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Abstract

Continuities on Subspaces

Timothy J. Glatzer

We define a generalized continuity by declaring that for any family S of
subsets of a topological space X, a function f : X → Y is S-continuous
if for each S ∈ S, the function f |̀S : S → Y is continuous. This is easily
seen to generalize such well known concepts as separate continuity and linear
continuity. Using this definition as a way to unify several disparate results,
we attempt to create a theory of S-continuity. As a part of this program, we
give constructions for S-continuous functions for several natural classes S,
describe the sets of discontinuities of such functions (characterizing several
classes), and discuss the regularity of such functions.
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Chapter 1

Preliminaries

1.1 Introduction

The concept of limit, and hence of continuity, is more complicated for func-

tions defined on Rn when n > 1 than it is for functions defined on R. For

example, in R2, the plurality of routes to the point 〈x0, y0〉 complicates the

calculation of the expression lim〈x,y〉→〈x0,y0〉 f(x, y). Usually, the way that

this phenomenon is demonstrated to students is through a function like the

following.

f(x, y) =


2xy
x2+y2

if 〈x, y〉 6= 〈0, 0〉,

0 if 〈x, y〉 = 〈0, 0〉.
(1.1)

This function is discontinuous at the origin. For every neighborhood U of

〈0, 0〉, there is a point of the diagonal D = {〈x, x〉 : x ∈ R} in U , and at this

point, f takes the value 1. However, every such neighborhood contains 〈0, 0〉

where the function takes the value 0. Hence, the oscillation of f at 〈0, 0〉 is
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equal to 1. However, for any fixed x0 ∈ R, the function fx0(y)
def
= f(x0, y)

is continuous. Also, for every fixed y0, the function f y0(x)
def
= f(x, y0) is

continuous. We frequently use the notation f(·, y0) for the function f y0(x)

and f(x0, ·) for the function fx0(y). So, the function f(x, y) has the property

that f(·, y) and f(x, ·) are continuous, for each x and y, although f(x, y) is

discontinuous. In general, a function f : Rn → R is called separately contin-

uous if for each i between 1 and n and each fixed (x1, . . . , xi−1, xi+1, . . . xn)

the function f(x1, . . . , xi−1, ·, xi+1, . . . , xn) is continuous.

Separate continuity is here defined rather algebraically – as the continuity

of the function “in each variable.” However, the geometric interpretation of

this concept is what best allows us generalize this concept further. Geomet-

rically, the content of separate continuity is that the function is continuous

when restricted to any line parallel to any of the coordinate axes. The fact

that discontinuous separately continuous functions exist, coupled with this

geometric description invites the question “Are there discontinuous functions

whose restriction to any line is continuous?” Again, the answer has been

known for quite some time. Consider the following function, first published

in 1884, in a calculus text by Gennochi and Peano [21].

f(x, y) =


xy2

x2+y4
if 〈x, y〉 6= 〈0, 0〉

0 if 〈x, y〉 = 〈0, 0〉
(1.2)

Clearly, the only discontinuity can be at the origin. Notice, that for any line
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of the form y = cx, we have the following

lim
x→0

f(x, cx) = lim
x→0

cx3

x2 + c4x4
= 0.

Also, if we look at the y-axis, we see that

lim
y→0

f(0, y) = lim
y→0

0

0 + y4
= lim

y→0
0 = 0.

Thus, every restriction of the function to a line is continuous. However, note

that every neighborhood of the origin contains a point of the parabola y = x2.

Evaluating the function at such a point, we have

f(y2, y) =
y4

2y4
=

1

2
6= 0.

Hence, the function has positive oscillation at the origin, and is therefore dis-

continuous there. Functions, such as the function of (1.2) whose restriction

to any line is continuous are called linearly continuous. Separate continu-

ity and linear continuity are just two examples of what we call restriction

continuities. For any family S of subsets of our domain, X, we can define a

restriction continuity by decreeing that a function f : X → Y is S-continuous

if, and only i,f the restriction f |̀S is continuous for every S ∈ S.

There is a wealth of past results on related subjects, however, many of

these results did not treat restriction continuities in general as an object of

study. One of the purposes of this document is to create a formal frame-

work in which these generalized continuities can be studied. To this end, we

discuss ways in which several seemingly disparate results are related. How-
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ever, the main raison d’etre of this document is to answer basic questions

related to restriction continuities. The questions tend to fall into several

broad categories. In the main, we shall focus on describing the sets of dis-

continuity of an S-continuous function for various S, determining how the

different classes of S-continuity relate to one another, and the construction

of functions satisfying these continuities.

1.2 Terminology

Our terminology and notation choices are fairly standard, with the exception

of our somewhat unusual notation for balls in metric spaces. We denote by

B(x, r) the open ball of radius r centered at x. For the closure of the ball

B(x, r), we write B[x, r]. We denotre the open and closed balls of radius

r centered at the origin as B(r) and B[r] respectively. The metric in Rn

will usually be denoted by ||x − y|| if n > 1. Furthermore, in any metric

space Z, for any point x ∈ Z and subset S ⊂ Z, we may define the quantity

dist(x, S) = inf{d(x, s) : s ∈ S}.

We will follow the set theoretic terminology used by Ciesielski [7], our

topological terminology will follow Engelking [18], and our analytic termi-

nology will follow Royden [42], Oxtoby [35], and Falconer [20]. In particular,

following [7], we identify a function with its graph and denote the first infi-

nite ordinal by ω. Given a function f : X → Y between topological spaces

X and Y , we denote the restriction of f to a subset S of X by f |̀S. The

restriction of f to S is the function f |̀S : S → Y where (f |̀S)(x) = f(x) for

all x ∈ S. The support of a function f , denoted supp(f) is the closure of the
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set {x : f(x) 6= 0}.

The notation Cn(X, Y ) will denote the set of all n-times continuously dif-

ferentiable functions from X to Y , where X and Y possess sufficient structure

to allow “differentiability” to be defined, e.g. they may be subsets of Rn. If

Y = R, then we suppress its mention. If Y = R and X is obvious from

the context, we supress the argument entirely and write Cn. The notation

“Cn(X, Y )” will refer to the set of n-times continuously differentiable func-

tions, when we allow the n-th derivative to assume infinite values. Likewise

Dn(X, Y ) will be the set of all functions with n derivatives. The set of real

analytic (i.e. possessing convergent real Maclaurin series) functions from X

to Y will be denoted A(X, Y ). Since, we identify a function with its graph,

the notation Cn(Rn) can refer to the set of all n-times continuously differen-

tiable real-valued functions on Rn, or the set of all such graphs of functions

sitting in Rn+1. Similar remarks apply to the other classes of functions. The

set of all Lipschitz functions defined on a space X is denoted Lip(X).

A curve is understood as the range of a continuous injection α : J → Rn,

where J is an interval and α = 〈h1, h2, . . . , hn〉. We will call a curve C1

if hi is C1 for all 1 ≤ i ≤ n and we shall call a curve smooth if it is C1

and 〈h′1(t), h′2(t), . . . h′n(t)〉 6= 〈0, 0, . . . , 0〉 for every t ∈ J . Furthermore, our

curve will be said to be Cn if it is C1 and its coordinate functions are n

times continuously differentiable. Similarly, a curve is Dn (for n > 1) if it is

C1 and its coordinate functions are n-times differentiable. We will also have

occasion to discuss analytic curves ; C1 curves whose component functions are

real analytic. The class of all Cn curves (respectively Dn curves or analytic

curves) is denoted C(Cn), (repectively C(Dn) or C(A)).
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We use the above sets to describe various restriction continuities. For

any of the classes of curves, C, we may study C-continuous functions. We

will also study S-cotninuous function for various affine sets S. For functions

f : Rn → R, we say that f is separately continuous if f |̀L is continuous

for every line L parallel to some coordinate axis. If f |̀L is continuous for

every line, we say that f is linearly continuous. Besides lines, we are also

interested in the case when S is a class of flats. A k-flat in Rn is a translate

of a k-dimensional subspace. If f |̀F is continuous for every k-flat F , then we

say that f is k-flat continuous or Fk-continuous. If f |̀F for every k-flat F

parallel to some set of coordinate axes, then we say that f is F+
k -continuous.

For any function f : X → Y for any topological spaces X and Y , we

denote by D(f), the set {x : f has a discontinuity at x}. D(f) is sometimes

called the discontinuity set of f . We also denote by C(f) the set {x : f is

continuous at x}. This set is frequently called the continuity set of f .

A major part of our investigations shall be focused on the study of sets

of discontinuity of various classes of functions. The collections of sets under

consideration will be denoted as follows: D1,n
def
= {D(f) : f : Rn → R is

linearly continuous}, D+
1,n

def
= {D(f) : f : Rn → R is separately continuous}.

Dk,n
def
= {D(f) : f : Rn → R is Fk-continuous }, D+

k,n

def
= {D(f) : f : Rn → R

is a k-continuous function }. For general collections S of subsets of X, we

use DS
def
= {D(f) : f : X → Y is S-continuous}.

To discuss families of S-continuous functions, we use the following no-

tation. For any family S of subsets of a space X, we denote the set of

S-continuous functions by CS(X). If S is the set of all lines (respectively k-

flats) the set of S-continuous functions on Rn is denoted by Cn1 . (respectively
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Cnk .)

Furthermore, we shall say that a function f : X → Y (for any topological

spaces X and Y ) is Darboux if for every connected subset C of X, f [C] is a

connected subset of Y . The function f will be said to be of the first Baire

class (or Baire class 1), a statement denoted f ∈ B1, if f(x) = limn→∞ fn(x)

where each fn is continuous. In general, we say that f is of the nth Baire

class (denoted f ∈ Bn) if f(x) = limn→∞ fn(x) and each fn is of Baire class

less than n. It is worth noting that all derivatives are Darboux and of the

first Baire class, however, the intersection of these two classes contains more

than just derivatives. See, for example, [5], for details.

A set which is a countable union of closed sets is called an Fσ set and

a set which is a countable intersection of open sets is called a Gδ set. A

countable intersection of Fσ sets is called an Fσδ set, while a set which is a

countable union of Gδ sets is called a Gδσ. For more on these classes, see [7,

Section 6.2].

We denote n-dimensional Lebesgue measure by λn and the s-dimensional

Hausdorff measure by Hs. The Hausdorff dimension of a set X will be

denoted by dimH(X), while the topological (Menger) dimension of X will be

denoted by dimtop(X). For more on these notions, see [20] and [18, Chapter

7]. A property holds for almost all points if the set of points for which

the property does not hold has measure zero. If we do not state the measure

which we are using, the phrase “almost all” will be construed to mean almost

all with respect to the relevant Lebesgue measure.

The Lebesgue lower density of the set E ⊂ Rn at the point x is the
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quantity

Φ(E, x) = lim inf
r→0

λn(E ∩B(x, r))

λn(B(x, r))
.

A theorem of Lebesgue (see [35]) states that for every measuarable set E, this

quantity is 1 at almost all points of E and 0 at almost all points outside of E.

A set is density open if its Lebesgue lower density is 1 at all of its points. The

family of all density open sets is called the density topology. A deep theorem

about the density topology is that this topology is regular. Temporarily

denote the density topology on Rn by TD and the natural topology on Rn

by T . A function f : Rn → Rn is called approimxately continuous if the

function f : (Rn, TD)→ (Rn, T ) is continuous. More on the density topology

and approximately continuous functions can be found in [13] and [5].

We use the following classical notions to describe the continuity of func-

tions. The oscillation of a function f on a set E is defined as

osc(f, E) = sup
x∈E

f(x)− inf
x∈E

f(x)

and the oscillation of a function f at a point x is defined by

osc(f, x) = lim
δ→0+

osc(f,Bδ(x)).

Note that f is continuous at x if and only if osc(f, x) = 0. Details may be

found in [35, Chap. 7]. We also make use of the modulus of continuity

ω(f, δ) = sup{|f(x)− f(y)| : ||x− y|| < δ}.

A function is uniformly continuous if and only if limδ→0+ ω(f, δ) = 0. For
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details, see [4].

An isometry is a mapping, φ, between metric spaces, (X, d1) and (Y, d2),

so that for all x1, x2,∈ X, d1(x1, x2) = d2(φ(x1), φ(x2)). We say that two

subsets of Rn are isometric provided there is an isometry of Rn whichs maps

one onto the other. We note that a k-flat is a set in Rn isometric to Rk. We

denote the class of all k-flats in Rn by Fk(Rn). Thus the class of all lines

in Rn is written as F1(Rn) and the class of all hyperplanes in Rn is denoted

Fn−1(Rn). The class of all k-flats in Rn which are parallel to the flat spanned

by some collection of the coordinate axes will be written F+
k (Rn). Again, if

the underlying space is obvious, we suppress its mention. When not in the

context of flats, the class of lines in Rn is sometimes denoted by L(Rn) or

as just L if the underlying space is understood. We note that a set of at

least k + 1 points of Rn is in general position if no k − 1-flat contains k of

them. A set is convex if for each pair of points x, y ∈ X, the line segment

xy is contained entirely in X. . Then convex hull of a set S, conv(S) is the

smallest convex set containing S. For more on these notions, see any text on

convexity, for instance [22] or [28].

1.3 History

Despite the fact that there are many interesting results in the area of restric-

tion continuities, it is worth mentioning that 200 years ago, the idea that

such functions might exist was not even entertained. In his Cours d’Analyse

[6], Cauchy stated that a function f : R2 → R is continuous if and only if it

is continuous in each variable separately. The first known counterexample
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to this statement was published by J. Thomae (though given by Heine, see

[38]) in an 1870 treatise on complex analysis [46]. The function in Thomae’s

text,

f(x, y) =

sin(4 tan−1(x
y
)) if y 6= 0

0 if y = 0

is continuous in each variable, since for any fixed x, limy→0 4 tan−1(x
y
) = π.

However, this function is discontinuous at the origin, since every nieghbor-

hood of the origin contains points of the diagonal (x, x), and at these points

f takes on the value f(x, x) = sin(4 tan−1(1)) 6= 0. During the later half of

the nineteenth century, as the field which we would now call real analysis

was being born, several types of what we have called restriction continuities

arose in research. In particular, in 1884, a calculus treatise [21] by A. Genoc-

chi and G. Peano (however, primarily due to Peano, see [38]) first noted the

existance of discontinuous, but linearly continuous functions, giving as an

example the function from equation (1.2).

As analysis matured, studies on restriction continuities began to focus

on several different questions. One strand of thought, primarily advanced by

Baire and Lebesgue, was focused on the regularity of S-continuous functions.

Another. spearheaded by Scheefer and Lebesgue began studying how large

a class S could be while still allowing for a discontinuous S-continuous func-

tions. The last branch, perhaps most represented by the work of H. Hahn

and the husband and wife team, W.H. and G.C. Young, consisted of finding

how large a set of discontinuities that S-continuous functions could have for

various S. In this work, we mostly concern ourselves with the first and third
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branches. The reader interested in the second is referred to [16] for a modern

paper pursuing this topic.

