v-decreasing sequence 〈Uη ∈ K+ : η < ξ〉 there exists a C ∈ K+

such that C v Uη for every η < ξ. Moreover, the sequence 〈Uη : η ≤ ξ〉 is
v-decreasing for every Uξ ∈ P(C) ∩ K+.

Proof. Let 〈Uη ∈ K+ : η < ξ〉 be a v-decreasing sequence. Since the se-
quence 〈supp(Uη) : η < ξ〉 is in particular ⊆∗-decreasing, we can find an
S ∈ [ω]ω such that S ⊆∗ Uη for every η < ξ. For each m ∈ S consider
the set Im = {η < ξ : m ∈ supp(Uη)}. Then, since J has the extension
property, we can find a Cm ∈ J + such that Cm ¹J (Uη)m for every η ∈ Im.
Put C =

⋃{{m} × Cm : m ∈ S}. Then clearly C v Uη for every η < ξ. The
additional part follows from the fact that U ⊆ C v V implies U v V .

Lemma 3.20 Let X, J , and K be as above. Let 〈Uξ ∈ K+ : ξ < ω1〉 be a
v-decreasing sequence in K+ such that for every g ∈ ω ×X there exists a
ξ < ω1 such that g ¹ Uξ is constant. Then, the family {Uξ : ξ < ω1} forms a
base for a non-principal ultrafilter on ω ×X which is not an ω1-OK point.

Proof. We check first that the family {Uξ : ξ < ω1} has SFIP . So, choose
ξ0 < · · · < ξn < ω1. Since Uξn v · · · v Uξ1 v Uξ0 we can pick an m ∈⋂

i≤n supp(Uξi
). If Im = {ξ < ω1 : m ∈ supp(Aξ)}, then {ξi : i ≤ n} ⊆ Im.

Therefore, (Uξn)m ¹J · · · ¹J (Uξ0)m. This implies that (
⋂

i≤n Uξi
)m ∈ J +.

In particular, (
⋂

i≤n Uξi
)m is infinite and so is

⋂
i≤n Uξi

. Let U be a filter
generated {Uξ : ξ < ω1}.
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To see that U is actually an ultrafilter, pick any A ⊆ ω ×X. Then, there
exists a ξ < ω1 and an i < 2 such that χA ¹ Uξ is constant equal i. If i = 0
then Uξ ⊆ (ω ×X) \ A and (ω × X) \ A ∈ U . If i = 1 then Uξ ⊆ A and
A ∈ U . Therefore, U is an ultrafilter and {Uξ : ξ < ω1} is a base for U .
Observe that U is non-principal because each set in U contains an infinite
set Uξ.

To see that U is not an ω1-OK point consider a sequence 〈Vn ∈ U : n < ω〉,
where Vn =

⋃
i>n({i} × X). Suppose that there exists a 〈Wξ ∈ U : ξ < ω1〉

which is OK for 〈Vn ∈ U : n < ω〉. Since {Uξ : ξ < ω1} is a basis for U , for
every for every ξ < ω1 there exists a Uαξ

⊆ Wξ. This implies that

〈Uαξ
: ξ < ω1〉 is OK for 〈Vn ∈ U : n < ω〉.

By the pigeon hole principle, there exist a T ∈ [ω1]
ω1 and an m < ω such

that m = min(supp(Uαξ
)) for every ξ ∈ T . Hence, T ⊆ Im. Pick any

ordinals αξ0 < · · · < αξm in T . Since 〈Uαξ
: ξ < ω1〉 is OK for 〈Vn ∈ U : < ω〉

we have that
⋂

i≤m Uαξi
⊆∗ Vm. Hence, |(⋂i≤m Uαξi

) ∩ ({m} ×X)| < ω by
the definition of Vm. On the other hand, {αξi

: i ≤ m} ⊆ Im. Therefore,
(Uαξ0

)m ¹J · · · ¹J (Uαξm
)m. This implies that |(⋂i≤m Uαξi

)m| = ω. So,
|(⋂i≤m Uαξi

) ∩ ({m} ×X)| = ω. This contradiction indicates that U cannot
be an ω1-OK point.

Let X, J , and K be as before and let D ⊆ J + be dense in the sense that
for every A ∈ J + there exists a D ∈ D such that D ⊆ A. Then, the family
D∗ ⊆ K+ consisting of the sets of the form

⋃{{n} ×Dn : n ∈ I} is dense in
K+, where I ∈ [ω]ω and Dn ∈ D for every n ∈ I. Recall also that Pω×X is
the space of all partitions of ω×X into finite pieces, as defined in Section 3.

Theorem 3.21 Let X be a countably infinite set, let J ⊆ P(X) be an ideal
with the extension property, and let D ⊆ J + be dense. If J is prism-friendly
and Q-like and K = [ω]<ω ⊗ J , then CPAgame

prism implies that there exists an
ω1-generated Q-point U on ω×X which is not an ω1-OK point and such that
U ∩ D∗ is a basis for U .

Proof. We construct a v-decreasing sequence 〈Uξ ∈ K+ ∩ D∗ : ξ < ω1〉 such
that:

(i) For every g ∈ 2ω×X there exists a ξ < ω1 such that g ¹ Uξ is constant.

(ii) For every z ∈ Pω×X there exists a ξ < ω1 such that |z(k)∩Uξ| ≤ 1 for
every k ∈ ω.
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If this construction is possible, then, by Lemma 3.19, {Uξ ∈ D∗ : ξ < ω1}
is a basis for a non-principal ultrafilter U on ω ×X which is not an ω1-OK
point. To see that U is a Q-point pick an arbitrary z ∈ Pω×X . Then, by
condition (ii), there exists a ξ < ω1 such that |z(k)∩Uξ| ≤ 1 for every k < ω.
Therefore, U is an ω1-generated Q-point.

Let Y = 2ω×X∪Pω×X and consider it with the topology τ formed with all
sets A ⊆ Y such that A∩ 2ω×X and A∩Pω×X are open in 2ω×X and Pω×X ,
respectively. Then 〈Y , τ〉 is a Polish space. Note that, by Lemmas 3.13
and 3.14, the ideal K is Q-like and prism-friendly. For a prism P in Y and
U ∈ K+ we choose a subprism Q(U, P ) of P and B(U, P ) ∈ P(U) ∩ D∗ as
follows.

• If U ∩ 2ω×X 6= ∅, then we can choose a subprism P0 ⊆ 2ω×X of P . The
choice of P0 is obvious if P is a singleton; otherwise it follows from
Proposition 1.2. Then Q(U, P ) is a subprism of P0 such that Q(U, P )
and B(U, P ) ∈ P(U) ∩ K+ satisfy condition (•) from the definition of
the prism-friendly ideal.

• If U ∩ 2ω×X = ∅, then P is a prism in Pω×X . Then, by Lemma 3.11,
there exist a subprism Q(U, P ) of P and a B(U, P ) ∈ P(U) ∩ K+ such
that |z(k) ∩B(U, P )| ≤ 1 for every z ∈ Q(U, P ) and k < ω.

We can also assume that B(U, P ) ∈ D∗, since D∗ is dense in K+.
Also, for ξ < ω1 and a v-decreasing sequence 〈Uη ∈ K+ : η < ξ〉 let Cξ =

C(〈Uη : η < ξ〉) be such that Cξ v Uη for every η < ξ. Its existence follows
from Lemma 3.19. Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(C(〈Uη : η < ξ〉), Pξ),

where the Uη’s are defined inductively by Uη = B(C(〈Uζ : ζ < η〉), Pη).
By CPAgame

prism, the strategy S is not a winning strategy for Player II.
So, there exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which
Player II loses. Thus, Y =

⋃
ξ<ω1

Qξ. Let 〈Uξ ∈ D∗ : ξ < ω1〉 ⊆ K+ be the
sequence created in this game. This sequence is v-decreasing by construction
and Lemma 3.19. By the observations made before we only need to check
that 〈Uξ : ξ < ω1〉 satisfy conditions (i) and (ii).

If g ∈ 2ω×X , then there exists a ξ < ω1 such that g ∈ Qξ. So, Qξ ⊆ 2ω×X

and, by the construction, g ¹ Uξ is constant. This proves (i). Similarly, if
z ∈ Pω×X , then there exists a ξ < ω1 such that z ∈ Qξ. Hence, Qξ ⊆ Pω×X

and, by the construction, |z(k)∩Uξ| ≤ 1 for every k < ω. This proves (ii).

35



Corollary 3.22 CPAgame
prism implies that there exists an ω1-generated crowded

Q-point which is not an ω1-OK point

Proof. Consider X = ω × Q with the product topology, where ω has the
discrete topology and Q has the subspace topology inherited from R. Then
X is homeomorphic to Q. We will find an ideal J ⊆ P(X) to which we will
apply Theorem 3.21.

Let J = [ω]<ω ⊗ IS. It is clear that J contains all singletons. Also,
J is prism-friendly by Lemmas 3.12 and 3.14 and Q-like by Lemmas 3.12
and 3.13. To see that J has the extension property pick a ¹J -decreasing
sequence 〈An ∈ J + : n < ω〉. By induction construct an increasing sequence
〈nk : k < ω〉 such that nk ∈ supp(Ak)\ supp

(⋃
i<k(Ak \ Ai)

)
. The choice can

be made, since the set supp
(⋃

i<k(Ak \ Ai)
)

is finite, as
⋃

i<k(Ak \ Ai) ∈ J .
The choice of nk gives also

(⋃
i<k(Ak \ Ai)

)
nk
∈ IS. Thus,

(⋂
i≤k Ai

)
nk

/∈ IS.

Put B =
⋃ {

{nk} ×
(⋂

i≤k Ai

)
nk

: k < ω
}

. Then B ∈ J + and B ¹J An for
every n < ω.

Since D̄ = Perf(Q) is dense in (IS)+, the family D = D̄∗ is dense in J +.
Applying Theorem 3.21 to J and D, we can find an ω1-generated Q-point
U on ω ×X which is not an ω1-OK point and such that U ∩ D∗ contains a
basis for U . Since ω × X is homeomorphic to Q and D∗ consists of perfect
set in ω ×X, it follows that U is crowded.

3.6 Crowded ω1-generated ω1-OK points

In this section we prove that the axiom CPAgame
prism implies the existence of an

ω1-OK point which is not a P -point. For this, we follow the schema used in
[23] for the construction of such an ultrafilter in the model of ZFC obtained
by adding Sacks reals side-by-side. Since that proof uses CH in the ground
model, we have to modify things a bit to make it work in the context of
CPAgame

prism. One possiblity for avoiding the use of CH is to replace it with
some weaker principle consistent with CPAgame

prism like, for instance, d = ω1.
Let Γ denote the set of all nonzero limit ordinals below ω1. The following
fact is a simple generalization of the remark above Proposition 3.17.

Fact 3.23 (d = ω1) There exist a sequence 〈gδ : δ < ω1〉 of functions from ω
into [ω1]

<ω and a partition {Sδ ∈ [ω1]
ω1 : δ < ω1} of Γ such that:
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• For every h : ω → ω1 there is a δ < ω1 such that h(n) ∈ gδ(n) for every
n < ω.

• ⋃
rang(gδ) = min(Sδ) for every δ < ω1.

Fix a countably infinite set X and put P = {{m} ×X : m < ω}. Then,
P is a partition of ω × X into infinitely many infinite pieces. The idea of
the proof is to find a sequence 〈Uα : α < ω1〉 that forms a base for a non-
principal ultrafilter U on ω ×X such that every Uα has infinite intersection
with infinitely many members of P and, for each δ < ω1,

〈Uα : α ∈ Sδ〉 is OK for





⋂

η∈gδ(n)

Uη : n < ω



 .

To see that such an U is an ω1-OK point pick 〈Vn : n < ω〉 ∈ (U)ω. Since the
sequence 〈Uα : α < ω1〉 is a basis for U , for every n < ω there is a ξn < ω1

such that Uξn ⊆ Vn. Therefore, there exists a δ < ω1 such that ξn ∈ gδ(n)
for every n < ω. Then 〈Uα : α ∈ Sδ〉 is OK for 〈Vn : n < ω〉 since for any
sequence α0 < · · · < αn of elements in Sδ we have:

⋂
i≤n

Uαi
⊆∗

⋂

η∈gδ(n)

Uη ⊆ Uξn ⊆ Vn.

Observe that U cannot be a P -point because each Uα intersects infinitely
many members of P on an infinite set.

Let us start with fixing a rich ideal J ⊆ P(X) and a dense D ⊆ J +. We
will consider the ideal K = [ω]<ω ⊗ J on ω × X and the set D∗ ⊆ K+ as
defined in Section 3.5. We also fix, for each ξ ∈ Γ, an enumeration {ξi : i < ω}
of ξ.

Let T be the set of triples 〈I, f, B〉 satisfying the following requirements:

• I is an infinite subset of ω,

• f ∈ ∏
m<ω(P(X) ∩ D), and

• B ∈ ∏
m∈ω(P(f(m)) ∩ D)ω1 such that every B(m) is a sequence of

almost disjoint sets.

37



If ξ ≤ ω1 and 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉, the sequence 〈Uη : η < ξ〉 associated
with it is defined by

Uη =
⋃
{{m} × fη(m) : m ∈ Iη}.

Note that each Uη is in D∗.
To prove that the resulting ultrafilter U in our construction is in fact an

ω1-OK point we will consider for every δ < ω1, η < ξ, and m < ω the sets
K(η, m) = {ζ < η : fη(m) ⊆ fζ(m)}, the numbers kδ(η,m) = |K(η,m)∩ Sδ|,
and the functions lδ defined by:

lδ(η, m) =





∞ if
⋃

rang(gδ) ⊆ K(η, m)

−1 if gδ(0) 6⊆ K(η, m)

max{l < ω :
⋃

gδ[l + 1] ⊆ K(η, m)} otherwise.

Definition 3.13 For ξ ≤ ω1 a sequence 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉 is good if:

(a) For every ζ < η < ξ and m < ω, either fζ(m)∩ fη(m) is finite, or there
exists a γ ≤ η such that fη(m) ⊆ Bζ(m)(γ) ⊆ fζ(m).

(b) For every 0 < η < ξ and m < ω there exists a ζ < η such that
fη(m) ⊆ Bζ(m)(η).

(c) If η < ξ is limit and {mi : i < ω} is the increasing enumeration of Iη,
then

mi ∈
⋂
j≤i

Iηj
and fη(mi) ⊆

⋂
j≤i

fηj
(mi),

where {ηj : j < ω} is our fixed enumeration of η.

(d) fη(m) = B0(m)(η) for every m ∈ ω \ Iη.

(e) If η + 1 < ξ, then Iη+1 ⊆ Iη and fη+1(m) ⊆ Bη(m)(η + 1) ⊆ fη(m) for
every m ∈ Iη+1.

(f) If δ < ω1, η < ξ, and η ∈ Sδ, then lδ(η, m) > kδ(η, m) for every m ∈ Iη.

(g) If δ < ω1,

η < ξ, and
⋃

rang(gδ) ⊆ η, then

lim
m∈Iη
m→∞

(lδ(η, m)− kδ(η,m)) = ∞.
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Remark 3.24 It follows from (c) and (e) that if ζ < η < ξ, then Iη ⊆∗ Iζ .

Remark 3.25 It is also easy to check that if ξ ≤ ω1 is a limit ordinal, then
the sequence 〈〈Iζ , fζ , Bζ〉 ∈ T : ζ < ξ〉 is good if and only if the sequence
〈〈Iζ , fζ , Bζ〉 ∈ T : ζ < η〉 is good for every η < ξ.

Remark 3.26 It is not difficult to see that

if α < β < ξ, then fβ(m) ⊆ fα(m) for all but finitely many m ∈ Iβ. (3.3)

If β ∈ Γ this follows from (c). If Γ ∩ (α, β] = ∅, then it follows from (e). If
Γ ∩ (α, β] 6= ∅, then there exist a maximal γ ∈ Γ ∩ (α, β] and, by the above
two cases, fβ(m) ⊆ fγ(m) ⊆ fα(m) for all but finitely many m ∈ Iβ.

Remark 3.27 For every 0 < η < ξ and m < ω there exists a γ ≤ η such
that fη(m) ⊆ B0(m)(γ). This follows from condition (b), since every strictly
decreasing sequence of ordinals is finite.

The dual filter of an ideal K on a set ω ×X is the family FK defined as
FK = {(ω × X) \ A : A ∈ K}. The importance of the definition of a good
sequence derives from the following lemma.

Lemma 3.28 Let X be a countably infinite set, J ⊆ P(X) a rich ideal in X,
D ⊆ J + a dense family, and let K = [ω]<ω ⊗J . If 〈〈Iξ, fξ, Bξ〉 ∈ T : ξ < ω1〉
is a good sequence such that for every g ∈ 2ω×X there exists a ξ < ω1 such
that g ¹ Uξ is constant, then 〈Uξ ∈ D∗ : ξ < ω1〉 forms a base for a non-
principal ultrafilter on ω×X extending FK which is an ω1-OK point but not
a P -point.

Proof. The fact that {Uξ : ξ < ω1} ⊆ D∗ follows immediately from the
definition of Uη and D∗.

Next we prove that {Uξ : ξ < ω1} forms a base for a non-principal ultra-
filter U on ω ×X extending the filter FK. Given ξ0 < · · · < ξn pick a γ ∈ Γ
with γ > ξn. By (c), we have that almost every m ∈ Iγ is in

⋂
i≤n Iξi

and
that fγ(m) ⊆ ⋂

i≤n fξi
(m). Therefore,

⋂
i≤n Uξi

∈ K+ and {Uξ : ξ < ω1} can

be extended to a proper filter U on ω ×X. If A ⊆ ω ×X, then χA ∈ 2ω×X

and there exist a ξ < ω1 and an i < 2 such that χA ¹ Uξ is constant equal
i. If i = 1 then Uξ ⊆ A and A ∈ U . If i = 0 then Uξ ⊆ (ω ×X) \ A so
(ω ×X) \A ∈ U . This proves that U is an ultrafilter and that {Uξ : ξ < ω1}
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is a base for U . Since no A ∈ K contains any Uξ, it follows that U extends
FK. In particular, U is non-principal.

To see that U is not a P -point notice that every Uξ intersects infinitely
many pieces of the partition P = {{m} ×X : m < ω} on an infinite set and
so does every V ∈ U .

To prove that U is an ω1-OK point it is enough to prove that for every
δ < ω1

〈Uα : α ∈ Sδ〉 is OK for





⋂

η∈gδ(n)

Uη : n < ω



 . (3.4)

Pick δ < ω1 and ξ0 < · · · < ξn in Sδ. First, we prove that for every m ∈ Iξn

either
⋂
i≤n

fξi
(m) is finite, or

⋂
i≤n

fξi
(m) ⊆

⋂

η∈gδ(n)

fη(m). (3.5)

Indeed, assume that
⋂

i≤n fξi
(m) is infinite. Then, by part (a) of Defini-

tion 3.13, ξi ∈ K(ξn,m) ∩ Sδ for each i ≤ n− 1. Therefore, kδ(ξn,m) ≥ n
and lδ(ξn,m) ≥ n + 1 by Definition 3.13(f). In particular, gδ(n) ⊆ K(ξn,m).
Hence, by the definition of K(η, m),

⋂
i≤n

fξi
(m) ⊆ fξn(m) ⊆

⋂

η∈K(ξn,m)

fη(m) ⊆
⋂

η∈gδ(n)

fη(m).

Also, Definition 3.13(c) implies that fξn(m) ⊆ ⋂
η∈gδ(n) fη(m) for all but

finitely many m ∈ Iξn . Thus, the set s =
{

m ∈ Iξn :
⋂

i≤n fξi
(m) 6⊆ ⋂

η∈gδ(n) fη(m)
}
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is finite. Moreover, by (3.5),
⋂

i≤n fξi
(m) is finite for every m ∈ s. So,

⋂
i≤n

Uξi
=

⋃

m∈T
i≤n Iξi

(
{m} ×

⋂
i≤n

fξi
(m)

)

⊆
⋃

m∈Iξn

(
{m} ×

⋂
i≤n

fξi
(m)

)

=
⋃
m∈s

(
{m} ×

⋂
i≤n

fξi
(m)

)
∪

⋃

m∈Iξn\s

(
{m} ×

⋂
i≤n

fξi
(m)

)

⊆∗
⋃

m∈Iξn\s


{m} ×

⋂

η∈gδ(n)

fξi
(m)




⊆
⋃

m∈Iξn


{m} ×

⋂

η∈gδ(n)

fξi
(m)


 =

⋃

η∈gδ(n)

Uη,

which proves (3.4). So U is an ω1-OK point.

Lemma 3.29 Let 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉 be a sequence satisfying condi-
tion (a) from Definition 3.13 and let α < β < ξ and m < ω be such that
fβ(m) ⊆ Bα(m)(β). Then K(β, m) = K(α, m) ∪ {α}. In particular, if the
sequence satisfies conditions (a) and (b) from Definition 3.13, then the set
K(η, m) is finite for every η < ξ and m < ω.

Proof. If η ∈ K(β, m), then η < β and fβ(m) ⊆ fη(m). Also, since
fβ(m) ⊆ Bα(m)(β) ⊆ fα(m) we have that |fη(m) ∩ fα(m)| = ω. If α < η,
then, by condition (a), there exists a γ ≤ η such that fη(m) ⊆ Bα(m)(γ);
therefore fη(m) ⊆ Bα(m)(γ) ∩Bα(m)(β), which is impossible. Thus, η ≤ α.
If η < α, then, again by (a), there is a γ ≤ α such that fα(m) ⊆ Bη(m)(γ).
Since Bη(m)(γ) ⊆ fη(m), we conclude that fα(m) ⊆ fη(m). Therefore,
η ∈ K(α, m) and this proves that K(β,m) ⊆ K(α,m) ∪ {α}.

Since fβ(m) ⊆ Bα(m)(β) ⊆ fα(m) we have that α ∈ K(β,m). If η ∈
K(α,m), then fα(m) ⊆ fη(m). But since fβ(m) ⊆ Bα(m)(β) ⊆ fα(m) we
have that fβ(m) ⊆ fη(m). Therefore, η ∈ K(β,m) and this proves that
K(α,m) ∪ {α} ⊆ K(β, m). Thus, K(β,m) = K(α, m) ∪ {α}.
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Since condition (b) implies that for every 0 < η < ξ and m < ω there
exists a ζ < η such that fη(m) ⊆ Bζ(m)(η), we have that for every 0 < η < ξ
there exists a ζ < η such that K(η, m) = K(ζ,m) ∪ {ζ}. Since K(0,m) = ∅
for every m < ω, we can prove, by induction on η, that K(η, m) is finite for
every η < ξ and m < ω.

Lemma 3.30 If ξ ∈ Γ and 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉 is good, then there
exists an 〈Iξ, fξ, Bξ〉 ∈ T such that the sequence 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 is
good.