The study of regularity of S-continuous functions saw its first major re-

sult, according to Baire [2], when V. Volterra noticed that every separately

continuous function f : R2 → R satisfied a topological condition called quasi-

continuity. A function f : X → Y is quasi-continuous at a point x if for every

pairs of open sets U ⊂ X and W ⊂ Y , with x ∈ U and f(x) ∈ W , there is

a nonempty open subset V ⊂ U such that f [V ] ⊂ W . Note that this differs

from continuity only in the fact that the point x need not be in V . A function

is quasi-continuous if and only if it is quasi-continuous at every point. Baire

furthered this train of thought, showing that every separately continuous

function f : R2 → R is of the first Baire class, and that there is a residual set

of lines parallel to each axis and such that each point of these lines is a conti-

nuity point of f . Baire’s results were generalized by H. Lebesgue, who after

independently discovering Baire’s result on the Baire category of separately

continuous functions defined on R2 [29], continued the proof inductively [30]

to show that if f : Rn → R is separately continuous, then f ∈ Bn−1. In this

paper, he also proved that this was sharp; in particular, we have the following

theorem.

Theorem 1.3.1 If f : Rn → R is separately continuous, then f ∈ Bn−1.

Conversely if f : R → R, and f ∈ Bn, then there exists a separately con-

tinuous F : Rn+1 → R with F (x, x, . . . , x) = f(x). Hence the set Bn(R) is

equal to the set of all functions obtained by restricting separately continuous

functions on Rn+1 to the diagonal.

The first half of this statement and several generalizations of it, may easily
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be inferred from the following easy lemma, first brought to the attention of

the author in this general form by Prof. Z. Piotrowski (see [36]).

Lemma 1.3.2 Let X, Y , and Z be metric spaces. If f : X × Y → Z given

by 〈x, y〉 7→ f(x, y) is such that

• f(·, y) ∈ C for all y0 ∈ Y and

• f(x, ·) ∈ Bα for every x ∈ X

then f ∈ Bα+1.

The reader interested in spaces of infinite dimension should know that

Lebesgue’s result fails spectacularly in this context. It has been shown

by Marczewski and Ryll-Nardzewski [31] that given an arbitrary function

f : R → R, there is a separately continuous function F : R∞ → R such that

F (x, x, . . .) = f(x).

It worth noting that no concerted effort appears to have been made to

discuss the Baire class of functions satisfying restriction continuity conditions

other than that of separate continuity. This is most likely because for most

classes S of interest in this study, the class CS is contained in the class of

separately continuous functions. Note that it follows that any separately

(and hence linearly, etc.) continuous function is measurable.

The second stream of thought began taking shape around the work of

Scheefer [43] and Lebesgue [30] who showed (in two different contexts) that a

function could be continuous along every analytic path yet be discontinuous,

i.e., that the class of C(A)-continuous functions does not coincide with the
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class of continuous functions. The natural question to ask at this point was

“For which classes of graphs F , does F -continuity imply continuity?”

Progress on this question came from Lusin, who proved that C(C)-continuity

is the same continuity. In particular, he proved the following result. For more

information, and generalizations, see [17].

Theorem 1.3.3 Let F be the collection of continuous functions [a, b] →

[c, d] and continuous functions [c, d] → [a, b]. Then any function f : [a, b] ×

[c, d]→ R is continuous if and only if it is F -continuous.

The question of which families, F , of graphs have the property that F -

continuity coincides with continuity was almost fully answered by Rosenthal

in 1955 (see [41]).

Theorem 1.3.4 If f : Rn → R is C(C1)-continuous, then f is continuous,

however, there is a discontinuous function, which is C(C2)-continuous.

In fact, Rosenthal proves more; if one only checks that every restriction

of f : R2 → R to some convex C1 curve, then f is continuous. In higher

dimensions, the same is true with “convex” replaced by a condition Rosenthal

names “primitive”, which is a recursively defined condition on the projections

of a curve, which reduces to convexity in the case the curve is a subset of R2.

The importance of our definition of curve in the above theorem is made

salient by contrasting the theorem to the following special case of a theorem

of Boman (see [3] or [24] for details).

Theorem 1.3.5 Let F : R2 → R be a function and assume that for all

C∞ functions h1, h2 : R → R the composition F ◦ 〈h1, h2〉 is continuously

differentiable. Then F is continuous.
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Boman’s result does not contradict Rosenthal’s since according to the

definition of C1 used in Rosenthal’s results, our curves must have a non-

vanishing tangent at every point, while Boman’s curves need only be infinitely

differentiable. In the language of differential geometry, Rosenthal’s curves are

immersions of the interval, while Boman’s are merely infinitely differentiable

images of the interval.

The third line of research in the area of restriction continuities concerns

the structure of their discontinuity sets. It appears that the first step toward

understanding these sets came from Baire [2], who in 1899 showed that there

is a separately continuous function f : R3 → R such that D(f) contains a

line segment. This result was expanded by Hahn [23] who observed that if

f : R2 → R is the function from expression (1.1), then the function g : Rn →

R defined by

g(x1, x2, . . . xn) = f(x1, x2)

is discontinuous at every point of the (n−2)-dimensional region x1 = x2 = 0;

hence showing that D(f) may contain (n − 2)-dimensional rectangles for

separately continuous f .

The problem of deciding “how discontinuous” a separately continuous

function can be was settled by Kershner [25], who, in 1943, characterized the

sets of discontinuities of separately continuous functions with the following

theorem.

Theorem 1.3.6 For any set D ∈ Rn there is a separately continuous func-

tion f : Rn → R with D(f) = D if, and only if, D is an Fσ set and every

orthogonal projection of D onto a coordinate hyperplane is of first category.
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Note that the discontinuity set of any function is an Fσ set (or see [35]),

hence the only new condition imposed by this theorem is that the projections

be small. Many generalizations of this theorem exist, including versions valid

on various topological spaces. The reader will find [4] and the historical

survey therein particularly illustrative of the nature of these results.

Studies on the structure of D(f) where f is linearly continuous exist,

but they are not as penetrating as those for separately continous functions.

One of the earliest such results can be found in a paper by W.H. and G.C.

Young ([47]), published at the dawn of the twentieth century which exhibited

many linearly continuous functions with large discontinuity sets. The most

impressive example in this paper is a function f : [0, 1]× [0, 1]→ R for which

D(f) is uncountable and dense in every open subset of its domain. Linearly

continuous functions were little studied after Young and Young’s paper, until

1944, when A. S. Kronrod took a course on the theory of real functions

from N. Lusin (by then a rare opportunity.) The course influenced him to

begin a research program toward the development of a geometric theory of

real functions (see [27]). This research program led to Kronrod asking for

a description of the set of discontinuities of linearly continuous functions

defined on the plane. The first partial answer to Kronrod’s challenge came

from S. Slobodnik [45], who gave the following necessary condition for a set

D to be a discontinuity set of some linearly continuous function.

Theorem 1.3.7 IfD = D(f) for some linearly continuous function f : Rn →

R, then D =
⋃∞
i=1Di, where each Di is isometric to the graph of a Lipshitz

function defined on a nowhere dense subset of Rn−1.

Being as the n-dimensional Lebesgue measure of the graph of a Lipshitz
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function defined on an (n− 1)-dimensional space is 0 (see [20]), Slobodnik’s

result tells us that if f is linearly continuous, then λn(D(f)) = 0 (recall λn

is n-dimensional Lebesgue measure), and that D(f) is of the first category.

Hence, although separately continuous functions can have discontinuity sets

of full measure (see [45]), the discontinuity set of a linearly continuous func-

tion cannot. Furthermore, Slobodnik proved that various projections of the

sets D ∈ D1,n are “small”.

Theorem 1.3.8 Let f : Rn → R be linearly continuous. In the decompo-

sition in Theorem 1.3.7 of D(f), the orthogonal projection of any Di onto

any hyperplane is nowhere dense in this hyperplane. Furthermore, for every

x ∈ Di is the central projection of Di \ {x} through x onto any hyperplane

in Rn \ {x} is nowhere dense in that hyperplane.

The central projection through x onto a hyperplane of the above theorem

is defined as follows, for a point x ∈ Rn and hyperplane H ⊂ Rn \ {a},

the central projection is the set CaH ∩ H where CaH is the set of all rays

~ab, with b ∈ H. Slododnik’s response to Kronrod’s challenge would be the

only voice in this direction for twenty years. However, in 1997, E. E. Shnol’,

recalling some conversations with Kronrod and evidently unaware of Slobod-

nik’s results (or, for that matter, Kershner’s), proved a necessary condition

very much like Slobonik’s Theorem 1.3.8 (incorrectly listed as necessary and

sufficient in the English translation) on the sets of D1,2 [44].

Theorem 1.3.9 A set F ⊂ R2 is a set of the form {~x = 〈x, y〉 : osc(f, ~x) ≥ a}

only if the set of directions in which points of F are seen from any point O

constitutes a nowhere dense set.
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In the above theorem, a point P ∈ F can be seen from a point Q in a

direction α if there is a line segment from Q to P in the direction α. Note that

this is basically the central projection of Theorem 1.3.8, except that instead

of projecting onto a hyperplane, we are projecting onto an (n − 1)-sphere.

The result of Shnol’ can be found in more general form in Slobodnik’s work,

however, Shnol’s paper gives much attention to the construction of many

sets fitting his description, which is absent in Slobodnik. Shnol’, following

Kronrod’s interests, paid no attention to this problem in dimension higher

than 2, and in fact, his methods make heavy use of the fact that in R2, the

dimension and codimension of a line both equal 1, and hence these methods

cannot be directly extended to higher dimensional cases.
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Chapter 2

Basic Results

2.1 Introduction

In this chapter, we gather some basic results for restriction continuities, in

some generality. The results are not difficult; however, they do originate with

this document. While we note that, throughout the literature, the study of

restriction continuities has focused on geometrically natural subsets of Rn or

their obvious generalization to more general spaces, in order to add breadth

and perspective to our study, we strive for maximum generality in this sec-

tion. To keep our discussion as broad as possible, we work with topological

spaces X and Y , imposing as few conditions imposed on them as necessary.

We will also assume the family S of subsets of X to be nonempty so as to not

have to tiresomely repeat a consideration of a trivial case. The first thing

which we wish to note is that all restriction continuities are generalizations

of continuity.
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Proposition 2.1.1 Let X and Y be topological spaces. Let S be a family

of subsets of X. If f : X → Y is continuous, then f is S-continuous.

Although, we have a definition of restriction continuity, note that we

could give the following as an alternative definition.

Definition 2.1.2 Let X and Y be topological spaces. Let S be a family of

subsets of X. A function f : X → Y is S-continuous at a point p ∈ X if for

every open set V ⊂ Y containing f(p), there is an open set U ⊂ X such that

p ∈ U , f [U ∩ S] ⊂ V for every S ∈ S containing p.

When convenient, we will use this definition.

Proposition 2.1.3 Let X and Y be topological spaces. Let S be a family of

subsets of X. If f : X → Y is continuous at a point x, then f is S-continuous

at x.

Propositions 2.1.1 and 2.1.3 follow immediately from the definitions of

continuity and continuity at a point. Our next examples show that there are

plenty of cases in which restriction continuities do not expand the notion of

continuity at all.

Example 2.1.4 If X and Y are topological spaces and S = {X}, then S-

continuity coincides with continuity. This also holds if S is any subbasis for

the topology on X.

Example 2.1.5 If X is a first-countable topological space, Y is any topo-

logical space, and S is the set of all convergent sequences of points of X

together with their limits, then S-continuity and continuity coincide. This
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follows from the fact, see [18, p. 78] that sequences are sufficient to dectect

the continuity points of a function defined on a first-countable space.

Conversely, the following example shows we can find S such that S-

continuity is more of a generalization than is useful.

Example 2.1.6 If X and Y are topological spaces and S is the family of

all singleton subsets of X, then every function f : X → Y is S-continuous.

The same is true is true if every element of S is a set all of whose points are

isolated.

The three above examples show that restriction continuity is not always

an interesting notion at all. The study of restriction continuities will have to

focus on those choices of S which fall between the extreme of not generalizing

continuity at all and generalizing it too far, including all possible functions.

2.2 Basic Theorems

The primary focus of this section will be on the relation between the family S

and the set of S-continuous functions. The first difficulty in this study comes

in the following form. If P represents the power set operation and F (X, Y )

represents the set of all functions from X to Y , then we may consider the

mapping Ψ: P(P(X)) → P(F (X, Y )), defined by Ψ(S) = CS , where we use

our convention CS = {f : X → Y : f is S-continuous}. This function is not

injective, since given any collection S, we may add any number of singleton

sets to it without changing CS . To explore this facet of the theory, we prove

a theorem which explains, at least to some extent, how “non-injective” the
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mapping Φ is. The first of which we have already informally stated and which

follows easily from Example 2.1.6.

Lemma 2.2.1 Let X and Y be topological spaces and let S be a family of

subsets of X. Let S0 be the union of the family S with the family of all

singleton subset of X. Then the classes CS and CS0 coincide.

We state several simple related lemmas to prove a theorem which will

simplify our approach.

Lemma 2.2.2 If f : X → Y is a function such that f |̀S is continuous for

some S ⊂ X and T is any nonempty subset of S, then f |̀T is continuous.

Furthermore, if f |̀T is continuous for every subset of T of S, then f |̀S is

continuous.

Proof. One direction follows trivially from the fact that inclusion maps are

continuous and compositions of continuous functions are continuous and the

other is a consequence of the fact that for any set S, we have S ⊂ S.

Lemma 2.2.3 If f : X → Y is a function s such that there exist closed sets

M and N , with f |̀M and f |̀N continuous, then f |̀ (M ∪N) is continuous.

Proof. Let C ⊂ Y be closed. Then C1 = f−1(C)∩M and C2 = f−1(C)∩N

are closed. Hence C1 ∪ C2 = f−1(C) ∩ (M ∪N) is closed.

Lemma 2.2.4 If f : X → Y is a function between topological spaces such

that there exists a collection {Uα : α ∈ A} of open subsets of X where f |̀Uα
is continuous for each α ∈ A, then f |̀ (

⋃
α∈A Uα) is continuous.
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Proof. Let V ⊂ Y be open. Then Vα = f−1(V ) ∩ Uα is open for each

α ∈ A. Then
⋃
α∈A Vα is open in

⋃
α∈A Uα.

Combining these lemmas, we arrive at the following theorem.

Theorem 2.2.5 Let X and Y be topolgical spaces. Let S be a family of

subsets of X. Let S∗ be the family generated from X by adding to it all

singleton subsets of X, the union of any finite number of closed subsets of

S and the union of any collection of open elements of S, and then closing

this collection under taking subsets. Then S-continuity and S∗-continuity

coincide.

We may therefore always assume that
⋃
S = X and if convenient, we

may choose to only study the families S∗. Furthermore, if we consider any

family of subsets T with S ⊂ T ⊂ S∗, then S-continuity and T -continuity

coincide.

Note that we only include unions of open and closed sets. That we cannot

include unions of arbitrary sets is a consequence of the following example.

Example 2.2.6 Let X = Y = R. Let S = {Q,R \Q}. Then the character-

istic function of the rationals, χQ is S-continuous, however, if we extend S

to a family T which includes the union of Q and R \ Q, i.e. R, then χQ is

not T -continuous.