Proof. Let {ξj : j < ω} be the fixed enumeration of ξ. Since Sδ’s are
pairwise disjoint, the set {δ < ω1 : min(Sδ) < ξ} is countable and it can be
enumerated as {δi : i < ω}. Let δ∗ < ω1 be such that ξ ∈ Sδ∗ . We define
Iξ = {mi : i < ω} inductively. Suppose that mj has already been defined for
every j < i. Put

εi = max(gδ∗(0) ∪ gδ∗(0) ∪ {ξj : j ≤ i} ∪ {min(Sδj
) : j ≤ i}) + 1 < ξ.

Note that εi < ξ since Remark 3.24 implies that Iεi
⊆∗ ⋂

j≤i Iξj
. Thus, we

can pick an mi ∈ Iεi
∩⋂

j≤i Iξj
so that:

(i) mi > mj for every j < i,

(ii) lδj
(εi,mi)− kδj

(εi,mi) > i for every j ≤ i, and

(iii) fεi
(mi) ⊆

⋂
j≤i fξj

(mi) ∩
⋂{fη(mi) : η ∈ gδ∗(0) ∪ gδ∗(1)}.

Condition (ii) can be achieved since
⋃

rang(gδj
) ⊆ min(Sδj

) < εi < ξ and
{〈Iη, fη, Bη〉 : η < ξ} is good, so, by (g),

lim
m∈Iεi
m→∞

(lδj
(εi,m)− kδj

(εi,m)) = ∞

for every j ≤ i. Condition (iii) can be ensured by Remark 3.26, since ξj < εi

for j ≤ i and η < εi for all η ∈ gδ∗(0) ∪ gδ∗(1). This completes the inductive
definition of Iξ. Define fξ : ω → D as

fξ(m) =





Bεi
(mi)(ξ) if m = mi ∈ Iξ

B0(m)(ξ) otherwise.
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The Bξ can be defined by taking for each m < ω an arbitrary ω1-sequence
of almost disjoint sets in P(fξ(m)) ∩ D. This completes the definition of
〈Iξ, fξ, Bξ〉.

To make sure that (a) holds it is enough to check it only for the pair
〈η, ξ〉 in place of 〈ζ, η〉. So, choose an η < ξ and m < ω. We need to
show that either fξ(m) ∩ fη(m) is finite, or there exists a γ ≤ ξ such that
fξ(m) ⊆ Bη(m)(γ). We will consider several cases.

m /∈ Iξ: We will consider here two subcases.

η = 0: Then fξ(m) = B0(m)(ξ) = Bη(m)(γ) for γ = ξ.

η > 0: Apply Remark 3.27 to find γ ≤ η such that fη(m) ⊆ B0(m)(γ).
Since fξ(m) = B0(m)(ξ), we have that |fξ(m) ∩ fη(m)| < ω.

m = mi ∈ Iξ: We will consider here three subcases.

εi < η: We will show that |fξ(m) ∩ fη(m)| < ω. So, by way of contradic-
tion, assume that |fξ(m) ∩ fη(m)| = ω. Therefore, the sets

fξ(m)∩ fη(m) = Bεi
(m)(ξ)∩ fη(m) ⊆ fεi

(m)∩ fη(m) are infinite.

So, by (a), there exists a γ ≤ η such that fη(m) ⊆ Bεi
(m)(γ).

Thus, Bεi
(m)(ξ)∩Bεi

(m)(γ) = fξ(m)∩Bεi
(m)(γ) ⊇ fξ(m)∩fη(m)

is infinite, which is impossible, as γ ≤ η < ξ. This implies that
|fξ(m) ∩ fη(m)| < ω.

εi > η: If fεi
(m)∩fη(m) is finite then so is fξ(m)∩fη(m) ⊆ fεi

(m)∩fη(m).
Otherwise, by (a), there is a γ ≤ εi such that fεi

(m) ⊆ Bη(m)(γ).
So, fξ(m) = Bεi

(m)(ξ) ⊆ fεi
(m) ⊆ Bη(m)(γ).

εi = η: Clearly fξ(m) = Bεi
(m)(ξ) = Bη(m)(γ) for γ = ξ.

Conditions (b), (c), and (d) are immediate from the definition of fξ.
Condition (e) holds because 〈〈Iη, fη, Bη〉 : η < ξ〉 is good and ξ is a limit

ordinal.
To prove (f) and (g) first observe that, by Lemma 3.29, for every i < ω we

have K(ξ, mi) = K(εi,mi) ∪ {εi}. This implies that lδj
(εi,mi) ≤ lδj

(ξ,mi)
and kδj

(ξ,mi) = kδj
(εi,mi) for every j ≤ i, because εi is a succesor ordinal.

In particular, for every j ≤ i we have

lδj
(ξ,mi)− kδj

(ξ, mi) ≥ lδj
(εi,mi)− kδj

(εi,mi). (3.6)
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To see (f) fix an m = mi ∈ Iξ. We need to show that lδ∗(ξ, m) > kδ∗(ξ,m).
First assume that ξ = min(Sδ∗). Then, K(ξ, m) ⊆ ξ is disjoint with Sδ∗ , so
kδ∗(ξ,m) = |K(ξ, m) ∩ Sδ∗| = 0. On the other hand, condition (iii) implies
that

⋃
gδ∗ [2] ⊆ K(ξ,m). So, lδ∗(ξ, m) ≥ 1 > 0 = kδ∗(ξ,m). Next, consider

the case when ξ > min(Sδ∗). Then, δ∗ = δi for some i < ω. Therefore, (ii)
and (3.6) imply that

lδ∗(ξ, mi)− kδ∗(ξ, mi) ≥ lδi
(εi,mi)− kδi

(εi,mi) > i ≥ 0.

Thus (f) holds.
To see (g) fix a δ < ω1 such that

⋃
rang(gδ) ⊆ ξ. We need to show that

limi→∞(lδ(ξ, mi) − kδ(ξ,mi)) = ∞. First assume that ξ > min(Sδ). Then
δ = δj for some j < ω. So, by (ii) and (3.6), we have that for all i ≥ j

lδ(ξ,mi)− kδ(ξ,mi) = lδj
(ξ, mi)− kδj

(ξ, mi) ≥ lδj
(εi,mi)− kδj

(εi, mi) ≥ i.

This ensures that (g) holds. Finally, assume that ξ ≤ min(Sδ). Then, for
every m < ω, we have K(ξ, m) ∩ Sδ = ∅ and so, kδ(ξ,m) = 0. Thus, in this
case it is enough to show that limi→∞ lδ(ξ, mi) = ∞. But for every l < ω
we have

⋃
gδ[l + 1] ⊆ ξ = {ξj : j < ω}. Thus, there exists an i0 < ω such

that
⋃

gδ[l + 1] ⊆ ξ = {ξj : j ≤ i0}. Since, by (iii), for every i ≥ i0 we have
{ξj : j ≤ i} ⊆ K(ξ, mi) we conclude that

⋃
gδ[l + 1] ⊆ K(ξ,mi) for every

i ≥ i0. Thus, lδ(ξ, mi) ≥ l for every i ≥ i0 and so limi→∞ lδ(ξ, mi) = ∞.

Lemma 3.31 Let 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 be a good sequence, I ∈ [Iξ]
ω,

and let 〈Dm ∈ P(Bξ(m)(ξ + 1)) ∩ D : m ∈ I〉 be arbitrary. Then, the se-
quence 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ + 1〉 is good, where 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T is
defined as

(i) Iξ+1 = I,

(ii) fξ+1(m) =





Dm if m ∈ Iξ+1

B0(m)(ξ + 1) otherwise,

(iii) Bξ+1(m) ∈ (P(fξ+1(m)) ∩ D)ω1 is any almost disjoint sequence for ev-
ery m < ω.

Proof. To show that (a) holds it is enough to check it only for the pair
〈η, ξ + 1〉 in place of 〈ζ, η〉. So, choose an η < ξ + 1 and m < ω. We need to
show that either fξ+1(m) ∩ fη(m) is finite, or there exists a γ ≤ ξ + 1 such
that fξ+1(m) ⊆ Bη(m)(γ). We consider several cases.
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m /∈ Iξ+1: We will consider two subcases.

η = 0: Then fξ+1(m) = B0(m)(ξ + 1) = Bη(m)(γ) for γ = ξ + 1.

η > 0: Apply Remark 3.27 to find a γ ≤ η such that fη(m) ⊆∗ B0(m)(γ).
Since fξ+1(m) = B0(m)(ξ+1), we have that |fξ+1(m)∩fη(m)| < ω.

m ∈ Iξ+1: We compare η with ξ.

η < ξ: By (a) either |fξ(m) ∩ fη(m)| < ω or there exists a γ ≤ ξ

such that fξ(m) ⊆∗ Bη(m)(γ). Since

fξ+1(m) ⊆ Bξ(m)(ξ + 1) ⊆ fξ(m) we have that

|fξ+1(m) ∩ fη(m)| < ω or fξ+1(m) ⊆ Bη(m)(γ).

η = ξ: Clearly fξ+1(m) = Dm ⊆ Bξ(m)(ξ + 1) = Bη(m)(γ) for γ = ξ + 1.

This proves that (a) holds.
Conditions (b), (d), and (e) are obvious by the definition of fξ+1. Condi-

tions (c) and (f) hold, since there are no new limit ordinals η < ξ + 1.
To see that (g) holds take a δ < ω1 such that

⋃
rang(gδ) ⊆ ξ+1. Then also⋃

rang(gδ) ⊆ ξ since, by Fact 3.23,
⋃

rang(gδ) = min(Sδ) is a limit ordinal.
Thus, lim m∈Iξ

m→∞
(lδ(ξ, m) − kδ(ξ, m)) = ∞. Also, by Lemma 3.29 and the

definition of fξ+1(m) we have K(ξ+1,m) = K(ξ, m)∪{ξ} for every m ∈ Iξ+1.
This implies that kδ(ξ + 1,m) ≤ kδ(ξ, m) + 1 and lδ(ξ,m) ≤ lδ(ξ + 1,m) for
every m ∈ Iξ+1. So, lδ(ξ + 1,m) − kδ(ξ + 1,m) ≥ lδ(ξ, m)− kδ(ξ,m)− 1.
Since Iξ+1 ⊆ Iξ is infinite, we have

lim
m∈Iξ+1
m→∞

(lδ(ξ + 1,m)− kδ(ξ + 1,m)) ≥ lim
m∈Iξ
m→∞

(lδ(ξ,m)− kδ( xi,m)− 1) = ∞.

So, (h) holds.

Corollary 3.32 Let 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 be good. If P is a prism in
2ω×X , then there exists an 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T , a suprism Q of P , and an
i < 2 such that

(i) 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉 is good and

(ii) g ¹ Uξ+1 is constant equal to i for every g ∈ Q.
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Proof. Apply Lemma 3.14 to the prism P , the set Iξ, and the family
{Bξ(m)(ξ + 1): m ∈ Iξ} to find a subprism Q of P , a set Iξ+1 ∈ [Iξ]

ω, a
sequence 〈Bm ∈ P(B(m)(ξ + 1)) ∩ J + : m ∈ Iξ+1〉, and an i < 2 such that
g ¹ B is constant equal to i, where B =

⋃{{m}×Bm : m ∈ Iξ+1}. For every
m ∈ Iξ+1 choose Dm ∈ P(Bm) ∩ D. Then, if we define fξ+1 and Bξ+1 as in
Lemma 3.31, 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉 is good and g ¹ Uξ+1 is constant equal
to i.

Corollary 3.33 Let X be a countably infinite set, J ⊆ P(X) a Q-like ideal
on X, 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 be good, and P be a prism on Pω×X . Then,
there exists a 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T and a subprism Q of P such that

(i) 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉 is good and

(ii) |z(k) ∩ Uξ+1| ≤ 1 for every z ∈ Q and k < ω.