Having made the reduction of Theorem 2.2.5, we will now focus on the

problem of combining families of sets in various ways and which functions

are continuous when restricted to them. Let S1 and S2 be two families of

subsets of X.

The following proposition is an obvious consequence of Theorem 2.2.5.
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Proposition 2.2.7 If S1 and S2 are collections of subsets of X such that for

every S ∈ S1, there is a T ∈ S2 such that S ⊂ T . Then CS2 ⊂ CS1 .

Proposition 2.2.8 CS1∪S2 = CS1 ∩ CS2 .

Proof. If f ∈ CS1 ∩ CS2 , then f |̀S is continuous for any S ∈ S1 ∪ S2,

hence f ∈ CS1∪S2 . The opposite inclusion is proved by noting that if f |̀S is

continuous for any S ∈ S1 ∪ S2, then f ∈ CSi for i = 1, 2.

Similarly proved is the following proposition.

Proposition 2.2.9 Let S1 and S2 be families of subsets of a set X. Then

CS1 ∪ CS2 ⊂ CS1∩S2 .

However, equality need not hold, as shown by the following example.

Example 2.2.10 Consider, for simplicity X = R. Let S1 = {Q,R}, while

letting S2 be the set of all (Lebesgue) measure zero subsets of R. Then the

characteristic function of the rationals is in CS1∩S2 , however, it is clearly not

in CS1 . It is not in CS2 , since the set Q ∪ {π} is of measure zero.

Before we close this section, we note the basic relationships that hold

between S, CS , and DS .

Proposition 2.2.11 S1 ⊂ S2 =⇒ CS2 ⊂ CS1 .

Proof. Let S1 and S2 be two collections of subsets of X, with S1 ⊂ S2. Let

f : X → Y be S2 continuous. Since every S ∈ S1 is also an element of S2,

f |̀S is continuous for every S ∈ S1. Hence f is S1-continuous.
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Similarly, assume that there are two collections of subsets of X, S1 and

S2 are such that CS1 ⊂ CS2 . Then since every function f in CS1 is in CS2 , and

so D(f) ∈ DS2 . Hence the following result.

Proposition 2.2.12 CS1 ⊂ CS2 =⇒ DS1 ⊂ DS2 .

We note, before leaving this section, one final result, related to our first

topic in this section. We noted the mapping Ψ: P(P(X)) → P(F (X, Y ))

defined by Ψ(S) = CS is not, in general, a bijection. We also note that the

partial mapping Φ: P(F (X,R))→ P(P(X)) defined by Φ(CS) = DS is not,

in general, a bijection. For instance, let X = R2 and consider the set S1
consist of all lines parallel to either the x or y axis not passing through the

origin, as well as both the x and y axes with their origins deleted. Let S2
consist of all lines parallel to either the x or y axis.

Although functions such as

f(x, y) =


2xy
x2+y2

if 〈x, y〉 6= 〈0, 0〉,

1 if 〈x, y〉 = 〈0, 0〉.

exist which are in CS1 but not CS2 , every such function is identical to some

separately continuous function at all points except the origin. So if f ∈

CS1 \ CS2 and if g |̀ (R2 \ 〈0, 0〉) = f |̀ (R2 \ 〈0, 0〉) then D(f) \D(g) consists of

at most one point. However, D(g) is an Fσ set whose projections are of the

first category. Since the singleton consisting of just the origin is closed D(g)∪

{〈0, 0〉} is also an Fσ set. Since the projections of D(g) are first category,

their union with the nowhere dense set {〈0, 0〉} remains first category. So

D(f) = D(g)∪{〈0, 0〉} is an Fσ set whose projections are first category, and
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hence is the set of discontinuities of some separately continuous function.

Thus Φ is not bijective.

2.3 A Basic Lemma

In this section, we present a lemma which will enable us to construct many

discontinuous functions which obey some form of restriction continuity. In

almost every subsequent chapter, we will use some form of this lemma, usu-

ally, with Rn standing in for X and with some family of curves or surfaces

standing in for S.

Lemma 2.3.1 Let S be a family of sets in some metric space X and let

{Dj ⊂ X : j < ω} be a pointwise finite family (that is, each point is contained

in only finitely many of the elements of the family) of open sets in X such

that

(F) the set {j < ω : Dj ∩ S 6= ∅} is finite for every S ∈ S.

Then for every sequence 〈Fj : j < ω〉 of continuous functions from X into

R such that supp(Fi) ⊂ Di for all i < ω, the function F
def
=
∑

j<ω Fj is

S-continuous. Moreover, if

• the Dj’s are pairwise disjoint

• the diameters of the sets Dj go to 0, as j →∞,

• P̂ is the set of all z ∈ X for which every open U 3 z intersects infinitely

many sets Dj, and

• each function Fj is onto [0, 1],
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then P̂ = D(F ) = {z ∈ X : ωF (z) = 1}.

Proof.The first part is obvious. The second follows easily from the fact,

that, for any z ∈ P̂ , every open U 3 z contains infinitely many sets Dj.
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Chapter 3

C(D2)-continuous Functions

with Large Discontinuity Sets

3.1 Introduction

This chapter studies the C(D2)-continuous functions from R2 → R, following

closely the paper, [9]. Recall that the class C(D2) is the class of all D2 curves

in the plane. These functions are important in light of Rosenthal’s theorem

that any function all of whose restrictions to C1 curves are continuous is,

itself a continuous function. Thus, C(D2) is the largest differentiability class

of curves which can “miss” a discontinuity. While Rosenthal produced an

example of a C(C2)-continuous function with a single point of discontinuity,

he neither indicated the possible size of D(f) for C(C2)-continous f , nor did

he discuss the whether or not there exist C(D2) continuous functions. The

goal of this chapter is to clarify these points. We note that since any line in

Rn is a C2 curve, any C(C2)-continuous function is linearly continuous. Hence
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Slobodnik’s theorem, Theorem 1.3.7 tells us that if f is C(C2)-continuous on

Rn, then the Hausdorff dimension of D(f) cannot exceed n−1. In particular,

in R2, the Hausdorff dimension of D(f) for such an f is no more than 1.

Below, we construct a C(D2)-continuous (and hence C(C2)-continuous)

function on R2 whose discontinuity set is perfect. Note that in light of Ker-

shner’s theorem (Theorem 1.3.6), this is as large as it can be, from the point

of view of topology; we cannot create a second category example of such

a set. Furthermore, we are able to show that the 1-dimensional Hausdorff

measure of D(f) can be an arbitrarily large finite number. Hence, we answer

both questions with one function, in that there do exist discontinuous C(D2)-

continuous functions and that the Slobodnik’s upper bound on the Hausdorff

dimension of D(f) is sharp. The construction of our function requires some

complicated induction procedures. For the sake of simplicity, we show that

elementary methods (of the type explainable to an undergraduate) may be

used to construct a C(D2)-continuous function with a perfect discontinuity

set, however, the sets D(f) from these more simply constructed functions

must satistfy H1(D(f)) = 0. Hence they do not so readily demonstrate the

sharpness of Slobodnik’s upper bound.

3.2 The First Construction

We will construct in this section a C(D2)-continuous function f : R2 → R

whose discontinuty set has positive but finite 1-dimensional Hausdorff mea-

sure. In order to construct the function, we will use Lemma 2.3.1 with

P̂ = h � P , the graph of h restricted to P , where h and P are from the
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proposition below.

Lemma 3.2.1 For every M ∈ [0, 1) there exists a C1 function h : R → R

and a nowhere dense perfect P ⊂ (0, 1) of measure M such that for every

x̂ ∈ P :

h′(x̂) = 0 and limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 =∞. (3.1)

We will postpone the proof of Lemma 3.2.1 for now. However, we notice

here, that the limit limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 is a variant of the limit limx→x̂ 2h(x)−h(x̂)
(x−x̂)2 ,

which constitutes a generalized second derivative (related to Peano deriva-

tive) of h at x̂. Indeed, if h′′(x̂) exists, finite or infinite, then, by l’Hôpital’s

Rule, limx→x̂ 2h(x)−h(x̂)
(x−x̂)2 = limx→x̂ 2h

′(x)−0
2(x−x̂) = limx→x̂

h′(x)−h′(x̂)
x−x̂ = h′′(x̂). We

need Lemma 3.2.1 in its current form, since there is no C1 function h having

an infinite second derivative on a set of positive measure.1

The existance of the desired function is established in the following the-

orem, which follows from Lemma 3.2.1.

Theorem 3.2.2 Let h and P be as in Lemma 3.2.1. Then P̂ = h � P is

the set of points of discontinuity of a C(D2)-continuous function F : R2 → R.

Moreover, F can be made to have oscillation equal to 1 at every point from

P̂ .

Proof. Let {Jj : j < ω} be an enumeration, without repetitions, of bounded

connected components of R \ P . For every j < ω let Ij be the open middle

third subinterval of Jj and let Fj be a continuous function from R2 onto [0, 1]

1This follows, for example, from [1, thm. 19] (used with f = h′) which says that: for
any real-valued continuous function f defined on a set P ⊂ R of positive measure there
exists a C1 function g : R→ R which agrees with f on an uncountable set.
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with supp(Fj) contained in Dj = {〈x, y〉 ∈ R2 : x ∈ Ij & |y − h(x)| < |Ij|3},

where |Ij| is the length of Ij. We will show that the function F =
∑

j<ω Fj

is as required.

It is enough to show that setsDj satisfy the property (F) from Lemma 2.3.1

for the set C(D2), since all other assumptions of Lemma 2.3.1 are clearly sat-

isfied. This is made simpler in the case of R2 allowing D2 to be the set of

all graphs of twice differentiable functions y = f(x) and (D2)−1 to be the

set of the inverse relation of such graphs. Then, although it is not the case

that C(D2) = D2 ∪ (D2)−1 globally, this identity does hold in some neigh-

borhood of any point on any D2 curve, via the Implicit Function Theorem.

This is enough for us to see that C(D2)-continuity and D2∪(D2)−1 continuity

coincide.

To see that our sets Dj satisfy property (F), fix a D2 function g : R→ R.

We need to prove that both g and g−1 intersect only finitely many sets Dj.

To see that g intersects only finitely many sets Dj, by way of contradic-

tion, assume that there is an infinite set {jn : n < ω} such that g ∩Djn 6= ∅.

For n < ω choose 〈xn, yn〉 ∈ g ∩Djn . Then g(xn) = yn for all n < ω. Choos-

ing a subsequence, if necessary, we can assume that limn→∞ xn = x̂ ∈ P .

Then, by the definition of sets Dj, we have

lim
n→∞

(yn − h(xn)) = lim
n→∞

yn − h(xn)

xn − x̂
= lim

n→∞

yn − h(xn)

(xn − x̂)2
= 0, (3.2)

as limn→∞

∣∣∣yn−h(xn)(xn−x̂)2

∣∣∣ ≤ limn→∞
|yn−h(xn)|
|Ijn |2

≤ limn→∞ |Ijn| = 0. In particular,

g(x̂) = lim
n→∞

g(xn) = lim
n→∞

yn = lim
n→∞

(yn − h(xn)) + lim
n→∞

h(xn) = h(x̂)
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and

g′(x̂) = lim
n→∞

yn − h(x̂)

xn − x̂
= lim

n→∞

yn − h(xn)

xn − x̂
+ lim

n→∞

h(xn)− h(x̂)

xn − x̂
= h′(x̂) = 0.

Hence, by l’Hôpital’s Rule, limx→x̂
g(x)−g(x̂)
(x−x̂)2 = limx→x̂

g′(x)−0
2(x−x̂) = 1

2
g′′(x̂) and,

using (3.2) once more,

lim
n→∞

h(xn)− h(x̂)

(xn − x̂)2
= lim

n→∞

h(xn)− yn
(xn − x̂)2

+ lim
n→∞

g(xn)− g(x̂)

(xn − x̂)2
=

1

2
g′′(x̂),

where the first equation is justified by yn = g(xn) and h(x̂) = g(x̂). But this

contradicts the assumption on h that limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 =∞.

To see that g−1 intersects only finitely many sets Dj, by way of contradic-

tion, assume that there is an infinite set {jn : n < ω} such that g−1∩Djn 6= ∅.

For n < ω choose 〈xn, yn〉 ∈ g−1∩Djn . Then g(yn) = xn for all n < ω. Choos-

ing a subsequence, if necessary, we can assume that limn→∞ xn = x̂ ∈ P .

Then, ŷ
def
= limn→∞ yn = limn→∞(yn − h(xn)) + limn→∞ h(xn) = h(x̂) and

also g(ŷ) = limn→∞ g(yn) = limn→∞ xn = x̂. Since, by the assumptions from

Lemma 3.2.1, h′(x̂) = 0 we obtain

1 = lim
n→∞

g(yn)− g(ŷ)

yn − ŷ
· yn − ŷ
g(yn)− g(ŷ)

= lim
n→∞

g(yn)− g(ŷ)

yn − ŷ
· lim
n→∞

yn − h(x̂)

xn − x̂
= g′(ŷ) · h′(x̂) = g′(ŷ) · 0 = 0,

a contradiction.
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We now need to prove Lemma 3.2.1. The function h constructed in the

proof is a minor modification of a map f from [1, thm. 18].

Proof of Lemma 3.2.1. Let ε ∈ (0, 1) be such that M < 1− ε and let K

be a symmetrically defined Cantor-like subset of [0, 1] of measure 1−ε. More

precisely, the set K is defined as K =
⋂
n<ω

⋃
s∈2n Is = [0, 1] \

⋃
s∈2<ω Js,

where: 2n denotes the set of all sequences from n = {0, 1, . . . , n − 1} into

2 = {0, 1}; 2<ω =
⋃
n<ω 2n is the set of all finite 0-1 sequences; I∅ = [0, 1],

and, for any s ∈ 2n, Js is an open interval of length ε
3n+1 sharing the center

with Is, while Iŝ 0 < Iŝ 1 are the component intervals of Is \ Js. Note that

|Js| = ε
3n+1 <

1
3n+1 < |Is| ≤ 1

2n
for every s ∈ 2n, so the choice of Js is always

possible. Clearly the set K has the desired measure of 1 −
∑

s∈2<ω |Js| =

1−
∑

n<ω 2n ε
3n+1 = 1− ε.

For every s ∈ 2n let fs be a function from R onto [0, 1/(n+ 1)] defined as

fs(x) = 2
(n+1)|Js|dist(x,R \ Js), where dist(x, T ) = inf{|x− t| : t ∈ T} denotes

the distance from x to T . Then, the function h0 =
∑

s∈2<ω fs : R → [0, 1] is

continuous and our C1 function h : R → R is defined as h(x) =
∫ x
0
h0(t) dt.

Note that h is strictly increasing on [0, 1].

Let P be an arbitrary perfect subset of K of measure M , which is disjoint

with the set of all endpoints of the intervals Js, s ∈ 2<ω. We will show that

h and P are as required.

Clearly, for every x̂ ∈ P ⊂ K we have h′(x̂) = h0(x̂) = 0. To see the

other condition, first notice that for n > 1/ ln(4/3)

if x̂, x0 ∈ K ∩ Is for s ∈ 2n and x̂ 6= x0, then |h(x0)−h(x̂)|
(x0−x̂)2 ≥ ε

6
(4/3)n

(n+1)
. (3.3)
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To argue for (3.3), choose the largest m < ω such that x̂, x0 ∈ It for some

t ∈ 2m. Then m ≥ n, x̂ and x0 are separated by the interval Jt, and

|h(x0)− h(x̂)|
(x0 − x̂)2

=
|
∫ x0
x̂
h0(t) dt|

(x0 − x̂)2
≥
|
∫
Jt
h0(t) dt|
|It|2

=

1
2
|Jt| 1

(m+1)

|It|2
≥

1
2

ε
3m+1

1
(m+1)

(1/2m)2
.

Hence, |h(x0)−h(x̂)|
(x0−x̂)2 ≥

1
2

ε
3m+1

1
(m+1)

(1/2m)2
= ε

6
(4/3)m

(m+1)
≥ ε

6
(4/3)n

(n+1)
, as required, where

the last inequality holds, since the function f(x) = (4/3)x

x+1
is increasing for

x > 1/ ln(4/3), having derivative f ′(x) = (4/3)x[ln(4/3)(x+1)−1]
(x+1)2

.

Next, notice that

if s ∈ 2n, x ∈ Js, and x0 is an endpoint of Js, then |h(x)−h(x0)|
(x−x0)2 ≥ 3n+1

4(n+1)ε
.

(3.4)

To argue for (3.4), let x1 be the midpoint between x0 and x. Then h0 is

linear on the interval between x0 and x1 with the slope ± 2
(n+1)|Js| . Hence,

indeed,

|h(x)− h(x0)|
(x− x0)2

>
|h(x1)− h(x0)|

4(x1 − x0)2
=

1
2
(x1 − x0)2 2

(n+1)|Js|

4(x1 − x0)2
=

3n+1

4(n+ 1)ε
.

Finally, fix an x̂ ∈ P . We need to show that limx→x̂
|h(x)−h(x̂)|

(x−x̂)2 = ∞. For

this, we fix an arbitrarily large N and show that |h(x)−h(x̂)|
(x−x̂)2 ≥ N for the points

x close enough to x̂.

Let n0 be such that min
{
ε
6
(4/3)n

(n+1)
, 3n+1

4(n+1)ε

}
≥ 4N for all n ≥ n0 and let

s ∈ 2n0 be such that x̂ ∈ Is. Notice that x̂ belongs to the interior U of Is, as

x̂ ∈ P . Hence, it is enough to show that |h(x)−h(x̂)|
(x−x̂)2 ≥ N for every x 6= x̂ from

U . So, fix such an x.
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If x ∈ K, then |h(x)−h(x̂)|
(x−x̂)2 ≥ N follows immediately from (3.3). So, assume

that x /∈ K. Then x ∈ Jt for some t ⊃ s. Let x0 be the end point of

Jt between x and x̂. Notice, that x0 6= x̂, since x̂ ∈ P . Then, since h is

increasing on [0, 1], properties (3.3) and (3.4) imply

|h(x)− h(x̂)|
(x− x̂)2

=
|h(x)− h(x0)|

(x− x0)2
(x− x0)2

(x− x̂)2
+
|h(x0)− h(x̂)|

(x0 − x̂)2
(x0 − x̂)2

(x− x̂)2

≥ 4N
(x− x0)2

(x− x̂)2
+ 4N

(x0 − x̂)2

(x− x̂)2
≥ N,

finishing the proof.

3.3 The Second Construction

In this section, we give a simpler construction of a C(D2)-continuous function

f : R2 → R such that D(f) is a perfect set. In order to construct our function,

we will need the following lemma proved as [15, Example 4.5.1].

Lemma 3.3.1 There exists a homeomorphism h : R → R and a perfect set

P ⊂ R such that h and h−1 are “C2” and h |̀P is identically infinite.

Reall that “C2” is the class of functions with continuous second derivative,

where we allow the seond derivative to assume infinte values. Proceding much

the same way we did in the first section, we will construct a C(D2)-continuous

function whose discontinuity set will coincide with h |̀P .

Theorem 3.3.2 Let h and P be as in Lemma 3.3.1. Then there is a C(D2)-

continuous function F : R2 → R with D(F ) = h |̀P .
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Proof. Let {Jj : j < ω} be an enumeration, without repetitions, of bounded

connected components of R\P . For every j < ω let the Ij be the open middle

third subinterval of Jj and let Fj be a continuous function from R2 onto [0, 1]

with supp(Fj) contained in some rectangle Sj ⊂ Dj
def
= {〈x, y〉 ∈ R2 : x ∈

Ij & |y − h(x)| < |Ij|3}, where |Ij| is the length of Ij. Moreover, choose

Sj such that |πx(Sj)| < |πy(Sj)|3, where πx and πy denote the projection

maps onto the x and y axes, respectivley. We will show that the function

F =
∑

j<ω Fj is as required.

It is enough to show that sets Sj satisfy the property (F) from Lemma 2.3.1

for D2 ∪ (D2)−1. To see this, fix a D2 function g : R→ R. We need to prove

that both g and g−1 intersect only finitely many sets Dj, hence only finitely

many of the sets Sj.

To see that g intersects only finitely many sets Dj, by way of contradic-

tion, assume that there is an infinite set {jn : n < ω} such that g ∩Djn 6= ∅.

For n < ω choose 〈xn, yn〉 ∈ g ∩Djn . Then g(xn) = yn for all n < ω. Choos-

ing a subsequence, if necessary, we can assume that limn→∞ xn = x̂ ∈ P .

Then, by the definition of sets Dj, limn→∞ |yn − h(xn)| ≤ limn→∞ |Ijn |3 = 0,

and

g(x̂) = lim
n→∞

g(xn) = lim
n→∞

yn = lim
n→∞

(yn − h(xn)) + lim
n→∞

h(xn) = h(x̂).

So, since limn→∞

∣∣∣yn−h(xn)xn−x̂

∣∣∣ ≤ limn→∞
|yn−h(xn)|
|Ikn |

≤ limn→∞ |Ikn|2 = 0,

g′(x̂) = lim
n→∞

yn − h(x̂)

xn − x̂
= lim

n→∞

yn − h(xn)

xn − x̂
+ lim

n→∞

h(xn)− h(x̂)

xn − x̂
= h′(x̂).

36



This is the first major difference between the proof of Theorem 3.3.2 and

the proof of Theorem 3.2.2. Here, although for the occasional x̂, h(x̂) may

equal 0, this can happen at most finitely many times. So, we must proceed

a little differently from here out. This is also the source of the need for the

more complicated generalized second derivative. Notice that for any function

f which has a second derivative at x̂, we have, using L’Hôpital’s rule

lim
x→x̂

f(x)− [f ′(x̂)(x− x̂) + f(x̂)]

(x− x̂)2
= lim

x→x̂

f ′(x)− f ′(x̂)

2(x− x̂)

=
1

2
f ′′(x).

So limn→∞
h(xn)−[h′(x̂)(xn−x̂)+h(x̂)]

(xn−x̂)2 should be equal to ∞ for every x̂ ∈ P . Sim-

ilarly, limn→∞
g(xn)−[g′(x̂)(xn−x̂)+g(x̂)]

(xn−x̂)2 = 1
2
g′′(x̂).

But since

lim
n→∞

∣∣∣∣h(xn)− yn
(xn − x̂)2

∣∣∣∣ ≤ lim
n→∞

|yn − h(xn)|
|Ikn|2

≤ lim
n→∞

|Ikn | = 0

we get

lim
n→∞

h(xn)− [h′(x̂)(xn − x̂) + h(x̂)]

(xn − x̂)2
= lim

n→∞

[
h(xn)− yn
(xn − x̂)2

+
yn − h(x̂)

(xn − x̂)2
+

h′(x̂)

xn − x̂

]
= lim

n→∞

[
h(xn)− yn
(xn − x̂)2

+
g′(x̂)(xn − x̂) + g(x̂)

(xn − x̂)2

]
=

1

2
g′′(x̂)

which is clearly finite. Thus we have a contradiction. So no twice differen-

tiable curve g can intersect infinitely many disks.
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We now need to deal with the claim that the inverse of a twice differen-

tiable function cannot intersect infinitely many of the disks Di. While the

proof from the paper holds so far as showing that
∣∣∣ 1
g′(ŷ)

∣∣∣ = |h′(x)|, we can

no longer equate this value with 0. In fact, this can only hold for at most

finitely many x̂ ∈ P . So that argument is no longer a valid way of showing

that g−1 intersects at most finitely many disks.

We must essentially repeat our argument for g, this time considering how

many of the smaller sets Sj the set g−1 can intersect. So, we assume that

there is an infinite set {jn : n < ω} such that g−1 ∩ Djn 6= ∅. For n < ω,

choose 〈xn, yn〉 ∈ g−1 ∩ Sjn . Then g(yn) = xn for all n < ω. Choosing a

subsequence, if necessary, we may assume that limn→∞〈xn, yn〉 = 〈x̂, ŷ〉, with

x̂ ∈ P . Then,

ŷ = lim
n→∞

yn = lim
n→∞

(yn − h(xn)) + lim
n→∞

h(xn) = h(x̂).

So g(ŷ) = limn→∞ g(yn) = limn→∞ xn = x̂.

Proceding as before, we see that since

lim
n→∞

∣∣∣∣xn − h−1(yn)

yn − ŷ

∣∣∣∣ ≤ lim
n→∞

|xn − h−1(yn)|
|πy(Sjn)|

≤ lim
n→∞

|πy(Sjn)|2 = 0,

where the second inequality is due to the estimate we required on the size of

the projections of the sets Sj. We now have

g′(ŷ) = lim
n→∞

xn − h−1(ŷ)

yn − ŷ
= lim

n→∞

xn − h(yn)

yn − ŷ
+ lim
n→∞

h−1(yn)− h−1(ŷ)

yn − ŷ
= (h−1)′(ŷ).
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Since

lim
n→∞

∣∣∣∣xn − h−1(yn)

(yn − ŷ)2

∣∣∣∣ ≤ lim
n→∞

|xn − h−1(yn)|
πy(Sjn)2

≤ lim
n→∞

|πy(Sjn)| = 0,

we have the following.

lim
n→∞

h−1(yn)− [(h−1)′(ŷ)(yn − ŷ) + h−1(ŷ)]

(yn − ŷ)2
=

= lim
n→∞

[
h−1(yn)− xn

(yn − ŷ)2
+
xn − h−1(ŷ)

(yn − ŷ)2
− (h−1)′(ŷ)

yn − ŷ

]
= lim

n→∞

[
h−1(yn)− xn

(yn − ŷ)2
+
g(yn)− g(ŷ)

(yn − ŷ)2
− g′(ŷ)

yn − ŷ

]
= lim

n→∞

[
h−1(yn)− xn

(yn − ŷ)2
+
g(yn)− [g′(ŷ)(yn − ŷ)] + g(ŷ)

(yn − ŷ)2

]
= lim

n→∞

g′(yn)− g′(ŷ)

2(yn − ŷ)
=

1

2
g′′(x̂)

Since g−1 ∈ C2, we know that this quantity is nonzero. But, since h(x̂) =

∞ then h−1(ŷ) = 0. Thus, we have reached a contradiction. Thus we see

that no C2 function g can intersect infintely many of the sets, Sj.

3.4 Discussion

The two constructions described in this chapter cannot be extended to create

C(D2)-continuous functions defined on Rn for n > 2, being as in this dimen-

sion, C(D2) can not be written as D2 ∪ (D2)−1. In fact, it is not even clear

what such an expression would mean. Furthermore, as long as we keep the
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definition of “smooth curve” mentioned in Chapter 1, we cannot use a trick

similar to Hahn’s, that is allowing F (x, y) to be a C(D2)-continuous function

for which dimH(D(F )) = 1, and then define φ(x1, x2, . . . , xn) = F (x1, x2).

This function would not necessarily be C(D2)-continuous. Consider any curve

α = 〈α1(t), α2(t), . . . , αn(t)〉 with the property that αi(t) > 0 for all t and

all i ≥ 3, but for which there is a point t0 for which α1(t0) = α2(t0) = 0.

Then, even though, the curve defined by α is D2, φ |̀α([0, 1]) may fail to be

continuous, being as the projection of the curve into the 〈x1, x2〉-plane would

not be smooth at t0, and so F would not be continuous on its image.
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Chapter 4

Sufficient Conditions for

Membership in D1,n.

4.1 Introduction

Following closely, the paper [10], we take up the study of linearly continu-

ous functions in this chapter. These functions have recieved the attention

of many important mathematicians since the end of the ninteenth century.

Theorem 1.3.7 has had a sweeping influence on the theory of linearly contin-

uous functions. One of the most significant consequences of Theorem 1.3.7

is that the structure of the sets in D1,n is very different from that of the sets

in D+
1,n. D+

1,n requires only that the orthogonal projections onto coordinate

hyperplanes be meager; however, even having every orthogonal projection

meager is not enough to guarantee that a set is in D1,n (see [45]). Nev-

ertheless, every such projection is meager. As has already been noted, if

f : Rn → R is linearly continuous, then dimH(D(f)) ≤ n − 1. Furthermore,
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most of the constructions of linearly continuous functions have been in R2

and were constructed without regard to having large discontinuity set in the

sense of measure.

The main results we give in this section pertain to the discontinuity sets

of linearly continuous functions. Given Theorem 1.3.7, it seems natural to

look for sufficient conditions for membership in D1,n by asking what types

of Lipschitz functions on a nowhere dense subset of a hyperplane can be the

set of discontinuity points of a linearly continuous function. We provide two

such sufficient conditions, one of which is valid for only for R2, whereas the

other is valid for Rn for all n. We then procede to discuss the degree to which

Theorem 1.3.1 can be extended to linearly continuous functions.

For this section, in our proofs, we use a few extra symbols which do not

occur elsewhere. For a class F of (possibly partial) functions from Rn−1

into R, let E(F) be the collection of all sets D =
⋃∞
i=1Di where each Di is

isometric to φ |̀K for some φ ∈ F and a compact nowhere dense K ⊂ Rn−1.

Using this notation, we could restate Theorem 1.3.7 as

D1,n ⊂ E(Lip(Rn−1)).

Recall that every partial Lipschitz function on a subset of Rn can be

extended to a Lipschitz function on all of Rn (see, for instance [19, p. 80] or

[26]). Moreover, since the family D1,n is clearly closed under isometric images

(i.e., if D ∈ D1,n, then i[D] ∈ D1,n for every isometry i of Rn) and under

countable unions1, we have the following result, where R(F) represents the

1We may fix the oscillation of f on any set D ∈ Dn to be at most 1 and use a procedure
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property:

R(F): φ � K ∈ D1,n for every φ ∈ F and a compact nowhere dense K ⊂

Rn−1.

Fact 4.1.1 For every family F of functions from H ⊂ Rn−1 into R, if R(F)

holds, then E(F) ⊂ D1,n.

We will make extensive use of this fact; it is vital for the proof of the

central resutl of this chapter.

The main result of the next two sections is as follows, where the symbols

Conv(Rn) and C2(Rn) stand for all functions φ : Rn → R that are, respec-

tively, convex and continuously twice differentiable.