Proof. Let A =
⋃{{m} × Bξ(m)(ξ + 1): m ∈ Iξ}. Then A ∈ K+ and, by

Lemma 3.13, K is Q-like. So, by Lemma 3.11, there is a subprism Q of P
and a B ∈ P(A) ∩ K+ such that |z(k) ∩ B| ≤ 1 for every z ∈ Q and k < ω.
Let Iξ+1 = supp(B) ⊆ Iξ and for every m ∈ Iξ+1 choose Dm ∈ P((B)m)∩D.
Then, if we define fξ+1 and Bξ+1 as in Lemma 3.31, 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉
is good and |z(k) ∩ Uξ+1| ≤ 1 for every z ∈ Q and k < ω.

Theorem 3.34 Let X be a countably infinite set, J ⊆ P(X) be a rich ideal,
let D ⊆ J + be a dense family, and put K = [ω]<ω ⊗ J . Then, CPAgame

prism

implies that there exists an ω1-generated ω1-OK point extending FK with a
basis {Uξ : ξ < ω1} ⊆ D∗ which is not a P -point.

Proof. To define a triple 〈I0, f0, B0〉 put I0 = ω, for every m < ω define
f0(m) = X, and let B0(m) = 〈B0(m)(γ) : γ < ω1〉 be an arbitrary ω1-
sequence of almost disjoint sets in P(f0(m)) ∩ D.

For a good sequence 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 and a prism P in 2ω×X let
us define a subprism Q(〈〈Iη, fη, Bη〉 : η ≤ ξ〉, P ) = Q of P and the triple
T (〈〈Iη, fη, Bη〉 : η ≤ ξ〉, P ) = 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T as in Corollary 3.32. We
define a strategy S for Player II in the game GAMEprism(2ω×X) as:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(〈〈Iη, fη, Bη〉 : η ≤ ξ〉, Pξ),

where 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 is a good sequence defined by induction on η ≤ ξ
as follows. Assume that 〈〈Iζ , fζ , Bζ〉 : ζ < η〉 is already defined.
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If η = 0, then 〈Iη, fη, Bη〉 = 〈I0, f0, B0〉 is defined as above.
If η = ζ + 1, then we put 〈Iη, fη, Bη〉 = T (〈〈Iδ, fδ, Bδ〉 : δ ≤ ζ〉, Pζ).
If η ∈ Γ, then 〈Iη, fη, Bη〉 is found using Lemma 3.30.

Notice that the sequence 〈〈Iζ , fζ , Bζ〉 : ζ < η〉 is good by the inductive hy-
pothesis and Remark 3.25.

By CPAgame
prism strategy S is not a winning strategy for Player II. So, there

exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S for which Player II
loses, this is, 2ω×X =

⋃
ξ<ω1

Qξ. If 〈〈Iξ, fξ, Bξ〉 ∈ T : ξ < ω1〉 is the sequence
created when Player II uses strategy S, then this sequence is good by con-
struction. Application of Lemma 3.28 to this sequence finishes the proof.

Theorem 3.35 CPAgame
prism implies that there exists an ω1-generated, crowded

ω1-OK point on Q which is neither a P -point nor a Q-point.

Proof. The idea is to apply Theorem 3.34 to an apropriate ideal to get
a crowded ultrafilter which is not a Q-point. Consider X = Q × ω with a
natural product topology. Then, X is homeomorphic to Q. For every m < ω
put Pm = {n < ω : 2m − 1 ≤ n < 2m+1 − 1}. Then {Pm : m < ω} is a
partition of ω and |Pm| = 2m. For A ⊆ Q× ω put

NA(m) = max{k < ω : ∃ U ∈ I+
S ∃ P ∈ [Pm]k U × P ⊆ A}

and define J ⊆ P(Q× ω) as

J = {A ⊆ Q× ω : limm→∞NA(m) < ∞}.
To see that J is closed under finite unions notice first that

NA∪B(m) ≤ NA(m) + NB(m) for every m < ω and A,B ⊆ Q× ω.

Indeed, take a P ⊆ Pm of cardinality NA∪B(m) and U ∈ I+
S such that

U×P ⊆ A∪B. Let h : U×P → 2 be a characteristic function of A∩(U×P )
and let ϕ : U → 2P be defined by ϕ(u)(p) = h(u, p). Since 2P is finite, there
exists a g ∈ 2P such that V = ϕ−1(g) belongs to I+

S . Let PA = g−1(1) and
PB = g−1(0). Then V ×PA ⊆ A and V ×PB ⊆ B. Therefore, NA(m) ≥ |PA|
and NB(m) ≥ |PB|. So, NA∪B(m) = |P | = |PA|+ |PB| ≤ NA(m) + NB(m).

The above proved inequality easily implies that

limm→∞NA∪B(m) ≤ limm→∞NA(m) + limm→∞NB(m)
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for every and A,B ⊆ Q × ω. Thus, J is closed under finite unions. Since
it clearly is closed also under subsets, we can conclude that J is an ideal on
Q× ω containing all the singletons. We will prove that

the ideal J is rich. (3.7)

First notice how (3.7) implies the theorem. Since Perf(Q) is dense in
I+

S , it is easy to see that D = Perf(Q × ω) is dense in J +. Let U be
an ultrafilter on ω × X from Theorem 3.34 applied to J and D. Since
X = Q × ω is homeomorphic to Q, so is ω × X and D∗ contains only its
perfect subsets. Therefore, U can be considered as crowded. Moreover, a
partition P = {{n} × ({q} × Pm) : q ∈ Q & n,m < ω} of ω ×X into finite
sets does not admit partial selector in U , since each such partial selector
belongs to K = [ω]<ω × J . Thus, U is not a Q-point.

To prove property (3.7) fix an A ∈ J +. Then there exist 〈mk ∈ ω : k < ω〉,
{Uk ∈ I+

S : k < ω}, and 〈Qk ⊆ Pmk
: k < ω〉 such that Uk × Qk ⊆ A and

|Qk| > k · 22k
for every k < ω.

First we prove condition (#) from Definition 3.8. Since, by Lemma 3.12,
the ideal IS on Q is rich, for every k < ω there exists an almost disjoint
family {Uk

f : f ∈ 2ω} ⊆ P(Uk) ∩ I+
S . Also, for every k < ω there exists

a pairwise disjoint family {As : s ∈ 2k} ⊆ [Qk]
k. For f ∈ 2ω define Af =⋃ {Uk

f × Af¹k : k < ω}. Then, {Af : f ∈ 2ω} ⊆ P(A) ∩ J + is almost disjoint,
proving (#).

To prove that J is prism-friendly let P be a prism in 2X . If P is singleton
then condition (•) is clearly satisfied. So, assume that P ∈ Perf(2X) and let
f be a witness function for it. By Remark 1.1 we can assume that f is defined
on Cα for some 0 < α < ω1. Our first goal is to find a subprism Q′ of P and
two sequences {Vk ⊆ Uk : k < ω} ⊆ I+

S and {Ak ∈ [Pmk
]k : k < ω} such that

g ¹ Vk × Ak is constant for every g ∈ Q′. (3.8)

For every k < ω define Dk as the set of all disjoint collections E ∈ [Pα]<ω such
that there exists a V〈E,k〉 ∈ P(Uk) ∩ I+

S such that for every q ∈ Qk, E ∈ E ,
and h, h

′ ∈ E, each f(h) is constant on V〈E,k〉 × {q} and

f(h) ¹ V〈E,k〉 × {q} = f(h
′
) ¹ V〈E,k〉 × {q}. (3.9)

It is immediate that Dk is closed under refinaments. To prove that Dk

satisfies the condition (†) from Proposition 1.3 let E ∈ Dk and E ∈ Pα be such
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that E ∩⋃ E = ∅. Let {qi : i ≤ r} be an enumeration of Qk. Using Proposi-
tion 3.8, construct inductively decreasing sequences 〈Ei ∈ Pα ∩ P(E) : i ≤ r〉,
〈Vi ∈ P(V〈E,k〉) ∩ I+

S : i ≤ r〉, and a sequence 〈ji < 2: i ≤ r〉 such that for ev-
ery i ≤ r

f(h) ¹ Vi × {qi} is constant equal to ji for every h ∈ Ei. (3.10)

Therefore, if we put E
′

= Er and V〈E∪{E′},k〉 = Vr, then E ∪ {E ′} ∈ Dk

and condition (†) is satisfied. Thus, by Proposition 1.3, for every k < ω
there exists a family Ek = {Ei : i < 2k} ∈ Dk of pairwise disjoint sets with
E0 =

⋂
k<ω

⋃ Ek ∈ Pα. We will prove that Q′ = f [E0] satisfies (3.8) with
Vk = V〈Ek,k〉 and some sequence 〈Ak ∈ [Qk]

k : k < ω〉.
To see this fix k < ω and v0 ∈ Vk = V〈Ek,k〉, and for each i < 2k pick

an hi ∈ Ei ∈ Ek. Define ϕk : Qk → 22k
by ϕk(p)(i) = f(hi)(v0, p). Since

|Qk| > k · 22k
, there exists an sk ∈ 22k

such that |ϕ−1
k {sk}| ≥ k. Pick an

Ak ∈ [ϕ−1
k {sk}]k. To see that the pair 〈Vk, Ak〉 satisfies (3.8), pick a g ∈ Q′.

Then there exists an i < 2k and an h ∈ Ei ∈ Ek such that g = f(h). We will
show that g[Vk × Ak] = {sk(i)}.

Let 〈v, q〉 ∈ Vk×Ak. Since, by (3.9), f(h) is constant on Vk×{q}, we have
f(h)(v, q) = f(h)(v0, h). Also, (3.9) gives f(h)(v0, q) = f(hi)(v0, q). Hence,
g(v, q) = f(hi)(v0, q) = ϕk(q)(i) = sk(i). So, g ¹ Vk × Ak is constant equal to
sk(i) and (3.8) holds.

To finish the proof for every k < ω pick 〈vk, ak〉 ∈ Vk × Ak and put
S = {〈vk, ak〉 : k < ω}. Let I = [X]<ω. Then I is weakly selective and
S ∈ I+. If we identify 2X with P(X), then Q′ can be treated as a prism
in P(X). Since [X]ω is residual in P(X), by Proposition 1.2 we can assume
that Q′ is a prism in [X]ω. So, by Proposition 3.8, there exist a subprism Q
of Q′, a set S0 ∈ [S]ω, and an i < 2 such that g[S0] = {i} for every g ∈ Q.
Put B =

⋃{Vk × Ak : 〈vk, ak〉 ∈ S0}. Then, g ¹ B is constant equal i for
every g ∈ Q. It is clear that B ⊆ A. Since Vk ×Ak ⊆ B and Ak ∈ [Pmk

]k we
have NB(mk) ≥ k. This implies that limm→∞NB(m) = ∞ and that B ∈ J +.
So, Q and B satisfy (•).

Theorem 3.36 Let X be a countably infinite set, J ⊆ P(X) a rich and
Q-like ideal on X, and let D ⊆ J + be dense. Then, CPAgame

prism implies that
there exists an ω1-generated, crowded ω1-OK point on ω×X which is also a
Q-point but not a P -point.
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Proof. This proof combines the elements of the proofs of Theorems 3.21
and 3.34. Let Y = Pω×X ∪ 2ω×X be as in Theorem 3.21.
For a good sequence Ḡ = 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 and a prism P in Y let us
define a subprism Q(Ḡ, P ) of P and a triple T (Ḡ, P ) ∈ T as follows.

• If U ∩ 2ω×X 6= ∅, then we can choose a subprism P0 ⊆ 2ω×X of P .
The choice of P0 is obvious if P is a singleton, and it follows from
Proposition 1.2, otherwise. Then we apply Corollary 3.32 to Ḡ and P0

to find appropriate subprism Q(Ḡ, P ) of P0 and 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T .
We put T (Ḡ, P ) = 〈Iξ+1, fξ+1, Bξ+1〉.

• If U ∩ 2ω×X = ∅, then P is a prism in Pω×X .

Then, we can use Corollary 3.33 to find appropriate 〈Iξ+1, fξ+1, Bξ+1〉 ∈
T and a subprism Q(Ḡ, P ) of P0. We put T (Ḡ, P ) = 〈Iξ+1, fξ+1, Bξ+1〉.

We define a strategy S for Player II in the game GAMEprism(Y) as:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(〈〈Iη, fη, Bη〉 : η ≤ ξ〉, Pξ),

where the sequence 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 is defined as in Theorem 3.34.
By CPAgame

prism strategy S is not a winning strategy for Player II. So, there
exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S for which Player II
loses, this is, Y =

⋃
ξ<ω1

Qξ. If 〈〈Iξ, fξ, Bξ〉 ∈ T : ξ < ω1〉 is the sequence
created when Player II uses strategy S, then, by Remark 3.25, this sequence
is good.

If g ∈ 2ω×X , then there exists a ξ < ω1 such that g ∈ Qξ. Therefore,
Qξ ⊆ 2ω×X and g ¹ Uξ+1 is constant. Thus, by Lemma 3.28, the family
{Uξ : ξ < ω1} forms a base for a non-principal ultrafilter U on ω ×X which
is an ω1-OK point but not a P -point. Note that {Uξ : ξ < ω1} ⊆ D∗. To see
that U is a Q-point, take a z ∈ Pω×X . Then, there exists a ξ < ω1 such that
z ∈ Qξ. This means that Qξ ⊆ Pω×X and that |z(k) ∩ Uξ+1| ≤ 1 for every
k < ω. Hence, U is also a Q-point.

Corollary 3.37 CPAgame
prism implies that there is an ω1-generated, crowded

ω1-OK point on ω ×X which is also a Q-point but not a P -point.

Proof. Apply Theorem 3.36 with X = Q, J = IS, and D = Perf(Q).
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3.7 Crowded Q-points with a large character

In this section we prove under CPAgame
prism that there are 2c-many crowded Q-

points on Q of character c. This result contrasts with the following theorem.

Proposition 3.38 (K. Ciesielski and J. Pawlikowski, [9, Corollary 2.7]) Ax-
iom CPAcube implies that every selective ultrafilter has character ω1.

Let X be a countably infinite set, let 〈Un : n < ω〉 be a sequence of ultra-
filters on X, and let V be an ultrafilter on ω. We define an ultrafilter

∑
V Un

on ω ×X as follows

U ∈
∑
V
Un ⇐⇒ {n < ω : (U)n ∈ Un} ∈ V .

Lemma 3.39 (Folklore) Let 〈Un : n < ω〉 be a sequence of ultrafilters on X
and let V be an ultrafilter on ω. If χ(

∑
V Un) < κ, then χ(V) < κ.

Proof. Let χ(
∑

V Un) = λ < κ and let {Uα : α < λ} be a basis for∑
V Un. Then, Vα = {n < ω : (Uα)n ∈ Un} ∈ V for every α < λ. Our

goal is to prove that {Vα : α < λ} is a basis for V . If V ∈ V then UV =⋃ {{n} ×X : n ∈ V } ∈ ∑
V Un. Therefore, there exists an α < λ such that

Uα ⊆ UV . This implies that if n ∈ Vα, then {n} × (Uα)n ⊆ Uα ⊆ UV . Hence,
n ∈ V and Vα ⊆ V .

Corollary 3.40 If χ(V) = c, then χ(
∑

V Un) = c.

Proposition 3.41 (B. Pospíśıl [40], see [24]) If X is an infinite set, then

there exist 22|X|-many non-principal ultrafilters of character 2|X| on X.

Consider the space [Q]ω with the same topology as the classical Polish
space [ω]ω upon natural identification. Observe that if n < ω is arbitrary,
then {n} × [Q]ω is homeomorphic to [Q]ω. Put Xn = {n} × [Q]ω for every
n < ω and let Z =

⋃
n<ω Xn ∪Pω×Q be the topological sum of these spaces.

Then, Z is a Polish space and A ⊆ Z is open if and only if A ∩ Xn is open
in Xn and A ∩ Pω×Q is open in Pω×Q (see [26]). Also, given any prism
P ∈ Perf(Z) either there exists an n < ω such that P ∩ Xn is non-meager
in Xn or P ∩ Pω×Q is non-meager in Pω×Q. Hence, by Proposition 1.2, if
P ∈ Perf(Z) is a prism we can always assume that either there exists an
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n < ω such that P ∈ Perf(Xn) or that P ∈ Perf(Pω×Q) and that P is a
prism in Xn or Pω×Q, respectively.

Let p ∈ R \Q be an irrational number and for a family D ⊆ P(Q) let
Fp(D) = F (D) denote the filter generated by the family D∪{In ∩Q : n < ω},
where In = [p− 2−n, p + 2−n].

Proposition 3.42 (K. Ciesielski, J. Pawlikowski [9, Lemma 4.23]) Let
D ⊆ Perf(Q) be a countable family such that F (D) is non-trivial. Then for
every prism P in [Q]ω there exist a subprism Q of P and a Z ∈ Perf(Q) such
that F (D ∪ {Z}) is non-trivial and either

(i) Z ∩ x = ∅ for every x ∈ Q, or else

(ii) Z ⊆ x for every x ∈ Q.

Lemma 3.43 Let D ⊆ Perf(Q) be a countable family such that F (D) is
crowded. Then, there are the sequences 〈Jk : k < ω〉 of pairwise disjoint
clopen intervals in Q and 〈Sk ⊆ Jk : k < ω〉 of perfect subsets of Q such that
if S =

⋃
k<ω Sk, then for every D ∈ F (D) there exists an n < ω such that

S∩In ∈ P(D) ∩ Perf(Q). Moreover, if W ⊆ S is dense in S then there exists
a Z ∈ P(W ) ∩ Perf(Q) such that F (D ∪ {Z}) is crowded.

Proof. Observe that since F (D) is crowded it is possible to find a sequence
〈Dn ∈ Perf(Q) : n < ω〉 coinitial in F (D) such that Dn+1 ⊆ Dn ⊆ In for every
n < ω. Define two sequences 〈nk : k < ω〉 and 〈Sk ∈ Perf(Q) : k < ω〉 such
that Sk ⊆ Dk ∩ Ink

∩ Jk, where Jk is a clopen interval such that p /∈ Jk.
If nk and Sk are already defined pick nk+1 > nk with Jk ∩ Ink+1

= ∅.
Since Dk+1 ∩ Ink+1

∈ F (D) and F (D) is crowded we can find a clopen

interval Jk+1 such that p /∈ Jk+1 and Jk+1 ∩ Dk+1 ∩ Ink+1
6= ∅. Define

Sk+1 = Jk+1 ∩Dk+1 ∩ Ink+1
. Then, Sk+1 ∈ Perf(Q) and Sk+1 ⊆ Dk+1 ∩ Ink+1

.
Now, if S =

⋃
k<ω Sk, then

⋃
i≥k Si ∈ Perf(Q) and S ∩ Ink

=
⋃

i≥k Si ∩ Ink
⊆⋃

i≥k Si ⊆ Dk. This proves the first part of the lemma.
To prove the second part suppose that W is dense in S. Since Sk ∈

Perf(Q) for every n < ω we conclude that W ∩ Sk is non-scattered and
contains a subset Zk from Perf(Q) for every k < ω. Hence, if we put Z =⋃

k<ω Zk then, Z ∈ Perf(Q), and Z ∩ Ink
⊆ Dk for every k < ω. This also

shows that F (D∪{Z}) is crowded because 〈Dk ∈ Perf(Q) : k < ω〉 is coinitial
in F (D) and Z ∩ Ink

∈ Perf(Q) for every k < ω.
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Lemma 3.44 Let 〈Dn ∈ [Perf(Q)]≤ω : n < ω〉 be such that F (Dn) is crowded
for every n < ω and let P ∈ Perf(Pω×Q) be a prism. Then, there exist a
sequence of sets 〈Wn ∈ Perf(Q) : n < ω〉 and a subprism Q of P such that
F (Dn ∪ {Wn}) is crowded and |W ∩ z(k)| ≤ 1 for every z ∈ Q and k < ω,
where W =

⋃{{n} ×Wn : n < ω}.

Proof. For each n < ω, let Sn ∈ Perf(Q) be the set found in Lemma 3.43
associated to F (Dn). Let B a countable basis for the topology on Q consisting
of clopen sets. Consider the family B∗n = {B∩Sn : B ∈ B & |B∩Sn| = ω} for
every n < ω. Hence, B∗n ∈ [I+

S ]ω for every n < ω. We apply Lemma 3.11 to
the ideal IS(ω×Q), the family {{n}× V : V ∈ B∗n & n < ω}, and the prism
P to obtain a family W = {{n} ×W ∗ : W ∗ ∈ P(V ) ∩ I+

S , V ∈ B∗n & n < ω}
and a subprism Q of P such that |⋃W ∩ z(k)| ≤ 1 for every k < ω and
z ∈ Q. If we put W ∗

n =
⋃{W ∗ ∈ W : W ∗ ⊆ Sn} then, W ∗

n is dense in Sn

for every n < ω. By the second part of Lemma 3.43 it is possible to find a
Wn ∈ Perf(Q) ∩ P(W ∗

n) such that F (Dn ∪ {Wn}) is crowded. Therefore, Q
and 〈Wn ∈ Perf(Q) : n < ω〉 are as required.

Theorem 3.45 Axiom CPAgame
prism implies that there is a sequence 〈Un : n < ω〉

of ultrafilters on Q such that
∑

V Un is a crowded Q-point on ω×Q for every
non-principal ultrafilter V on ω. Therefore, there are 2c crowded Q-points of
character c.

Proof. For a prism P ∈ Perf(Z) and a sequence D̄ = 〈Dn : n < ω〉 of
countable families for which the filters F (Dn) are crowded we define Q(D̄, P )
and 〈Wn : n < ω〉〈D̄,P 〉 as follows.

If P ∈ Perf({n0} × [Q]ω) for some n0 < ω let Z = Z(Dn0 , P ) and
Q(Dn0 , P ) be as in Proposition 3.42. Define 〈Wn : n < ω〉〈D̄,P 〉 by putting

Wn0 = Z = Z(Dn0 , P ) and Wn = Q provided n 6= n0 and Q(D̄, P ) =
Q(Dn0 , P ).

If P ∈ Perf(Pω×Q) let 〈Wn : n < ω〉〈D̄,P 〉 and Q(D̄, P ) be the sequence
and the subprism of P as in Lemma 3.44. We define a strategy S for Player
II in the game GAMEprism(Z) as:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(D̄ξ, Pξ)

The sequence D̄ξ is defined inductively as D̄ξ = 〈Dξ
n : n < ω〉, where Dξ

n =
{{n} ×W η

n : η < ξ} and 〈W η
n : n < ω〉 = 〈Wn : n < ω〉〈D̄η ,Pη〉.
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By CPAgame
prism strategy S is not a winning strategy for Player II. So, there

exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S for which Player II
loses, this is, Z =

⋃
ξ<ω1

Qξ for every η < ξ.