Theorem 4.1.2 The property R(F) holds for F = Conv(Rn−1) for any

n ≥ 2 and for F = C2(R1).

We will prove this theorem later in this section, but first, we discuss some

of its consequences. Concerning its relation to the literature, we note that

this result will be contrasted to [44, Section 5], where it is asserted, without

proof, that any nowhere dense subset of a “smooth curve” is D(f) for some

linearly continuous f : R2 → R. Note, however, our Proposition 4.1.4, which

shows that general smooth curves, using our definition, do not have this

property.

Corollary 4.1.3 For every n ≥ 2

(a) E(Conv(Rn−1)) ( D1,n ( E(Lip(Rn−1)),

similar to what is found in [35, pp. 31–32].
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(b) E(C2(R)) ( D1,2 ( E(Lip(R)).

Proof. The inclusions follow from Theorem 4.1.2, Fact 4.1.1, and Theo-

rem 1.3.7.

To see that they are all strict, first notice that, clearly, neither of the

classes C2(R) and Conv(R) contains the other. Actually, if Φ: R → R is a

convex function with a (countable) dense set A of points at which Φ′′ does

not exist (see e.g. [42]) and K is a nowhere dense perfect set for which the set

A0 = {a ∈ A : a is a bilateral limit point of K} is dense in K, then f � K ∈

E(Conv(R)) \ E(C2(R)). It is also possible to find a C∞ function Φ: R → R

and a nowhere dense perfect set K ⊂ R for which f � K 6∈ E(Conv(R)).

Therefore, the first inclusions in (a) and (b) are indeed strict (at least, for

n = 2).

The fact that the remaining inclusions are strict follows from Proposi-

tion 4.1.4.

Notice that if we let K ⊂ Rn−1 be an (n − 2)-flat, then the constant

function ĉ : K → R given by ĉ(x) = c is convex. The graph of this function

is an (n−2)-flat in Rn. Since K is nowhere dense in Rn−1, we have shown, in

particular, that linearly continuous functions may be discontinuous at every

point of an (n− 2)-flat.

It should be noted that in spite of the pleasing results mentioned so

far, not all “small” subsets of curves can be the sets of discontinuities of a

linearly continuous function. In particular, let bD1(Rn) stand for the class of

all differentiable functions φ : Rn → R with bounded derivative. Notice that

bD1(Rn) ⊂ Lip(Rn).
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Proposition 4.1.4 There exists a differentiable function φ : Rn−1 → R and

a nowhere dense perfect set K ⊂ Rn−1 such that φ � K 6∈ D+
1,n. In particular,

E(bD1(Rn−1)) is contained in none of the classes E(F) from Corollary 4.1.3.

Proof. First, we prove this for n = 2. Let K ⊂ [0, 1] be nowhere dense of

positive measure. By Kershner’s result, Theorem 1.3.6, it is enough to find a

function φ : R → R from bD1(R) for which φ[K] has non-empty interior (as

φ[K] is a projection of φ � K along the x-axis). The easiest example of such

a function is given by φ(x) =
∫ x
0
g(t) dt for an appropriate function g : R →

[0, 1]. Notice, that g = χK , the characteristic function of K, has almost

all these properties: it maps K onto a non-empty interval and resulting

φ has bounded derivative almost everywhere. To insure that φ is actually

everywhere differentiable, it is enough to take as g : R→ [0, 1] a nonnegative

approximately continuous function with {x ∈ R : g(x) > 0} being a subset of

K of positive measure. Such a function may be constructed, by allowing U

to be the density interior of K (i.e., the set of all points of K with density 1)

and by choosing a point p ∈ U and setting g(p) = 1 and using the regularity

of the density topology to extend g to the unit interval in such a way that g

identically vanishes outside of U . That {x : g(x) > 0} has positive measure

follows from the fact that as g is approximately continuous, it is continuous

with respect to the density topology; that is, g−1(O) is density open for all

open sets O, hence g−1((0, 1)) must have positive measure. Then φ[K] still

has a non-empty interior and φ′(x) = g(x) for all x ∈ R. (For more on

approximately continuous functions, as well as the density topology, see e.g.

[5] or [13].)

For n > 2, let K be as above and put K̂ = K × [0, 1]n−2. Define

45



φn(x1, x2, . . . , xn−1) = φ(x1). Then the projection πx1 [φ � K] has nonempty

interior.

This shows us that Theorem 1.3.7 is not a characterization of the sets of

discontinuity of linearly continuous functions. However, the above discussed

result, Corollary 4.1.3 shows that it is, in fact, quite close: Theorem 1.3.7

remains true if the causality is reversed and the word “Lipschitz” is replaced

with the word “convex”.

4.2 A Sufficient Condition for Membership in

D1,n

This section will culminate in a proof of half of the promised results, namely

that R(Conv(Rn−1)) holds. Our construction will be based on the following

simple general observation, a simple restatement of Lemma 2.3.1.

Lemma 4.2.1 Let P ⊂ Rn be compact nowhere dense and let

(∗) {Bi : i < ω} be a family of pairwise disjoint closed balls in Rn disjoint

with P , with non-empty interiors, and such that the closure of
⋃
i<ω Bi

is equal to P ∪
⋃
i<ω Bi.

For every i < ω, let fi be a continuous function from Rn onto [0, 1] with the

support contained in Bi. Then f =
∑

i<ω fi is from Rn onto [0, 1] and

(a) D(f) = P = {x ∈ Rn : osc(f, x) = 1}.

Moreover, if
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(b) every line in Rn intersects only finitely many balls Bi,

then f is linearly continuous.

Proof. The result is obvious, after one notices that every open set intersect-

ing P fully contains one of the balls Bi. (This can be additionally imposed

in the assumptions, but in Rn it actually is already ensured by the current

assumptions.)

All linearly continuous functions we construct here will be of the form of

a function f from Lemma 4.2.1. Clearly, we will use this with P being φ � K

for appropriate φ and K. The construction of the balls satisfying (∗) is an

easy exercise. It is the property (b) that will require care.

We will also need the following simple result.

Lemma 4.2.2 Let B̂i’s and P̂ ⊂ Rn−1 be as in Lemma 4.2.1. Then there

exists a C2 function h : Rn−1 → [0, 1] such that h(x) > 0 if, and only if, x

belongs to the interior of one of the balls B̂i.

Proof. Actually, such a function can be even C∞. Simply, for any i <

ω choose a C∞ function hi : Rn−1 → [0, 1] for which {x ∈ Rn−1 : hi(x) >

0} is the interior of the ball B̂i. Then, for appropriately chosen numbers

ai > 0 (with the sequence 〈ai〉i converging quickly to 0), the function h =∑
i<ω aihi is C∞ and as required. (For similar constructions of C∞ functions,

see also [14].)

We will use one more lemma.
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Lemma 4.2.3 Let φ : Rn−1 → R be an arbitrary continuous function, P̂ ⊂

Rn−1 be closed nowhere dense, and let h and the B̂i’s be as in Lemma 4.2.2.

For every i < ω choose an arbitrary closed ball Bi inside the set

Ti = {〈x, y〉 : x ∈ B̂i & y ∈ (φ(x), (φ+ h)(x))}.

In particular, each Bi is strictly above the graph of φ. Then, for every N > 0

and line ` in Rn if the set {i < ω : ` ∩Bi ∩ [−N,N ]n 6= ∅} is infinite, then

(i) ` is non-vertical, so it can be identified with a function L from a line

`0 in Rn−1 into R,

(ii) there is a sequence 〈bik ∈ `0 ∩ B̂ik : k < ω〉 converging monotonically

on `0 to a b ∈ `0 ∩ P̂ and such that: φ(b) = L(b) and limk→∞
φ(bik )−φ(b)
‖bik−b‖

exists and is equal limk→∞
L(bik )−L(b)
‖bik−b‖

, the slope of the line L : `0 → R

when `0 is oriented in such a way, that points bik are to the right of b.

Proof. Clearly ` cannot be vertical, since each Bi is a subset of the set

Ti = {〈x, y〉 : x ∈ B̂i & y ∈ (φ(x), (φ+ h)(x))} and B̂i’s are pairwise disjoint.

So, there is an `0 as in (i) and we can choose a sequence 〈bik〉k<ω of points

in `0, each from a different ball B̂ik , with 〈bik , L(bik)〉 ∈ Bik ∩ [−N,N ]n for

every k < ω. By (∗), choosing a subsequence, if necessary, we can assume

that 〈bik〉k<ω converges monotonically on `0 to some b ∈ P̂ ∩ `0. So, L(b) =

limk→∞ L(bik) and φ(b) = limk→∞ φ(bik).

The rest is a consequence of the squeeze theorem. Indeed, for every k < ω

we have φ(bik) ≤ L(bik) ≤ (φ+ h)(bik) = φ(bik) + h(bik). Hence, taking limit

over k → ∞, we get φ(b) ≤ L(b) ≤ φ(b) + h(b) = φ(b), where h(b) = 0
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follows from the fact that b ∈ P̂ does not belong to any interior of a ball B̂i.

Similarly,

lim
k→∞

h(bik)− h(b)

‖bik − b‖
= 0,

since the limit equals the directional derivative D~uh(b) of h at b in the direc-

tion of the line `0 and D~uh(b) = 0, since between any bi+k and b there is a

cik ∈ `0 (from the boundary of B̂ik) with h(cik) = 0.

Finally, for every k < ω we have L(bik)− h(bik) ≤ φ(bik) ≤ L(bik), so

L(bik)− L(b)

‖bik − b‖
− h(bik)− h(b)

‖bik − b‖
=

(L(bik)− h(bik))− φ(b)

‖bik − b‖

≤ φ(bik)− φ(b)

‖bik − b‖
≤ L(bik)− L(b)

‖bik − b‖

and, taking limit over k →∞, we get

lim
k→∞

L(bik)− L(b)

‖bik − b‖
− 0 ≤ lim

k→∞

φ(bik)− φ(b)

‖bik − b‖
≤ lim

k→∞

L(bik)− L(b)

‖bik − b‖

and the desired equation limk→∞
φ(bik )−φ(b)
‖bik−b‖

= limk→∞
L(bik )−L(b)
‖bik−b‖

holds.

These lemmas suffice for our desired result.

Proof of Theorem 4.1.2 for F = Conv(Rn−1). Let P̂ ⊂ Rn−1 be

compact nowhere dense and φ : Rn−1 → R be a convex. So, φ is continuous

(see [40]). We need to show that φ � P̂ ∈ D1,n.

Choose balls B̂i’s for P̂ satisfying (∗). Use Lemma 4.2.3 to find balls Bi,

each with non-empty interior. Clearly these balls satisfy (∗) from Lemma 4.2.1

used with P = φ � P̂ . Therefore, to finish the proof, it is enough to show

that its property (b) is satisfied.
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So, choose a line ` in Rn and, by way of contradiction, assume that `

intersects infinitely many balls Bi. Then, there is a sequence satisfying (ii)

from Lemma 4.2.3. But this and convexity of φ imply that ` is below the

graph of φ. This gives us the desired contradiction, since such a line cannot

intersect any ball Bi, each ball being chosen strictly above the graph of φ.

4.3 A Sufficient Condition for R2.

Throughout this section we assume that n = 2. Our goal is to show, using

the machinery developed in the previous section, that φ � K ∈ D1,2 for every

C2 function φ : R→ R and compact nowhere dense K ⊂ R.

We start with the following lemma which, in particular, shows that the

function constructed in Proposition 4.1.4 (i.e., with an image of a nowhere

dense set having non-empty interior), cannot be continuously differentiable.

Lemma 4.3.1 If φ : R→ R is C1 and P is compact nowhere dense subset of

R, then φ[P ] is also nowhere dense in R.

Proof. Let Z = {x ∈ P : φ′(x) = 0}. Then, by Sard’s theorem, φ[Z] has

measure zero. Since Z is compact, as φ′ is continuous, φ[Z] is also compact.

Therefore, φ[Z] is nowhere dense in R.

Next, let Jk be the closures the component intervals of the complement

of Z. Since φ � Jk is a homeomorphism, each set Mk = φ[P ∩ Jk] is nowhere

dense, as a homeomorphic image of a nowhere dense set. So, φ[P ] is meager,

being equal to a meager set Z ∪
⋃
kMk. Being compact, it must be nowhere

dense.
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Lemma 4.3.2 Let φ : R→ R be C2 and P be compact nowhere dense subset

of R. For every x ∈ R let `x be the line tangent to φ at 〈x, φ(x)〉. Then the

set KP =
⋃
x∈P `x is nowhere dense in the plane.

Proof. First, notice that KP is closed in R2. Indeed, let 〈a, b〉 be in the

closure of KP . Choose points 〈ak, bk〉 ∈ KP converging to 〈a, b〉. For every

k < ω choose xk ∈ P for which 〈ak, bk〉 ∈ `xk . By compactness of P ,

choosing a subsequence, if necessary, we can assume that points xk converge

to an x̂ ∈ P . Since φ′(xk) converge to φ′(x̂), it is easy to see that 〈a, b〉 =

〈a, `x̂(a)〉 ∈ `x̂ ⊂ KP . So, indeed KP is closed in R2.

Next, we prove that for every vertical line `, the intersection KP ∩ ` is

nowhere dense in `. By the Kuratowski-Ulam theorem, this implies that KP

is meager, so nowhere dense.

So, let ` = {a}×R. Then `∩ `x = 〈a, φ(x) + (a−x)φ′(x)〉. In particular,

`∩KP = {a}×φ̂[P ], where φ̂ : R→ R is defined as φ̂(x) = φ(x)+(a−x)φ′(x).

Since φ̂ is C1, as φ is C2, Lemma 4.3.1 implied that φ̂[P ] is nowhere dense in

R. So, indeed KP is nowhere dense in R2.

Proof of Theorem 4.1.2 for F = C2(R). Let P̂ ⊂ R be compact

nowhere dense and φ : R → R be C2. We need to show that φ � P̂ ∈ D1,2.

We proceed as in the previous section.

Choose balls (intervals) B̂i’s for P̂ satisfying (∗). Use Lemma 4.2.3 to

find balls Bi, each with non-empty interior. Since, by Lemma 4.3.2, the set

KP̂ is nowhere dense in R2, we can additionally assume (this is the key trick)

that the balls Bi are disjoint with KP̂ . Once again, the balls Bi satisfy (∗)

from Lemma 4.2.1 used with P = φ � P̂ .
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To finish the proof, it is enough to show that the property (b) from

Lemma 4.2.1 is satisfied. For this, choose a line ` in R2 and, by way of

contradiction, assume that ` intersects infinitely many balls Bi. Then, there

is a sequence satisfying (ii) from Lemma 4.2.3. This means, that ` is equal

to the tangent line `b ⊂ KP̂ . So, ` could not have intersected any balls Bi,

since all these balls are disjoint with KP̂ .