For every n < ω define Un =
⋃

ξ<ω1
F (Dξ

n). Notice that Un is a crowded
filter because it is the union of a chain of crowded filters. In particular, Un

is non-principal. To see that Un is an ultrafilter pick any A ∈ P({n} ×Q).
Then either A or ({n} ×Q) \Q is infinite so there exists a ξ < ω1 such that
either A ∈ Qξ or ({n} × Q) \ A ∈ Qξ. Suppose that A ∈ Qξ. Then, either
A ⊆ W ξ

n or A ∩W ξ
n = ∅. Therefore, either A ∈ Un or ({n} × Q) \ A ∈ Un.

The other case is similar. Hence, each Un is a crowded ultrafilter on {n}×Q.
Now pick any ultrafilter V on ω such that χ(V) = c. We need to prove
that W =

∑
V Un is a Q-point. If z ∈ Pω×Q, then there exists a ξ < ω

such that z ∈ Qξ. Therefore, |Wξ ∩ z(k)| ≤ 1 for every k < ω, where
Wξ =

⋃{{n} ×W ξ
n : n < ω}. Since {n} × (Wξ)n = {n} ×W ξ

n ∈ Un for every
n < ω it follows that Wξ ∈ W . For the last part use Proposition 3.41.
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Chapter 4

Separately nowhere constant
functions

4.1 Introduction

For a topological space X a function f : X → Y is nowhere constant if f
is not constant on any non-empty open subset of X . For a subset G of a
product space X =

∏
i∈I Xi we say that a function f : G → Y is separately

nowhere constant if for every t ∈ G and k ∈ I function f restricted to the
section Gt

k = {x ∈ G : x ¹ I \ {k} = t ¹ I \ {k}} is nowhere constant. This
notion is the most natural when G = X . In this case it is related in a natural
way to the notion of a separately continuous function f : X → Y , that is,
such that f restricted to every section X t

k is continuous.
Note that every separately nowhere constant function is nowhere con-

stant. However, the converse implication is false, as shown by the polynomial
functions from R2 into R defined by w0(x, y) = xy and w1(x, y) = x. This
implications pattern stays in contrast with the implications for separate con-
tinuity: continuity implies separate continuity, but the converse implication
is false.

We will consider the notion of being separately nowhere constant only
for the product of perfect Polish spaces which we define here as a complete
separable metric spaces without isolated points. (No function is nowhere
constant if it is defined on a space containing isolated points.) Our main
theorem on separately nowhere constant functions is the following result,
where a subset P of

∏
i∈I Xi is a perfect cube provided it is of the form
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P =
∏

i∈I Pi with Pi ∈ Perf(Xi) for all i ∈ I.

Theorem 4.1 Let G be a dense Gδ subset of a product
∏

i∈I Xi of Polish
spaces and let f be a continuous function from G into a Polish space Y . If
f is separately nowhere constant, then there is a perfect cube P in

∏
i∈I Xi

such that P ⊆ G and f restricted to P is one-to-one.

It is not difficult to see that the conclusion of the theorem remains true
for the function w0(x, y) = xy, despite the fact that w0 is not separately
nowhere constant. On the other hand, the theorem’s conclusion is false for
the nowhere constant function w1(x, y) = x.

The theorem will be used to provide the examples distinguishing between
the notions of n-cube densities.

Recall that if 0 < n ≤ ω, we say that a family F ⊆ Perf(X ) is n-cube
dense provided that for every continuous injection f : Cn → X there is a
perfect cube C ⊆ Cn such that f [C] ∈ F and that F ⊆ Perf(X ) is α-prism
dense provided that for every continuous injection f : Cα → X there is a
P ∈ Pα such that f [P ] ∈ F . If F is α-prism dense for every α < ω1 then we
simply say that F is prism-dense.

To put these notions in a better perspective notice that 1-cube density is
just the standard perfect set density, that is, F ⊆ Perf(X ) is 1-cube dense
provided every perfect subset of X contains a set from F .

To see that in general n-cube density is a stronger notion recall the fol-
lowing example, which is extracted from Miller’s construction [39, thm. 5.10]
of a Marczewski s0-set of cardinality continuum.

Example 4.2 [12, 10] Let X = C × C and let E be the family of all P ∈
Perf(X ) such that either all vertical sections of P are countable, or all hori-
zontal sections of P are countable. Then E is dense in Perf(X ) but it is not
2-cube dense.

The next two theorems discuss these notions of density. In particular,
the first of them shows that essentially all these notions are different. The
second theorem shows that any strengthening of the axiom CPAprism obtained
by replacing the prism density with a proper subclass of the densities we
consider lead to the statement which is false in ZFC.

Theorem 4.3 For a Polish space X , a family F ⊆ Perf(X ), and 1 < α < ω1

consider the following sentences:
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Cα family F is β-cube dense for every 0 < β < α;

Pα family F is β-prism dense for every 0 < β < α.

Then, for 2 < m < n < ω and ω + 1 < α < γ < ω1, they are related by the
following implications.

C2
¾

?
6

P2
¾

Cm
¾

?
Pm

¾

Cn
¾

?
Pn

¾

Cω
¾

?
Pω

¾

Cω+1
¾-

?
Pω+1

¾

Cα
¾-

?
Pα

¾

Cγ

?
Pγ

Moreover, none of these implications can be reversed.

For α < ω1 we say that a family F ⊆ Perf(X ) is α-prism∗ dense provided
F is β-prism dense for every 0 < β < α and it is n-cube dense for every
0 < n < ω.

Theorem 4.4 For every α < ω1 and for every Polish space X there is an
α-prism∗ dense family F ⊆ Perf(X ) for which |X \⋃F| = c.

These theorems will be proved in Section 4.3.

4.2 Separately nowhere constant functions

The space Rω is the product space of countably many copies of R with
its usual topology. This is a Polish space and a vector space over R with
the operations defined pointwise from the usual operations in R. In this
context we consider for every k < ω the canonical unit vectors ~ek ∈ Rω:
~ek(k) = 1 and ~ek(i) = 0 for all other i < ω. If S ⊆ Rω and δ ∈ R then
δ ·~ek + S = {δ ·~ek + s : s ∈ S}. If ε > 0 and x ∈ Rω then B(x, ε) denotes the
open ball with center x and radius ε and B(x, ε) is the corresponding closed
ball. If X is a Polish space and A ⊆ X , the closure of A is denoted by A. If
m < ω then we identify Rω with R×Rω\{m}; if y ∈ Rω\{m} and G ⊆ Rω then
the section of G along y is the set (G)y = {x ∈ R : 〈x, y〉 ∈ G}.

The following variant of Kuratowski-Ulam theorem will be useful in what
follows. Although it looks like it should be well known, we could not locate
it in the literature. Thus, we present it here with a proof.
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Lemma 4.5 Let X be a Polish space and consider X T with the product
topology, where T 6= ∅ is an arbitrary set. Fix at most countable family K of
sets K ( T . Then for every comeager set H ⊆ X T there exists a comeager
set G ⊆ H such that for every x ∈ G and K ∈ K the set

Gx¹K =
{
y ∈ X T\K : (x ¹ K) ∪ y ∈ G

}

is comeager in X T\K .

Proof. Let {Ki : i < ω} be an enumeration of K with infinite repetitions.
We construct, by induction on i < ω, a decreasing sequence 〈Gi : i < ω〉 of
comeager subsets of H such that for every i < ω

(i) the set (Gi)x¹Ki
is comeager in X T\Ki for every x ∈ Gi.

Put G−1 = H and assume that for some i < ω the comeager set Gi−1 is
already constructed. To define Gi identify X T with XKi ×X T\Ki . Then, by
Kuratowski-Ulam theorem, the set

A =
{
y ∈ XKi : (Gi−1)y is comeager in X T\Ki

}

is comeager in XKi . Put Gi = Gi−1 ∩ (A×X T\Ki).
Clearly Gi ⊆ Gi−1 is a comeager subset of X T . If x ∈ Gi then x ¹ Ki ∈ A

so (Gi)x¹Ki
= (Gi−1)x¹Ki

is comeager in X T\Ki . So, (i) holds. This completes
the definition of the sequence 〈Gi : i < ω〉.

Let G =
⋂

i<ω Gi. Clearly G ⊆ H is comeager in X T . To see the addi-
tional part, take K ∈ K. Since G =

⋂{Gi : i < ω & Ki = K}, for every
x ∈ G the set

Gx¹K =
⋂
{(Gi)x¹Ki

: i < ω & Ki = K}
is comeager in X T\K .

The next lemma is an immediate consequence of Lemma 4.5 applied to X =
R, T = ω, and K = {ω \ {n} : n < ω}.

Lemma 4.6 For every comeager set G ⊆ Rω there exists a comeager set
H ⊆ G such that for every x ∈ H and n < ω the set H ∩ (x + R · ~en) is
comeager in x + R · ~en.

The following lemma will facilitate the inductive step in the next theorem.
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Lemma 4.7 Let G be a comeager subset of Rω such that

(•) G ∩ (x + R · ~ek) is comeager in x + R · ~ek for every x ∈ G and k < ω.

Let f be a continuous separately nowhere constant function from G into a
Polish space Y . If S ∈ [G]<ω is such that f is one-to-one on S, then for every
k < ω and ε > 0 there exists a δ ∈ (0, ε) such that (S + δ · ~ek) ⊆ G and f is
one-to-one on S ∪ (S + δ · ~ek).

Proof. Let S = {xi : i < n} ⊆ G be such that f ¹ S is one-to-one. Since f
is continuous, decreasing ε if necessary, we can assume that

(∗) if S∗ = {x∗i : i < n} is such that x∗i ∈ G∩B(xi, ε) for every i < n, then
f is also one-to-one on S∗.

For each x ∈ S consider the sets Mx = {δ ∈ R : x + δ · ~ek ∈ G}, which
by (•) are comeager, and Nx = {δ ∈ Mx : f(x + δ · ~ek) ∈ f [S]}. Since
f ¹ G ∩ (x + R · ~ek) is nowhere constant, the set Nx is meager in R. So,
B =

⋂
x∈S Mx \

⋃
x∈S Nx is comeager in R.

Pick a δ ∈ (0, ε) ∩ B. Then S + δ · ~ek ⊆ G as δ ∈ ⋂
x∈S Mx. To see that

f is one-to-one on S ∪ (S + δ · ~ek) take x 6= y in this set. We need to show
that f(x) 6= f(y). This follows from the assumption when x, y ∈ S, from (∗)
when x, y ∈ S + δ · ~ek, and from δ /∈ ⋃

x∈S Nx otherwise.

Theorem 4.8 Let G be a comeager subset of Rω and let f be a continuous
separately nowhere constant function from G into a Polish space Y . Then
there is a perfect cube P in Rω such that P ⊆ G and f is one-to-one on P .

Proof. Let {mk : k < ω} be an enumeration of ω where every natural
number appears infinitely often. By Lemma 4.6, shrinking G if necessary, we
can assume that G satisfies the condition (•) from Lemma 4.7. Since G is
a dense Gδ subset of Rω we have G =

⋂
n<ω Gn, where each Gn is open and

dense subset of Rω.
We construct by induction on k < ω the sequences 〈Sk ∈ [G]2

k
: k < ω〉,

〈εk : k < ω〉, and 〈δk : k < ω〉 such that for every k < ω:

(1) 0 < δk < εk ≤ 2−k,

(2) Sk+1 = Sk ∪ (δk · ~emk
+ Sk) ⊆

⋃{B(x, εk) : x ∈ Sk},
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(3) B(x, εk) ⊆ Gk for every x ∈ Sk,

(4) f [B(x, εk)] ∩ f [B(x∗, εk)] = ∅ for every distinct x, x∗ ∈ Sk.