4.4 Discussion

We note that our results in this chapter have fallen just short of a full char-

acterization of which sets are in D1,n; however, we note that we give in the

next chapter a theorem which gives a characterization of the subsets of R2

that are in D1,2. The characterization does not appear to generalize to the

sets D1,n for n > 2.
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Chapter 5

Characterizations of

Discontinuity Sets

5.1 Introduction

This chapter addresses those functions whose restrictions to general affine

sets are continuous. The affine sets in question are those in the families

Fk and F+
k for various values of k. Recall that F+

k refers to the family of

k-flats spanned by k vectors parallel to k axes and that Fk refers to the

entire family of k-flats. Although there has been some previous mention of

F+
k -continuous functions in the literature prior to this, the Fk continuous

functions have been the object of very little study until now. Our presenta-

tion of these results follows our paper [11] very closely. We mention that the

results for the F+
k -continuous functions are analogous to those for separately

continuous functions, while the results for Fk-continuous functions seem to

be analogous to those for linearly continuous functions, however, they appear
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to be more forthcoming only for fairly large values of k. In this notation,

the class of F+
1 -continuous (F1-continuous) f : Rn → R is identical with the

class of separately (linearly, respectively) continuous functions from Rn to R.

Clearly, Fn = F+
n = {Rn}, so F+

n -continuity is the standard continuity, while

F+
0 = F0 is the class of all singletons, so that every function f : Rn → R is

F0-continuous. So, we concentrate on the cases when 0 < k < n. From

Propositions 2.2.7 and 2.2.11 we see that the following relationships hold

among these continuities.

Fn-continuity =⇒ Fn−1-continuity =⇒ · · · =⇒ F1-continuity

m ⇓ ⇓

F+
n -continuity =⇒ F+

n−1-continuity =⇒ · · · =⇒ F+
1 -continuity

That none of these implications can be reversed follows from Corol-

lary 5.3.5. This corollary will follow from our two primary results on the

structure of discontinuity sets of the Fk-continuous and F+
k -continuous func-

tions.

The F+
k -continuous functions on Rn are fairly well documented in the

literature. They have been studied in connection with the theory of Sobolev

spaces, see e.g. [4]. It is perhaps instructive to think of F+
k -continuous

functions as those which are continuous when looked at in any k variables

separately.

In this chapter, we accomplish three goals:

1. We completely characterize the sets D+
k,n.
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2. We derive several structural results on Dk,n.

3. We characterize the sets Dk,n when k ≥ n
2
.

5.2 Characterization of the Sets D+
k,n

Our primary result on the discontinuities of the F+
k -continuous functions is

the following.

Theorem 5.2.1 A set D ⊂ Rn is in D+
k,n if, and only if, D is an Fσ-set

whose orthogonal projection on any right (n− k)-flat is of first category.

The proof of Theorem 5.2.1 will be presented later in Section 5.5. Below,

we discuss some of its consequences.

Proposition 5.2.2 For any 0 < k ≤ n, there exists a D ∈ D+
k−1,n \ D

+
k,n of

positive n-dimensional Lebesgue measure.

Proof. Let K ⊂ R be a compact, first category set with positive Lebesgue

measure (i.e., a “fat” Cantor set). Let D = Kk × Rn−k and note that D

has positive measure in Rn. Moreover, by Theorem 5.2.1, D ∈ D+
k−1,n, since

for any F ∈ Fn−k+1 the projection πF [D] is of the form Kj × Rn−k+1−j for

some j > 0, so that πF [D] is of first category in F . Finally, once again by

Theorem 5.2.1, D /∈ D+
k,n since for F = {0}k × Rn−k, πF [D] = F is not of

first category in F .

We can also derive the following well-known result about the sets of dis-

continuity for Fk-continuous functions.
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Corollary 5.2.3 For any D ∈ Dk,n and any F ∈ Fn−k the projection πF [D]

of first category in F .

Proof. Let f : Rn → R be an Fk-continuous function with D = D(f).

Choose a perpendicular coordinate system for Rn such that k-many of the

axes are perpendicular to F , while the remaining (n − k)-many axes are

parallel to F . Since f is Fk-continuous, f is also F+
k -continuous in this

coordinate system. Hence, by Theorem 5.2.1, πF [D] is of first category in F .

5.3 Fk-continuous Functions and Some Struc-

ture of the Sets in Dk,n

Although the Fk-continuous functions are a natural refinement of linear con-

tinuity, this paper marks their first appearance in the literature. Therefore,

we start here with several examples of such functions, the first of which

constitutes a generalization of the example (1.2).

Example 5.3.1 For every n ≥ 2, the following function fn : Rn → R, con-

structed by the first author in [8], is Fn−1-continuous and discontinuous pre-

cisely at the origin

fn(x0, x1, . . . , xn−1) =


x0

∏n−1
i=0 (xi)

22i∑n−1
n=0(xi)

2n+i
if 〈x0, x1, . . . , xn−1〉 6= 〈0, 0, . . . , 0〉,

0 if 〈x0, x1, . . . , xn−1〉 = 〈0, 0, . . . , 0〉.
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In particular, f3 : R3 → R is defined as

f3(x, y, z) =


x2y4z16

x8+y16+z32
if 〈x, y, z〉 6= 〈0, 0, 0〉

0 if 〈x, y, z〉 = 〈0, 0, 0〉.

Note that if we define the path p(t) = 〈t2n , t2n−1
, . . . , t2

2
, t2

1〉, then along this

path fn(p(t)) = 1
n

for t 6= 0, while fn(p(0)) = 0.

A more general example of this kind is given by the following result.

Proposition 5.3.2 For every k < n and any compact nowhere dense K ⊂

R, the set {0}k ×K × Rn−k−1 belongs to Dk,n. In particular, Dk,n contains

the sets of positive k-Hausdorff measure.1

Proof. For k = 0 the statement is clearly true, since any function from Rn

to R is F0-continuous. First, we prove, by induction on n = 1, 2, 3, . . . , that

(In) the statement is true for k = n− 1.

For n = 1 this is true, since then k = n− 1 = 0. So, assume that (In) holds

for some n. We need to show (In+1).

By (In), there exists an Fn−1-continuous g : Rn → R with D(g) = {θ},

where θ = 〈0, 0, . . . , 0〉. We can assume that g(θ) = 0. So, there is a sequence

s = 〈sm ∈ Rn : m < ω〉 converging to θ such that limm→∞ |g(sm)| > 0. In

particular, there exists a c > 0 such that |g(sm)| > c for every m < ω. Let

S = {sm ∈ Rn : m < ω}. Choose distinct points yj ∈ R\K, j < ω, such that

1For k = 0 and k = n− 1, the set {0}k ×K ×Rn−k−1 is interpreted as K ×Rn−1 and
{0}n−1 ×K, respectively.
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K is the set of accumulation points of {yj : j < ω}. Choose distinct points

xj ∈ S, j < ω, such that

‖xj‖
dist(yj, K)

< 2−j for every j < ω.

Choose numbers εj ∈ (0, 2−j) such that the sets Bj = B(〈xj, yj〉, εj) are

pairwise disjoint and that

0 <
‖aj‖

dist(bj, K)
< 2−j for every 〈aj, bj〉 ∈ Rn × R from Bj. (5.1)

Choose continuous maps fj : Rn−1 ×R→ [0, 1], j < ω, such that supp(fj) ⊂

Bj and fj(xj, yj) = 1. Define ĝ : Rn−1 × R → R via formula ĝ(x, y) = g(x),

put f = ĝ ·
∑

j<ω fj, and notice that f is the desired function.

Indeed, f is discontinuous on {θ} ×K, since {θ} ×K is in the closure of

T = {〈xj, yj〉 : j < ω}, f [T ] ∩ (−c, c) = ∅, and f [{θ} ×K] = {0}. Moreover,

f is continuous at every p ∈ Rn \ ({θ} × K), since every function ĝ · fj is

continuous and p has a neighborhood intersecting only finitely many sets

Bj ⊃ supp(g · fj). Therefore, D(f) = {θ} ×K, as required.

To see that f is Fn-continuous, choose an F ∈ Fn. If F intersects only

finitely many sets Bj, then clearly f � F is continuous. On the other hand,

if F intersects infinitely many sets Bj, then, by (5.1), F intersects {θ} ×K

and contains lines forming arbitrary small angles with the line {θ} × R. So,

{θ} × R ⊂ F , that is, F = F ′ × R for some (n − 1)-flat F ′ ⊂ Rn. Clearly

f � F is continuous at all points not in {θ} ×R. It is also continuous at any

p ∈ {θ} × R, since for any sequence 〈〈cj, dj〉 ∈ F ′ × R : j < ω〉 converging

to p, we have |f(cj, dj)| ≤ |g(cj)| and limj→∞ |g(cj)| = |g(θ)| = 0 = f(p), as
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g � F ′ is continuous. Therefore, f is indeed Fn-continuous, completing the

proof.

To finish the proof of the proposition, assume that 0 < k < n − 1. By

(Ik+1), there exists an Fk-continuous h : Rk×R→ R with D(h) = {0}k×K.

Define f : Rn → R as f(x0, . . . , xn−1) = h(x0, . . . , xk). Clearly such an f is

Fk-continuous and D(f) = D(h)×Rn−k−1 = {0}k×K×Rn−k−1, as required.

The next theorem, on the structure of sets in Dk,n, is a natural general-

ization of Slobodnik’s result, Theorem 1.3.7. In its statement, we will use

the following terminology.

Let V be a family of all vector subspaces of Rn and let Vk = V ∩ Fk.

For a V ∈ V let V ⊥ ∈ V denote the perpendicular complement of V and

notice that every x ∈ Rn has a unique representation as x = v + w, where

〈v, w〉 ∈ V × V ⊥. In what follows, we will identify 〈v, w〉 ∈ V × V ⊥ with

x = v + w.

Theorem 5.3.3 For every 0 < k < n and D ∈ Dk,n there exists a sequence

〈fi〉i<ω of Lipschitz functions fi from Vi ∈ Vn−k into V ⊥i ∈ Vk whose graphs

cover D.

Theorem 5.3.3 will be proved in Section 5.6. Below, we discuss some of

its consequences.

Recall that Lipschitz maps cannot raise Hausdorff dimension, see e.g. [20].

In particular, Theorem 5.3.3 and Corollary 5.2.3 immediately imply

Corollary 5.3.4 Every D ∈ Dk,n has Hausdorff dimension ≤ n− k. More-

over, for every fi from Theorem 5.3.3, the domain of D∩fi is of first category
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in Vi.

This stay in contrast with the families D+
k,n, which contain the sets of

Hausdorff dimension n, as shown in Proposition 5.2.2. Notice also that, by

Proposition 5.3.2, the upper bound n− k of the Hausdorff dimension of sets

in Dk,n is achieved.

Corollary 5.3.5 For n ≥ 2, D0,n is the family of all Fσ-subsets of Rn and

{∅} = Dn,n ⊂ Dn−1,n ⊂ · · · ⊂ D1,n ⊂ D0,n

‖ ∩ ∩ ‖

D+
n,n ⊂ D+

n−1,n ⊂ · · · ⊂ D+
1,n ⊂ D+

0,n

Moreover, all indicated inclusions are proper.

Proof. The inclusions follow from Proposition 2.2.12. The lower row in-

clusions are strict by Proposition 5.2.2. The upper row inclusions are strict,

since, for every k < n, the family Dk,n contains (by Proposition 5.3.2) a set

of Hausdorff dimension n − k, while (by Corollary 5.3.4) Dk+1,n does not

contain such a set. This Hausdorff dimension argument also shows that all

indicated inclusions between rows are strict.

5.4 A Characterization of Dk,n when k ≥ n
2 .

Our final main result requires the following notions.

Definition 5.4.1 The topology on Fk is generated by a subbase formed by

the sets F(U) = {F ∈ Fk : F ∩ U 6= ∅}, where U is an open set in Rn. We

denote the intersection F(U1) ∩ F(U2) ∩ · · · ∩ F(Uj) as F(U1, U2, . . . , Uj).
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Definition 5.4.2 We define Jk,n as the family of all bounded sets S ⊂ Rn

for which there is an increasing sequence 〈Li : i < ω〉 of closed subsets of Fk
such that

⋃
i<ω Li = Fk and, for every i < ω, S is disjoint with the interior

int(
⋃
Li) of the set

⋃
Li ⊂ Rn.

Theorem 5.4.3 Let 0 < k < n be such that k ≥ n
2
. A set D ⊂ Rn is in

Dk,n if, and only if, D is a countable union of compact sets from Jk,n.

Note the theorem provides a characterization of a family D1,2. In partic-

ular, Theorem 5.4.3 provides a solution Kronrod’s problem.

5.5 Proof of Theorem 5.2.1

We will use the following two lemmas. The first, is just a convenient presen-

tation of well know result. It will be used in what follows for Z = Rk.

Lemma 5.5.1 Let Z be locally compact and σ-compact, and assume that

f : Z × Rm → R is separately continuous as a function of m + 1 variables.

If K ⊂ Z × Rm has compact projection πZ [K] and there is an ε > 0 such

that osc(f, p) ≥ ε for all p ∈ K, then πRm [K] is nowhere dense in Rm. In

particular, πRm [D(f)] is of first category in Rm.

Proof. Let Y ⊂ Z be compact whose interior contains πZ [K] and let f̄ be

a restriction of f to Y ×Rm. Then K ⊂ {p ∈ Y ×Rm : osc(f̄ , p) ≥ ε}. Also,

clearly f̄(·, x) is continuous for every x ∈ Rm and, for every y ∈ Y , f̄(y, ·) is

quasi-continuous, as it is separately continuous on Rm, see e.g. [4, theorem

2.4]. Therefore, f̄ satisfies the assumptions of [4, corollary 3.8], so the set
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πRm [{p ∈ Y × Rm : osc(f̄ , p) ≥ ε}] is nowhere dense in Rm. Thus, so is its

subset πRm [K], as required.

Since D(f) is a countable union of the sets K as in the assumptions,

πRm [D(f)] is of first category in Rm.

The following lemma is a variant of [25, lemma 9].

Lemma 5.5.2 If D is a compact subset of Rn such that its orthogonal pro-

jection onto each F ∈ F+
n−k is nowhere dense, then there exists an F+

k -

continuous function f : Rn → [0, 1] such that D(f) = D and osc(f, z) = 1 for

all z ∈ D.

Proof. Let V+
n−k be the family of all linear spaces V ∈ F+

n−k and let{
Mi : i <

(
n

n−k

)}
be its enumeration. Then, by the assumption, D is con-

tained in a finite union Z =
⋃
V ∈V+

n−k
π−1V (πV [D]), a closed nowhere dense

set.

Construct, by induction on j < ω, a sequence {Uj ⊂ Rn \ Z : j < ω} of

disjoint non-empty open balls satisfying the conditions (a), (b), and (F) with

S = F+
k of Lemma 2.3.1. This can be done by: choosing a countable dense

subset E of D; fixing a sequence 〈pj ∈ E : j < ω〉, so that each point of E

occurs infinitely many times; for every j < ω, choosing a ball Uj ⊂ B(pj, 2
−j),

so that its closure cl(Uj) is disjoint with Z ∪
⋃
i<j

⋃
V ∈V+

n−k
π−1V (πV [cl(Ui)]).

The choice of Uj is possible, since the construction insures that for every

V ∈ V+
n−k the sets πV [cl(Ui)], i < j, are disjoint with πV [D].

Choose functions fj as in Lemma 2.3.1. Then f =
∑

j<ω fj is as desired.

Proof of Theorem 5.2.1. Let f : Rn → R be an F+
k -continuous function

and let D = D(f). Clearly, D must be Fσ, as this is true for any set of points
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of discontinuity of a function f : Rn → R, see e.g. [35]. Let F ∈ F+
n−k. We

need to show that πF [D] is of first category in F .

Since a translation of F does not change this property, we can assume

that F ∈ Vn−k. So, F is an (n − k)-dimensional linear subspace of Rn. Let

F⊥ be a k-dimensional linear subspace of Rn perpendicular to F . Identify

Rn with F × F⊥. Then f can be treated as an F+
k -continuous function on

Rn−k × Rk. Then, by Lemma 5.5.1, π[D] is of first category in Rn−k and so,

πF [D] is of first category in F .

To prove the converse implication, fix an Fσ subset D of Rn whose or-

thogonal projection on any F ∈ F+
n−k is of first category. In particular,

there exists a sequence 〈Dj : j < ω〉 of compact sets such that D =
⋃
j<ωDj.

Now, each Dj satisfies the assumptions of Lemma 5.5.2. Therefore, for every

j < ω, there exists an F+
k -continuous function fj : Rn → [0, 1] with the prop-

erty that D(fj) = Dj = {z ∈ Rn : osc(fj, z) = 1}. Define f =
∑

j<ω 3−jfj.

Then f is F+
k -continuous, as a uniform limit of such functions. More-

over, f is discontinuous precisely on D, since for any z ∈ Di \
⋃
j<iDj we

have osc(
∑

j≤i 3
−jfj, z) = 3−i, while the range of

∑
i<j<ω 3−jfj is contained

in [0, 3−i).

5.6 Proof of Theorem 5.3.3

The following lemma translates the formulation of Theorem 5.3.3: it implies

that it is enough to prove that any D ∈ Dk,n can be covered by countably

many sets K with some nice projection properties. In what follows, K −K

refers to the set {p− q : p, q ∈ K}.
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Lemma 5.6.1 Assume that K ⊂ Rn, V ∈ Vn−k, and C > 0 have the

property that ‖z‖ ≤ C‖πV (z)‖ for every z ∈ K −K. Then K is contained

in a graph of a Lipschitz function from V into V ⊥.

Proof. Let g = {〈πV (z), πV ⊥(z)〉 : z ∈ K} and notice that g is a Lipschitz

function from πV [K] into V ⊥, since for every z0, z1 ∈ K

‖πV ⊥(z0)− πV ⊥(z1)‖2 = ‖πV ⊥(z0 − z1)‖2

= ‖z0 − z1‖2 − ‖πV (z0 − z1)‖2

≤ C2‖πV (z0 − z1)‖2 − ‖πV (z0 − z1)‖2

= (C2 − 1)‖πV (z0 − z1)‖2

= (C2 − 1)‖πV (z0)− πV (z1)‖2.

Since every partial Lipschitz function from Rk into Rm can be extended to

an entire Lipschitz function (see e.g. [19, p. 80]), the result follows.

The following lemma is a generalization of [45, lemma 2].

Lemma 5.6.2 For every 0 < k < n, D ∈ Dk,n, and V ∈ Vn−k+1, there exists

a countable partition K of D with the following property.

(†) For every K ∈ K there exist a cK > 0 and a perpendicular decompo-

sition 〈LK ,WK〉 ∈ V1 × Vn−k of V such that ‖πLK (z)‖ ≤ cK‖πWK
(z)‖

for every z ∈ K −K.

Proof. Let f : Rn → R be an Fk-continuous function with D(f) = D.

Then, there exists a countable cover P of D by the compact sets such that

for every P ∈ P there is an ε > 0 for which osc(f, z) ≥ ε for every z ∈ P . It
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is enough to show that every P ∈ P admits a countable KP of P satisfying

property (†). So, fix a P ∈ P and an associated ε.

Choose an arbitrary perpendicular decomposition 〈L,W 〉 ∈ V1 ×Vn−k of

V , fix a non-zero u ∈ L, and for v ∈ L let av ∈ R be such that v = avu.

Define function g : (V ⊥ × L) ×W → Rn via g(〈y, v〉, w) = y + v + avw =

y + av(u + w). Of course, the restriction ḡ of g to V ⊥ × (L \ {0}) × W

establishes a homeomorphism between this set and Rn \ L⊥.

For every p ∈ Rn, let fp : (V ⊥×L)×W → R be defined as f(p+g(d)) for d

in the domain. Notice that fp(·, w) is continuous, since p+g[(V ⊥×L)×{w}]

is a k-flat, a p-translation of a vector space spanned by V ⊥ and a vector

u+w ∈ V . Moreover, fp(〈y, v〉, ·) is separately continuous, upon identification

of W with Rn−k.

Let us define Sp = {d : πL(g(d)) 6= 0 & p+ g(d) ∈ P}. Then, osc(fp, d) =

osc(f, p+g(d)) ≥ ε for every d ∈ Sp, since such d belongs to the domain of the

homeomorphism ḡ. Moreover, it is easy to see that πV ⊥×L[Sp] ⊂ πV ⊥×L[P ]

is bounded, so its closure is compact. Thus, by Lemma 5.5.1, there exists a

dense open set Up ⊂ W such that πW [Sp] ∩ Up = ∅.

Now, consider a countable basis B of W formed by the open balls B(w, c),

c > 0. For every such ball let Pw,c = {p ∈ P : B(w, c) ⊂ Up}. We claim that

K = Pw,c satisfies (†) with cK = ‖u+w‖
c

, LK spanned by u+w, and WK being

the perpendicular complement of LK in W .

Indeed, let z = q − p, where p, q ∈ Pw,c. If πL(z) = 0, then clearly the

inequality holds. So, assume that πL(z) 6= 0. Then, z = g(d) for some d ∈ Sp.

In particular, πW (d) /∈ B(w, c), that is, ‖πW (d)− w‖ ≥ c.
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Now, z = g(d) = πV ⊥(d) + aπL(d)u+ aπL(d)πW (d). Therefore,

πLK (z) = aπL(d)(u+ w) & πWK
(z) = aπL(d)(πW (d)− w),

as πWK
(z) = πW (z)− πLK (z) = (aπL(d)u+ aπL(d)πW (d))− aπL(d)(u+ w). So,

‖πLK (z)‖ = |aπL(d)|‖u+ w‖

≤ |aπL(d)|‖u+ w‖‖πW (d)− w‖
c

=
‖u+ w‖

c
‖πWK

(z)‖,

as required.

Proof of Theorem 5.3.3. Let D ∈ Dk,n. We will prove the following

property by induction on ` ≤ k:

(I`) There exists a countable partition P` of D such that for every P ∈ P`
there exist VP ∈ Vn−` and CP > 0 such that ‖z‖ ≤ CP‖πVP (z)‖ for any

z ∈ P − P .

For ` = 0 the property (I`) is satisfied with P = {D}, VD = Rn, and

CD = 1. So, assume that for some ` < k the property (I`) holds. We need

to show (I`+1).

So, fix a P ∈ P` and let V ∈ Vn−k+1 be contained in VP . By Lemma 5.6.2,

there exists a partition KP of D such that for every K ∈ KP there exist a

cPK > 0 and a perpendicular decomposition 〈LPK ,W P
K 〉 ∈ V1×Vn−k of V such

that ‖πLPK (z)‖ ≤ cPK‖πWP
K

(z)‖ for every z ∈ K −K.

Then the partition P`+1 = {P ∩K : P ∈ P` & K ∈ KP} satisfies (I`+1),

with V P
K ∈ Vn−`−1 being a subspace of VP perpendicular to LPK . Indeed,
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for any point z ∈ (P ∩ K) − (P ∩ K) ⊂ (P − P ) ∩ (K − K) we have

the inequalities ‖πLPK (z)‖ ≤ cPK‖πWP
K

(z)‖ ≤ cPK‖πV PK (z)‖, as W P
K ⊂ V P

K .

Therefore, ‖πVP (z)‖2 = ‖πLPK (z)‖2 + ‖πV PK (z)‖2 ≤ ((cPK)2 + 1)‖πV PK (z)‖2. In

particular, ‖z‖ ≤ CP‖πVP (z)‖ ≤ CP
√

(cPK)2 + 1‖πV PK (z)‖. In other words,

(I`+1) is satisfied with CP
K = CP

√
(cPK)2 + 1. This finishes the inductive proof

of (I`)’s.

The theorem is concluded by noticing that the partition given by (Ik) is

as required, as implied by Lemma 5.6.1.

5.7 Proof of Theorem 5.4.3

Recall, that the topology on Fk is defined by a subbasis formed by the sets

F(U) = {F ∈ Fk : F ∩ U 6= ∅}, where U is an open subset of Rn, and that

F(U0, U1, . . . , Uj) is defined as
⋂
i≤j F(Ui). Our proof will require few facts

about this topology on Fk.

Fact 5.7.1 If F ∈ Fk and the points x0, x1, . . . , xk ∈ F are in general posi-

tion, then the sets

{F(B(x0, r), B(x1, r), . . . , B(xk, r)) : r > 0}

form a basis at F .

Proof. For r > 0 let F(r)
def
= F(B(x0, r), B(x1, r), . . . , B(xk, r) and notice

that if r1 < r2, then F(r1) ⊂ F(r2).

The result follows from the following property:
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(A) For every open subset U ⊂ Rn, if U ∩F 6= ∅, then there exists an r > 0

such that F(r) ⊂ F(U).

Indeed, any open set containing F contains a subset of the form
⋂j
i=1F(Ui),

where each Ui ⊂ Rn is an open and intersects F . By (A), for every i ≤ j

there exists an ri > 0 such that F ∈ F(ri) ⊂ F(Ui). Put r = mini≤j ri. Then

F ∈ F(r) ⊂
⋂
i≤j F(Ui), as required.

We will finish the proof by showing that (A) holds. So, fix an open

U ⊂ Rn with U ∩ F 6= ∅ and let x ∈ U ∩ F .

Since all k-flats are affine sets, the points of F are precisely those which

can be expressed as an affine combination of (k + 1)-many points in F in

general position, see for instance [22] or [28, Section 1.2]. In particular, there

exist β0, β1, . . . , βk ∈ R such that
∑k

i=0 βi = 1 and x =
∑k

i=1 βixi.

Define a function g : (Rn)k+1 → Rn by setting

g(z0, z1, . . . , zk) =
k∑
i=0

βizi.

Note that g is continuous and that g(x0, x1, . . . , xk) = x ∈ U ∩ F . So, there

is an r > 0 such that if 〈zi〉ki=0 ∈
∏k

i=0B(xi, r), then g(z0, z1, . . . , zk) ∈ U . It

is enough to show that F(r) ⊂ F(U).

Indeed, let F ′ ∈ F(r). Then, there exists a 〈zi〉ki=0 ∈
∏k

i=0(F
′ ∩B(xi, r)).

As z = g(z0, z1, . . . , zk) is an affine combination of points z0, z1, . . . , zn ∈ F ′,

z belongs to F ′. Also, the choice of r insures that z ∈ U . Thus, z ∈ F ′ ∩ U

and so, F ′ ∈ F(U), as required.

Fact 5.7.2 If Z is a closed subset of Fk, then
⋃
Z is a closed subset of Rn.
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Proof. Let 〈zi0 : i < ω〉 be a sequence of points in
⋃
Z with the property

that limi→∞ z
i
0 = z0 ∈ Rn. We will show that z0 ∈

⋃
Z.

For each i < ω there exists a k-flat Fi ∈ Z with zi0 ∈ Fi. Choose the

points zi1, . . . , z
i
k ∈ Fi such that ‖zij − zi`‖ = 1 for all j < ` ≤ k. Since the

sequence 〈zi0, . . . , zik〉i<ω is bounded, choosing subsequence, if necessary, we

can ensure that it converges to a point 〈z0, . . . , zk〉 ∈ Rk+1. Clearly we have

‖zj − z`‖ = 1 for all j < ` ≤ k. In particular, the points z0, . . . , zk are in

general position. Thus, they all belong to some k-flat F and, by Fact 5.7.1,

the family {F(B(z0, r), B(z1, r), . . . , B(zk, r)) : r > 0} forms a basis at F .

Since every set F(B(z0, r), B(z1, r), . . . , B(zk, r)) contains some Fi ∈ Z, F is

in the closure of Z, that is, F ∈ Z. In particular, z0 ∈ F ⊂
⋃
Z, as required.

Now that some basic facts about our topology have been laid out, consider

the family Jk,n discussed earlier. We prove the following structural result

about Jk,n which will be essential to the proof of Theorem 5.4.3.

Fact 5.7.3 If S ∈ Jk,n, then cl(S) ∈ Jk,n is nowhere dense.

Proof. Let {Li : i < ω} be an increasing sequence of closed subsets of Fk
which justifies that S belongs to Jk,n. Notice that

Rn =
⋃
Fk =

⋃
i<ω

⋃
Li =

⋃
i<ω

int
(⋃
Li
)
∪
⋃
i<ω

(⋃
Li \ int

(⋃
Li
))

.

Define G =
⋃
i<ω int(

⋃
Li). Then G is an open in Rn, being the union of open

sets. Moreover, by Fact 5.7.2, each set
⋃
Li \ int (

⋃
Li) is closed nowhere

dense in Rn. Since clearly Rn\G is a subset of
⋃
i<ω(

⋃
Li\ int(

⋃
Li)), Rn\G
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is of first category in Rn. So, being closed, it is nowhere dense. As cl(S) is

disjoint with G =
⋃
i<ω int(

⋃
Li), it is nowhere dense and belongs to Jk,n.

Our characterization of Dk,n, for k ≥ n
2
, follows from the next three

lemmas.

Lemma 5.7.4 Let k and n be integers, with n > k ≥ n
2
. Let f : Rn → R be

Fk-continuous and let δ, ε > 0 be given. If B = B[N ] for some N ∈ (0,∞),

then the set Zδ,ε
def
= {F ∈ Fk : ω(f |̀ (F ∩B), δ) ≤ ε} is closed in Fk.

Proof. Let ε, δ > 0 be given and let Z = Zδ,ε. It is enough to show that

the complement of Z, Zc = Fk \ Z, is open. So, fix an F ∈ Zc. We will find

an open neighborhood W of F disjoint with Z.

Let V ∈ Vk be such that F = x0 + V for some x0 ∈ F and let W = V ⊥.

Choose the points x0, x1, . . . , xk ∈ F in general position. The set W will

be of the form F(r) = F(B(x0, r), B(x1, r), . . . , B(xk, r)) for some r > 0.

Invoking Lemma ??, we can choose an r > 0 small enough so that for any

y = 〈yi〉i≤k ∈
∏

i≤k B(xi, r) the points from Y = {yi : i ≤ k} are in general

position. In particular, there is a unique F (y) ∈ Fk containing Y .

Our proof of the lemma is based on the following claim.

Claim 5.7.5 For every z ∈ F and y = 〈yi〉i≤k ∈
∏

i≤k B(xi, r), the intersec-

tion (z + W ) ∩ F (y) contains a unique point hz(y). Moreover, the mapping

hz :
∏

i≤k B(xi, r)→ Rn is continuous.