We start the construction with an arbitrary S0 = {s} ⊆ G, and ε0 ≤ 1
ensuring (3). If for some k < ω the set Sk and εk are already constructed
we choose δk using Lemma 4.7 with k = mk and ε ≤ εk small enough that it
insures (2) and |Sk+1| = 2k+1. Then f is one-to-one on Sk+1 ⊆ G and, using
continuity of f , we can choose εk+1 satisfying (1), (3), and (4). This finishes
the construction.

If for n, k < ω we put Ak,n = {x(n) : x ∈ Sk}, then it is easy to see that:

(a) Sk =
∏

n<ω Ak,n,

(b) Ak+1,n = Ak,n for every n 6= mk+1,

(c) Ak+1,mk+1
= Ak,mk+1

∪ (δk + Ak,mk+1
).

We define Pn =
⋃

k<ω Ak,n and put P =
∏

n<ω Pn. We will show that each Pn

is a perfect subset of R, P ⊆ G, and f is one-to-one on P . Notice that this
will finish the proof, because as a final adjustment (necessary, when Pn has
a non-empty interior in R) we can shrink each Pn to a subset from Perf(R).

Clearly each Pn is closed and, by (1) and (2), it has no isolated points.
We need to show that ⋃

k<ω

Sk =
∏
n<ω

Pn.

The inclusion
⋃

k<ω Sk ⊆
∏

n<ω Pn follows from (a). In order to prove the
other inclusion pick an x ∈ ∏

n<ω Pn. Then for every n < ω there exists a
sequence {an

i : i < ω} ⊆ ⋃
k<ω Ak,n with distinct terms such that limi→∞ an

i =
x(n). For every m < ω let xm ∈ Rω be defined as xm(i) = am

i if i ≤ m and
xm(i) = s(i) if i > m. Then {xm : m < ω} ⊆ ⋃

k<ω Sk and limm→∞ xm = x.

This proves that
∏

n<ω Pn ⊆
⋃

k<ω Sk.

Next, notice that if for k < ω we put Tk =
⋃{B(x, εk) : x ∈ Sk} then

condition (2) gives us
⋃

k<ω Sk ⊆
⋂

k<ω Tk while the other inclusion is obvious.
In particular we have

∏
n<ω

Pn =
⋃

k<ω

Sk =
⋂

k<ω

Tk.
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In order to prove that f is one-to-one on
∏

n<ω Pn pick distinct x and
y from

∏
n<ω Pn. Then there are sequences {xm} and {ym} such that for

every m < ω we have xm, ym ∈ Sm, x ∈ B(xm, εm+1), and y ∈ B(ym, εm+1).
Since x 6= y, there is an m < ω such that xm 6= ym. So, by (5), we have
f [B(xm, εm+1)] ∩ f [B(ym, εm+1)] = ∅. Hence f(x) 6= f(y). This shows that
f is one-to-one on

∏
n<ω Pn.

Finally, note that by (3) we have
∏

n<ω Pn =
⋂

k<ω Tk ⊆ G.

Corollary 4.9 Let {Xn : n < ω} be a family of Polish spaces, G be a dense
Gδ subset of

∏
n<ω Xn, and let f be a continuous separately nowhere constant

function from G into a Polish space Y . Then there exist perfect sets Pn ∈
Perf(Xn), n < ω, such that f is one-to-one on

∏
n<ω Pn.

Proof. For every n < ω let Gn be a dense Gδ subset of Xn homeomorphic
to the Baire space ωω.1 Since ωω is homeomorphic to R \ Q, there is a
homeomorphism hn : Gn → R \ Q. Then, h :

∏
n<ω Gn → (R \ Q)ω defined

by h = 〈hn : n < ω〉 is a cube-preserving homeomorphism. We can apply
Theorem 4.8 to the function f ◦ h−1 on a dense Gδ subset h

[
G ∩∏

n<ω Gn

]
of Rω to obtain a perfect cube

∏
n<ω Qn on which f ◦h−1 is one-to-one. Then,

h−1
[∏

n<ω Qn

]
is a perfect cube in

∏
n<ω Xn on which f is one-to-one.

Proof of Theorem 4.1. We can assume that the index set I is a cardinal
number κ. Let X =

∏
i∈κXi.

The case κ = ω is true by Corollary 4.9.
If κ = n < ω and f : G → Y is continuous and separately nowhere

constant consider F : G× Cω\n → Y × Cω\n defined by F (x) = (f(x ¹ n), x ¹
ω \ n). Then, F is continuous and separately nowhere constant function
defined on a dense Gδ subset of

∏
i∈ω Xi where Xi = C for every i ∈ ω \ n.

Thus, by case κ = ω, there are {Pi ∈ Perf(Xi) : i < ω} such that F is
one-to-one on

∏
i<ω Pi ⊆ G × Cω\n. This implies that f is one-to-one on∏

i<n Pi ⊆ G.
If κ > ω then the result is trivial because in this case f cannot be si-

multaneously continuous and separately nowhere constant on a dense Gδ

1Every Polish space X (without isolated points) has a dense subspace G homeo-
morphic to ωω constructed as follows. Let {Bn : n < ω} be a basis for X . Then
Y = X \ ⋃

n<ω bd(Bn) is a zero-dimensional dense Gδ subspace of X . Take a count-
able dense subset D of Y and put G = Y \D. Then G is a dense Gδ subspace of X . Also,
G is Polish, zero-dimensional, and every compact subset of G has an empty interior. So,
by Alexandrov-Urysohn theorem [26, thm. 7.7], it is homeomorphic to ωω.
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subset G of X . To see this first notice that G contains a subset of the form
H × ∏

i∈κ\AXi, where A is a countable subset of κ and H is a dense Gδ

subset of
∏

i∈AXi. This is the case, since every dense open subset U of X
contains a dense open subset in similar form: a union of a maximal pair-
wise disjoint family of basic open subsets of U . So, we can assume that
G is in this form. Pick an x0 ∈ G. By the continuity of f at x0, for ev-
ery n < ω there exists an open subset Un in X containing x0 such that
the diameter of f [G ∩ Un] is less than 2−n. By the definition of the prod-
uct topology each Un contains a set of the form

∏
i∈Fn

{x0(i)} ×
∏

i∈κ\Fn
Xi,

where each Fn ⊆ κ is finite. Put F = A ∪ ⋃
n<ω Fn and notice that

Z =
∏

i∈F{x0(i)} ×
∏

i∈κ\FXi ⊆ G ∩ ⋂
n<ω Un. So, f [Z] has the diame-

ter equal to 0, that is, f is constant on Z. But this contradicts the fact that
f is separately nowhere constant on G, since for ξ ∈ κ \F set Z contains the
section {x ∈ X : x ¹ κ \ {ξ} = x0 ¹ κ \ {ξ}}.

4.3 Cube and prism densities

Lemma 4.10 For 0 < n < ω and any continuous f : Cn → Y there exist a
basic clopen subset U =

∏
i<n Ui of Cn, an A ⊆ n, and, if A 6= n, a dense Gδ

subset G of W =
∏

i∈n\A Ui such that

• f ¹ U does not depend on the variables xj for j ∈ A;

• if A 6= n then f ¹ U , considered as a function of the variables xi with
i ∈ n \ A, is separately nowhere constant on G.

Proof. We proceed by induction on n. If n = 1 the lemma is true by the
definition of nowhere constant function. Suppose the lemma is true for n
and let f : Cn+1 → Y be continuous. Denote by B0 a countable basis for the
topology on C consisting of non-empty clopen sets. For each i ≤ n and V ∈ B0

consider the closed set Si(V ) =
{
~x ∈ Cn+1\{i} : f ¹ {~x} × V is constant

}
.

First assume that for every i ≤ n and V ∈ B0 the set Si(V ) has empty
interior. Then each set Hi = C{i}× (

Cn+1\{i} \⋃{Si(V ) : B ∈ B0}
)

is comea-
ger in Cn+1. So, we can apply Lemma 4.5 to X = C, T = n+1, K = {n+1 \
{i} : i ≤ n}, and H =

⋂
i≤n Hi to find a comeager set G ⊆ H such that for ev-

ery x ∈ G and i ≤ n the set Gx¹n+1\{i} =
{
y ∈ C{i} : (x ¹ n + 1 \ {i}) ∪ y ∈ G

}
is comeager in C{i}. Note also that this last property implies that f ¹ G is sep-
arately nowhere-constant, since for every x ∈ G its restriction x ¹ n + 1 \ {i}
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does not belong to
⋃{Si(V ) : B ∈ B0}. Thus, in this case the lemma is

satisfied with U = Cn+1, A = ∅, and the above chosen G
So, assume that there exist i ≤ n and Vi ∈ B0 such that the set Si(Vi)

has non-empty interior. Let V ∗ ⊆ Si(Vi) be a non-empty basic clopen subset
of Cn+1\{i}. Then V ∗ =

∏
j 6=i Vj, where Vj ⊆ C is a basic clopen set for every

j 6= i. If V =
∏

j≤n Vj then V is homeomorphic to Cn+1, f ¹ V does not
depend on the variable xi, and we can consider f ¹ V as a function g from V ∗

to Y . By applying our inductive hypothesis to g we can find a basic clopen
subset U∗ =

∏
j 6=i Uj of V ∗, a set A∗ ⊆ n + 1 \ {i}, and, if A∗ 6= n + 1 \ {i},

a dense Gδ subset G of W =
∏

n+1\A Uj, where A = A∗ ∪ {i}, satisfying the

lemma for g. But then U =
∏

j≤n Uj, where Ui = Vi, and the sets A and G
are as desired.

Here is the main example of this chapter.

Example 4.11 For every 0 < α < ω1 there is a family Gα ⊆ Perf(Cα) such
that

(a) Gα does not contain any iterated perfect set, that is, Gα ∩ Pα = ∅;
(b) Gα is γ-prism dense for every 0 < γ < α;

(c) Gα is n-cube dense for every 0 < n < min{α, ω};
(d) if G∗ ∈ [Gα]<c then |Cα \⋃G∗| = c.

Proof. For ξ < α let Kξ = {P ∈ Perf(Cα) : πξ ¹ πξ+1[P ] is one-to-one},
where in case of ξ = 0 we put K0 = {P : π1[P ] is a singleton}. It is worth
to note that {P ∈ Perf(Cα) : πξ ¹ P is one-to-one} ⊆ Kξ. Then, we define
Gα =

⋃
ξ<αKξ.

To see (a) take P ∈ Pα and ξ < α. We need to show that P /∈ Kξ. But
by (C) we have πξ+1[P ] ∈ Pξ+1 and then (B) shows that P /∈ Kξ.

We prove (b) by induction on α. Clearly it holds for α = 1. So, assume
that for some 1 < α < ω1 condition (b) holds for every non-zero α′ < α. To
see that (b) holds for α fix 0 < γ < α and a continuous injection f : Cγ → Cα.
We need to find a Q ∈ Pγ for which f [Q] ∈ Gα.

Let g = πγ ◦ f . By [10, Lemma 3.2.2] there exist P ∈ Pγ and 0 < β ≤ γ
such that h = g ◦ π−1

β is a function on πβ[P ] (i.e., g ¹ P does not depend on
coordinates δ ≥ β) and this function is either one-to-one or constant. If h is

63



constant then π1[f [P ]] is a singleton and f [P ] ∈ K0 ⊆ Gα. So, assume that
h is one-to-one.