First, notice that the claim implies the lemma. To see this, we will show

that, decreasing r, if necessary, F(r) ⊂ Zc. So, choose an arbitrary k-flat
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from F(r). It is of the form F (y) for some y = 〈yi〉i≤k ∈
∏

i≤k B(xi, r). We

will show that F (y) ∈ Zc provided r small enough.

As F ∈ Zc, we have ω(f |̀ (F ∩B), δ) > ε. So there are z0, z1 ∈ F ∩B for

which ||z1 − z0|| < δ and |f(z1) − f(z0)| > ε. Since f |̀F is continuous, we

can choose z0, z1 ∈ int(B) = B0.

Choose an ε0 > 0 such that ||z1−z0||+2ε0 < δ and |f(z1)−f(z0)|−2ε0 > ε.

For i < 2, zi + W is contained in a k-flat (as it has dimension n − k ≤ k).

Therefore, function f � (zi + W ) is continuous at zi and so, there exists a

δ0 ∈ (0, ε0) such that |f(zi)− f(z)| < ε0 whenever z ∈ (zi + W ) ∩ B(zi, δ0).

Since functions hzi are continuous, we can decrease r so that ‖hzi(y)− zi‖ =

‖hzi(y)− hzi(x0, . . . , xk)‖ < δ0 whenever y ∈
∏

i≤k B(xi, r). For i < 2 define

z′i
def
= hzi(y) ∈ F (y) and note that

||z′0 − z′1|| = ||hz0(y)− hz1(y)||

≤ ||hz0(y)− z0||+ ||z0 − z1||+ ||hz1(y)− z1||

< δ0 + δ − 2ε0 + δ0 < δ − 2ε0 + 2ε0 = δ.

Furthermore,

|f(z′0)− f(z′1)| = |f(z′0)− f(z0) + f(z0)− f(z1) + f(z1)− f(z′1)|

= | − [f(z1)− f(z0)]− [f(z0)− f(z′0)]− [f(z′1)− f(z1)]|

≥ |f(z1)− f(z0)| − |f(z0)− f(z′0)| − |f(z1)− f(z′1)|

> ε+ 2ε0 − ε0 − ε0 = ε.
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The last two computations justify the statement ω(f |̀ (F (y) ∩ B), δ) > ε.

Hence, indeed F (y) ∈ Zc as required.

The above argument reduces the proof of the lemma to that of Claim 5.7.5.

So, we proceed to prove the claim. For this, fix y and z as in the assump-

tions of Claim 5.7.5. First notice that 〈πF (yi)〉i≤k ∈
∏

i≤k B(xi, r). Thus, the

points πF (y0), . . . , πF (yk) are in general position. In particular, z has a unique

representation as z =
∑

i≤k αi(y)πF (yi), where
∑

i≤k αi(y) = 1.We shall show

that (z +W ) ∩ F (y) =
{∑

i≤k αi(y)yi
}

, that is, that hz(y) =
∑

i≤k αi(y)yi.

Indeed, every p ∈ F (y) has a unique representation as p =
∑

i≤k αiyi with∑
i≤k αi = 1. This p belongs to z +W if, and only if,

∑
i≤k

αi(y)πF (yi) = z = πF (p) = πF

(∑
i≤k

αiyi

)
=
∑
i≤k

αiπF (yi).

In particular, p belongs to z+W if, and only if, αi = αi(y) for every i ≤ k if,

and only, if p =
∑

i≤k αi(y)yi. In other words, the intersection (z+W )∩F (y)

indeed contains a unique point hz(y):

hz(y) =
k∑
i=0

αi(y)yi = y0 +
k∑
i=1

αi(y)(yi − y0).

To finish the proof, it is enough to show that hz(y) is continuous, that is,

that each function αi(y) is continuous for 0 < i ≤ k.

Now, z−πF (y0) =
∑k

i=1 αi(y)πF (yi−y0) and the vectors vi = πF (yi−y0) =

πF (yi)− πF (y0) are linearly independent for i = 1, . . . , k. So, we can choose

the vectors vi, k < i ≤ n, such that the family β = {vi : 0 < i ≤ n} forms a

basis for Rn. Then, the numbers αi(y) constitute the coordinates of z−πF (y0)
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with respect to this basis β. Thus, [α1(y) · · ·αn(y)]T = A−1(z − πF (y0))
T ,

where A is the change of basis matrix which takes points in standard co-

ordinates and gives their coordinates in the coordinate system induced by

the basis β. (Thus, the i-th column of A constitutes of the coordinates

of vi with respect to the standard coordinate system.) Since all terms in

A−1(z − πF (y0))
T are continuous with respect to y, so are the functions

αi(y).

Lemma 5.7.6 For every compact K ∈ Jk,n, there is an Fk-continuous func-

tion f : Rn → R with K = D(f) = {x : osc(f, x) = 1}.

Proof. Let {Li : i < ω} be a sequence which justifies the inclusion of K

in Jk,n. Let E be a countable dense subset of K and let 〈pi : i < ω〉 be a

sequence of elements of E enumerated so that every element of E occurs in

the sequence infinitely many times. We construct, by induction on i < ω, a

sequence 〈Di ⊂ Rn \K : i < ω〉 of disjoint closed balls of positive radius. For

every i < ω, there is a point qi ∈ B(pi, 2
−i) \ (K ∪

⋃
Li ∪

⋃
j<iDj). We can

find such a point because K is nowhere dense and pi 6∈ int(
⋃
Li). Choose Di

to be a closed ball centered at qi and disjoint from K ∪
⋃
Li ∪

⋃
j<iDj. Let

fi : Rn → R be a continuous surjection vanishing identically outside of Di.

Now define f =
∑∞

i=1 fi. We claim f is as desired.

The construction ensures that osc(f, p) = 1 if, and only if, p ∈ K and

that osc(f, p) = 0 otherwise. Since every element of Fk belongs to some Li,

we may appeal to Lemma 2.3.1 to see that f is Fk continuous.

The last of the lemmas is similar in character, purpose, and proof to [4,

theorem 3.4].
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Lemma 5.7.7 Let f : Rn → R be Fk-continuous and let N and k be the nat-

ural numbers such that n > k ≥ n
2
. Then KN = {p ∈ B[N ] : osc(f, p) ≥ 1

N
}

belongs to Jk,n.

Proof. For j = 1, 2, 3, . . ., let Lj = Z 1
j
, 1
4N

, where we use B = B[N + 1]

in the definition of Z 1
j
, 1
4N

. Let K = KN . We claim that 〈Lj〉j justifies the

inclusion of K ∈ Jn.

Clearly, Lj ⊂ Lj+1 and by Lemma 5.7.4, each Lj is closed. We also have⋃
j Lj = Fk since for every F ∈ Fk, the function f |̀ (F ∩ B) is uniformly

continuous. So, in order to finish, we need only show that K ∩ int(
⋃
Lj) = ∅

for every j.

To see this, fix j and p ∈ B[N ] ∩ int(
⋃
Lj). Our proof will be complete

if we can show p 6∈ K. To do this, we show that osc(f, p) < 1
N

. This portion

of the proof is quite similar to that of [4, theorem 3.4].

Let F0 be the k-flat through p parallel to the k-flat spanned by the first

k coordinate axes, and let F1 be the (n− k)-flat through p perpendicular to

F0. Since f is k-continuous and n− k ≤ k, the functions f |̀F0 and f |̀F1 are

continuous. Hence, we can find a δ > 0 with δ < 1
2j

so that if r ∈ F0 ∪ F1,

and ||r − p|| < δ, then |f(r)− f(p)| < 1
4N

.

Decreasing δ, if necessary, we can assume that B(p, δ) ⊂ B ∩ int(
⋃
Lj).

To finish the proof, it is enough to show that |f(p) − f(q)| < 1
2N

for every

q ∈ B(p, δ), since then the oscillation of f at p will be less than 1
N

, so that

p /∈ K.

So, fix a q ∈ B(p, δ) ⊂
⋃
Lj. Then, there exists a k-flat F ∈ Lj containing

q. Since the convex hull of F0∪F1 equals Rn, there are r0 ∈ F0∩F , r1 ∈ F1∩F ,

and α0, α1 ∈ [0, 1] such that q = α0r0 + α1r1 and α0 + α1 = 1. Notice that
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either ‖r0 − p‖ < δ or ‖r1 − p‖ < δ, since otherwise

‖q − p‖ = ‖α0(r0 − p) + α1(r1 − p)‖ ≥ α0‖r0 − p‖+ α1‖r1 − p‖ ≥ δ,

contradicting the choice of q. Choose r ∈ {r0, r1} ⊂ F0∩F1 with ‖r−p‖ < δ.

Then, |f(p)− f(r)| < 1
4N

. Moreover, ‖r − q‖ < 2δ < 1
j

and r, q ∈ F ∈ Lj =

Z 1
j
, 1
4N

. So, |f(r)− f(q)| ≤ ω
(
f |̀ (F ∩B), 1

j

)
≤ 1

4N
. Therefore,

|f(p)− f(q)| ≤ |f(p)− f(r)|+ |f(r)− f(q)| < 1

4N
+

1

4N
=

1

2N
,

finishing the proof.

Proof of Theorem 5.4.3. If D = D(f) for some Fk-continuous function

f : Rn → R, then D =
⋃

0<i<ωKi where Ki =
{
p ∈ B[i] : osc(f, p) ≥ 1

i

}
. So,

by Lemma 5.7.7, each of these Ki belong to Jk,n.

Conversely, assume that D =
⋃
i<ωKi, where each Ki is compact and

belongs to Jk,n. Then, by Lemma 5.7.6, for every i < ω there exists an

Fk-continuous function fi : Rn → [0, 1] with D(fi) = Ki and osc(fi, p) = 1

for all points p ∈ Ki. Then, the function f =
∑

i<ω 3−ifi is Fk-continuous

and D(f) = D.

Our proof of Theorem 5.4.3 does not work for k < n
2
. In fact, our proof of

Lemma 5.7.4 depends heavily on the fact that f is continuous on (n−k)-flats.

In particular, the following example shows, that the conclusion of the lemma

may be false for k < n
2
.

Example 5.7.8 Let g : R2 → R be linearly continuous such that g(0, 0) = 1,

while there exists a sequence 〈pi ∈ R2〉i<ω converging to 〈0, 0〉 such that
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g(pi) = 0 for all i < ω. For example, if f is given by (1.2), then g(x, y) =

1 − f(x, y) has this property. Define h : R3 → R as h(x, y, z) = zg(x, y).

Then h is clearly linearly (so, F1-) continuous. However, the set Z2,1 for this

function is not closed, as it contains all vertical lines through points pi, but

it does not contain their limit, the z-axis.

While this example does not preclude the existence of a version of Theo-

rem 5.4.3 that would work for k < n
2
, it emphasizes the difficulties.

An inspection of our the results presented in Section 5.7 yields some

information about the structure of the sets in Dk,n, k ≥ n
2
.

Corollary 5.7.9 If n and k are integers with k ≥ n
2
, the sets Jk,n are ideals.

Proof. Clearly any subset of a set S ∈ Jk,n also belongs to Jk,n. We need

only show that if K1 and K2 are elements of Jk,n, then K1 ∪ K2 ∈ Jk,n.

By Fact 5.7.3, we may assume that K1 and K2 are compact. Hence, by

Theorem 5.4.3, there are Fk-continuous functions f1, f2 : Rn → [0, 1] such

that D(fi) = Ki = {z : osc(fi, z) = 1}. Then the function f1 + 1
2
f2 is Fk-

continuous and D(f) = K1 ∪ K2. Then, by applying Theorem 5.4.3 again,

we see that K1 ∪K2 ∈ Jk,n.

Although we are unable to characterize the sets Dk,n for all k < n, we

are able to derive a sufficient condition for membership in Dk,n. In par-

ticular, the following theorem gives us a tool for constructing discontinuity

sets of Fk-continuous functions without explicitly constructing the functions

themselves.

Theorem 5.7.10 If S is a countable union of compact members of Jk,n,

then S ∈ Dk,n.
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Proof. Note that the “sufficiency” part of our proof of Theorem 5.4.3

depended only upon Lemma 5.7.6 which holds regards of k and n.

5.8 A Note on Baire Class

One of the most well known results on separately continuous functions is

Lebesgue’s theorem that every separately continuous function f : Rn → R is

of the (n− 1)-st Baire class. We note that this result can be extended, with

little effort, to the F+
k -continuous functions.

Proposition 5.8.1 Let f : Rn → R be an F+
k -continuous function. If m =

dn
k
e, then f is, at most, of the (m− 1)st Baire class.

Proof. Let r = n mod k. Then we may write

Rn = Rk × Rk × . . .Rk︸ ︷︷ ︸
bn
k
c

×Rr.

Where, of course, if k|n, we neglect the trivial factor R0. Hence, we may

view f as separately continuous in each of its m variables. By Lemma 1.3.2,

f is of Baire class, at most, m− 1.

In order to prove a partial converse, we first mention the result due to

Maslyuchenko, Mykhailyuk, and Sobchuk (see [32]).

Theorem 5.8.2 If X is any metric space and f : X → R is of the (n− 1)st

Baire class, then there exists a separately continuous function φ : Xn → R

such that φ(x, x, . . . , x) = f(x) for all x ∈ X.

77



From this, our partial converse follows immediately.

Proposition 5.8.3 If f : Rk is of Baire class (m − 1), then there exists a

F+
k -continuous function φ : (Rk)n → R such that φ(x, x, . . . , x) = f(x) for all

x ∈ Rk.

In the case that k 6 |n, the concept of “diagonal” is undefined, preventing

us from extending Proposition 5.8.3 to this case.
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Chapter 6

Open Questions

1. For any function f : X → Y , there is a maximal collection of sets S

so that f ∈ CS . What does this set tell us about the function f? In

particular, is there a relationship between the “size” (in any sense) of

S and the “size” (again, in any sense) of the set of discontinuities of f?

2. The question of characterizing the sets of discontinuities of C(D2) func-

tions has not been settled, neither has the question of characterizing

the sets of discontinuities of linearly continuous functions defined on

Rn where n > 2 or many classes of k-flat continuous functions.

3. An understanding of how restriction continuities interrelate to the other

classes of generalized continuities, i.e., within the class of separately

continuous functions on Rn, are there Darboux functions which are not

connectivity? For some background on this question, see [12], and the

references therein.

4. Are there linearly continuous function which are not of Baire class 1?
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Note that if such functions exist for some Rn, then n must be greater

than 2 because of Lebesgue’s theorem on the Baire class of separately

continuous functions.

5. What is the size of D(f) for typical linearly continuous functions? C-

continuous functions for other classes of curves?

6. We proved in Chapter 4 that for every compact nowhere dense K ⊂

R and every C2 function φ : R → R, that φ |̀K ∈ D1,2. Does some

version of this result hold for linearly continuous functions in higher

dimensions? Perhaps for Fk-continuous functions for some values of k?

7. Can our characterization of the discontinuity sets Dk,n (k ≥ n
k
) be made

simpler or expressed in more straightforward terminology?
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