If β = γ, then g = πγ ◦ f is one-to-one on P and so πγ is one-to-one
on f [P ]. Then f [P ] ∈ Kγ ⊆ Gα. So, assume that β < γ. Then h is an
injection from πβ[P ] ∈ Pβ into Cγ. Let ϕ ∈ Φβ witness πβ[P ] ∈ Pβ. Then
ϕ maps Cβ onto πβ[P ]. Since h ◦ ϕ : Cβ → Cγ is a continuous injection, by
the inductive hypothesis used for α′ = γ there exists an E ∈ Pβ such that
Z = h ◦ ϕ[E] ∈ Gγ, that is, there exists a ξ < γ for which πξ ¹ πξ+1[Z] is
one-to-one.

Next, notice that R = ϕ[E] ∈ Pβ, since Φβ is closed under the com-
position, and R ⊆ πβ[P ]. So, by (D), Q = {x ∈ P : πβ(x) ∈ R} ∈ Pα.
Moreover,

Z = h ◦ ϕ[E] = h[R] = (g ◦ π−1
β )[πβ[Q]] = g[P ] = πγ[f [Q]]

and so πξ+1[Z] = πξ+1[πγ[f [Q]]] = πξ+1[f [Q]]. Thus, πξ ¹ πξ+1[f [Q]] is one-
to-one and so f [Q] ∈ Kξ ⊆ Gα.

To show (c) we will prove by induction on 0 < n < ω the statement

for every 0 < α < ω1 if n < α then Gα is n-cube dense.

So, take 0 < n < ω and assume that the statement holds for all non-zero k <
n. Take an α > n. To prove that Gα is n-cube dense fix a continuous injection
f : Cn → Cα. Then πn ◦ f : Cn → Cn is continuous. Apply Lemma 4.10 to
πn ◦ f to find U =

∏
i<n Ui ⊆ Cn, A ⊆ n, and G satisfying the lemma.

If A = n, then πn[f [U ]] = (πn ◦ f)[U ] is a singleton and f [U ] ∈ K0 ⊆ Gα.
If A = ∅, then πn ◦ f ¹ G is continuous separately nowhere constant.

So, by Theorem 4.1, there exist perfect sets {Pi ⊆ Ui : i < n} such that
(πn ◦ f) ¹

∏
i<n Pi is one-to-one. Then, πn ¹ f

[∏
i<n Pi

]
is one-to-one and so

f
[∏

i<n Pi

] ∈ Kn ⊆ Gα.
So, assume that ∅ 6= A 6= n and let k = |n \ A|. Then 0 < k < n. Since

(πn◦f) ¹ U does not depend on the variables xj for j ∈ A, it can be considered
as a function g on W =

∏
i∈n\A Ui. Moreover, g ¹ G is separately nowhere

constant. Thus, by Theorem 4.1, we can find a perfect cube P =
∏

i∈n\A Pi ⊆
G ⊆ ∏

i∈n\A Ui on which g is one-to-one. Thus, g is a continuous injection

from P , which can be identified with Ck, into Cn. Since, by the inductive
assumption, Gn is k-cube dense, there exists a perfect cube C =

∏
i∈n\A Ci ⊆∏

i∈n\A Pi such that g[C] ∈ Gn. Let Ci = Ui for i ∈ A. Then Q =
∏

i<n Ci ⊆∏
i<n Ui is a perfect cube and πn[f [Q]] = (πn ◦ f)[Q] = g[C] ∈ Gn. So, there
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exists a ξ < n such that πξ is one-to-one on πξ+1[πn[f [Q]]] = πξ+1[f [Q]], So,
f [Q] ∈ Kξ ⊆ Gα.

Now, to argue for (d) fix a G∗ ∈ [Gα]<c. We need to show that |Cα\⋃G∗| =
c. For ξ < α let G∗ξ = G∗ ∩ Kξ. By induction on ξ < α choose

x(ξ) ∈ C \ {z(ξ) : z ∈ G∗ξ & z(η) = x(η) for every η < ξ}.

Note that at each step we have less than continuum many restricted points
since for every z ∈ Kξ the set {z(ξ) : z(η) = x(η) for every η < ξ} may have
at most one element. It is easy to see that x = 〈x(ξ) : ξ < α〉 ∈ Cα\⋃ξ<α G∗ξ =
Cα \ G∗. To finish the proof it is enough to notice that the value of x(0) can
be chosen in continuum many ways, so indeed |Cα \⋃G∗| = c.

To transport the above example into an arbitrary Polish space we will
use the following simple fact.

Remark 4.12 Let h be a homeomorphic embedding of a Polish space Y
into a Polish space X , let F ⊆ Perf(Y ), and put F∗ = {h[F ] : F ∈ F} ∪
Perf(X \ h[Y [). Then for every 1 ≤ α ≤ ω1 the following conditions are
equivalent.

(a) F is α-cube (α-prism) dense in Y .

(b) F∗ is α-cube (α-prism) dense in X .

Proof. “(a)=⇒(b)” Let f : Cα → X be injective and continuous. Since h[Y ]
is a Gδ-set in X we can apply [12, Claim 3.2] (see also [10, Claim 1.21.5]) to
find a perfect cube C ⊆ Cα such that either f [C] ⊆ h[Y ] or f [C] ∩ h[Y ] = ∅.

If f [C] ∩ h[Y ] = ∅ then f [C] ∈ F∗ and we are done. If f [C] ⊆ h[Y ] then
h−1 ◦ f : C → Y is a continuous injection. Identifying C with Cα and using
to h−1 ◦ f the α-cube (α-prism) density of F in Y we can find a C ′ ⊆ C such
that C ′ is a perfect cube (belongs to Pα) and F = (h−1 ◦ f)[C ′] ∈ F . So
f [C ′] = h[F ] ∈ F∗. The family F∗ is as desired.

The other implication is easy.

Corollary 4.13 For every 1 < α < ω1 and every Polish space X there exists
a family Fα ⊆ Perf(X ) such that: Fα is not α-prism dense; Fα is β-prism
dense for every 0 < β < α; Fα is n-cube dense for every 0 < n < min{α, ω};
|X \⋃Fα| = c.
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Proof. First note that it is enough to find such an Fα for X = Cα. Indeed,
if F is such a family and h, X is an arbitrary Polish space, and h is an
embedding from Cα into X , then the family F∗ from Remark 4.12 is as
desired.

Thus, it is enough to notice that the family Gα from Example 4.11 is not
α-prism dense. But this is the case since for the identity function f on Cα

there is no P ∈ P for which f [P ] = P ∈ Gα.

Proof of Theorem 4.4. Use Corollary 4.13 with α ≥ ω.

Proof of Theorem 4.3. The vertical implications, that α-cube density
implies α-prism density, follows from the fact (A), that every perfect cube
in Cα is also in Pα. For 0 < β < α < ω1 the implications “Cα =⇒ Cβ” and
“Pα =⇒ Pβ” are obvious. P2 implies C2 since 1-prism density is just perfect
set density (P1 = Perf(C1), as Φ1 consists just of autohomeomorphisms of
C1) and so it implies 1-cube density.

To see that for ω < α < ω1 we have “Cω+1 =⇒ Cα” it is enough to notice
that any ω-cube dense family is also β-cube dense for any ω ≤ β < ω1.
This is the case since the coordinatewise homeomorphism between Cω and
Cβ preserves perfect cubes.

The fact that no other horizontal implication can be reversed is justified
by the family Fα from Corollary 4.13 for different values of α. Indeed, Fα

clearly justifies “Pα 6=⇒ Pγ” for any 1 < α < γ since it satisfies Pα but not
Pγ as it is not α-prism dense. If 1 < m < n ≤ ω then Fm also witness
“Cm 6=⇒ Cn” since it satisfies Cm but not Cn, since it cannot be m-cube
dense without being m-prism dense.

The fact that none of the vertical implications “Cα =⇒ Pα”, for 2 < α <
ω1, can be reversed is justified by any family which is α-prism dense for every
α but is not 2-cube dense. There are many such families. For example, this
is the case for the family F of all linearly independent (over Q) subsets of
R. It is shown in [11] (see also [10, Cor. 5.1.2]) that this F is α-prism dense
for every 0 < α < ω1. On the other hand it is not 2-cube dense, as shown
by the following function f . (See [11, Remark 5.2] or [10, Remark 5.1.4].)
Let P1 and P2 be disjoint perfect subsets of R such that P1 ∪ P1 is linearly
independent over Q. Let f : P1 × P2 → R be defined by f(x1, x2) = x1 + x2.
Identifying P1 and P2 with C we think about f as defined on C2. It is easy
to see that if each of the sets Q1 ⊆ P1 and Q2 ⊆ P2 has at least two elements
then f [Q1 ×Q2] is linearly dependent.

Another such example is a family F of all P ∈ Perf(C2) such that the
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projection on one of the coordinates is one-to-one. It follows quite easily
from [10, Lemma 3.2.2] that F is α-prism dense for every α. (See e.g. [10,
prop. 4.1.3].) It is not 2-cube dense since for the identity function f : C2 → C2

there is no perfect cube C for which f [P ] ∈ F .

4.4 Final remarks

It is also worth to notice that we have the following implications.

Proposition 4.14 If β + 1 ≤ α < ω1 then every α-prism (α-cube) dense
family is also (β + 1)-prism ((β + 1)-cube) dense. In particular, if 0 < m <
n ≤ ω then every n-cube dense family is also m-cube dense.

Proof. Let g : Cα\β → C be a homeomorphism, and let h : Cα → Cβ+1 be
defined by h(x)(ξ) = x(ξ) for every ξ < β and h(x)(β) = g(x ¹ α \ β). It is
easy to see that h is a homeomorphism and that if P ⊆ Cα is a perfect cube
(belongs to Pα) then h[P ] is a perfect cube (belongs to Pβ+1).

Now, let F ⊆ Perf(X ) be α-prism α-cube) dense in X . To see that F is
(β + 1)-prism ((β +1)-cube) dense take a continuous injection f : Cβ+1 → X .
Then f ◦ h : Cα → X is also a continuous injection. Since F is α-prism (α-
cube) dense, there exists a P ⊆ Cα such that P belongs to Pα (is a perfect
cube) and f [h[P ]] = (f ◦ h)[P ] ∈ F . But h[P ] belongs to Pβ+1 (is a perfect
cube), so F is (β + 1)-prism ((β + 1)-cube) dense.

We do not know if, in general, for a limit ordinal λ < ω1 the (λ+1)-prism
density implies λ-prism density.

The next example shows that Lemma 4.10 fails, in a strong way, for
functions defined on infinite product.

Example 4.15 There exists a continuous function f : Cω → Cω such that
for every perfect cube P there is an n < ω such that f ¹ P is one-to-one on
some section of n-th variable, and is constant on some other sections of the
same variable.

Proof. For n < ω let fn : C2 → C be defined by fn(x, y)(i) = y(n) · x(i).
Clearly fn is continuous. Moreover, if y(n) = 1, then fn(·, y) is the identity
function, so it is one-to-one; if y(n) = 0 then fn(·, y) is constant equal to 0.
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For 〈xn : n < ω〉 ∈ Cω define f(〈xn : n < ω〉) = 〈fn(xn+1, x0) : n < ω〉.
Then f is clearly continuous. Consider f restricted to a perfect cube P =∏

n<ω Pn. Let a, b ∈ P0 be distinct and let n < ω be such that a(n) 6= b(n).
Assume that a(n) = 0 and let z ∈ Cω\{n+1}. Look at f ¹ P on a section given
by z and note that: if z(0) = a, then f ¹ P is constant on this section; if
z(0) = b, then f ¹ P is one-to-one on this section.
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