
Topology, Math 581, Fall 2019 last updated: December 5, 2019 1

Topology 1, Math 581, Fall 2019: Notes and some homework

Krzysztof Chris Ciesielski

Class of August 22:
Course and syllabus overview.
Topology is an abstract geometry, sometimes referred to as Rubber Sheet

Geometry. Material, in this course, will be presented “from abstract defini-
tions and results to specific examples.”

Notation:

• Do not confuse A ∈ A (which reads “A is an element of A”) with
A ⊂ A (which reads “A is a subset of A” and means “every element of
A is also an element of A).

Notice that A ⊂ B ⊂ C implies A ⊂ C, but A ∈ B ∈ C does not imply
A ∈ C. You will never see in this course a pair A and B, for which we
will have simultaneously A ∈ B and A ⊂ B.

• Notation f :X → Y means that f is a function from a set X, domain
of the function, into the set Y . For any set C (usually, C ⊂ Y ), the
preimage f−1(C) (of C under f) is defined as

f−1(C) = {x ∈ X: f(x) ∈ C}.

Example 1 f−1(A∩B) = f−1(A)∩ f−1(B) for every A, B, and function f .

Proof. x ∈ f−1(A ∩B)⇔ f(x) ∈ A ∩B ⇔ f(x) ∈ A & f(x) ∈ A
⇔ x ∈ f−1(A) & x ∈ f−1(B)⇔ x ∈ f−1(A) ∩ f−1(B).

Motivation:
Let R be the set of real numbers and for x ∈ R and ε > 0 let

B(x, ε) = {r ∈ R: |x− r| < ε}.

We will refer to B(x, ε) as an open ball, although for this case it is just an
open interval (x − ε, x + ε). Let T be the family of all subsets U of R such
that for every x ∈ U there is an ε > 0 such that x ∈ B(x, ε) ⊂ U :

T = {U ⊂ R:∀x ∈ U∃ε > 0(B(x, ε) ⊂ U)}.

Latter, we will refer to T as the standard topology on R and its elements
U ∈ T will be called open sets.
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Theorem 2 (Motivational) Let f :R→ R. The following two definitions of
continuity of f are equivalent:

(a) (Topological definition) f−1(U) ∈ T for every U ∈ T .

(b) (ε-δ definition) For every x ∈ R and every ε > 0 there is a δ > 0 such
that for every r ∈ R, if |x− r| < δ, then |f(x)− f(r)| < ε.

Proof. Latter today.

For functions f :X → Y and g:Y → Z their composition g ◦ f :X → Z is
defined via formula: (g ◦ f)(x) = g(f(x)) for every x ∈ X. Also, if A ⊂ X,
then the image f [A] of A under f is defined as {f(a): a ∈ A}.

Theorem 3 We have the following properties:

(a) (g ◦ f)−1(C) = f−1(g−1(C))

(b) (g ◦ f)[A] = g[f [A]]

Proof. (a) x ∈ (g ◦ f)−1(C)⇔ (g ◦ f)(x) ∈ C ⇔ g(f(x)) ∈ C ⇔
f(x) ∈ g−1(C)⇔ x ∈ f−1(g−1(C)).

Proof of (b) is left as an exercise. (Not homework assignment.)

The next theorem gives a motivation of defining continuity of a functions
via property (a) of Theorem 2. Note, that the proof is considerably easier
than a standard ε-δ proof.

Theorem 4 If functions f, g:R → R are continuous, then so is their com-
position g ◦ f :R→ R.

Proof. Let U ∈ T . By Theorem 2 it is enough to prove that (g ◦f)−1(U) ∈
T . By Theorem 3(a), (g ◦ f)−1(U) = f−1(g−1(U)). Now, W = g−1(U) ∈ T
by the continuity of g and Theorem 2. Therefore, by the continuity of f (and
Theorem 2 used once again), (g ◦ f)−1(U) = f−1(W ) ∈ T , as required.

The same proof will work for arbitrary continuous functions defined via
a general notion of defined below. (See section 12 in the text.)

Proof of Theorem 2. (a)=⇒(b): Fix an x ∈ R and an ε > 0. Using (a),
we need to find a δ satisfying (b).

Let U = B(f(x), ε) = (f(x) − ε, f(x) + ε). Notice that U ∈ T . (This
requires checking, that U satisfies the definition of sets in T .) So, by (a),
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f−1(U) ∈ T . Note also, that x ∈ f−1(U), as f(x) ∈ (f(x)− ε, f(x) + ε) = U .
Therefore, we have x ∈ f−1(U) ∈ T and, by the definition of T , there is a
δ > 0 such that B(x, δ) ⊂ f−1(U). We show, that this δ satisfies (b).

Indeed, let r ∈ R be such that |x − r| < δ. Then, r ∈ (x − δ, x + δ) =
B(x, δ) ⊂ f−1(U). Therefore, f(r) ∈ U = (f(x) − ε, f(x) + ε) and so,
|f(x)− f(r)| < ε, as required.

(b)=⇒(a): Fix a U ∈ T . We need to show that f−1(U) is in T . For this,
take an x ∈ f−1(U). We need to find a δ > 0 for which B(x, δ) ⊂ f−1(U).

We have f(x) ∈ U , as x ∈ f−1(U). Since U ∈ T , there exists an ε > 0
for which B(f(x), ε) ⊂ U . Using (b) for this x and ε, we can find a δ > 0
such that |f(x)− f(r)| < ε provided |x− r| < δ. We will show that for this
choice of δ we indeed have B(x, δ) ⊂ f−1(U).

To see this, take an r ∈ B(x, δ) = (x − δ, x + δ). We need to show that
r ∈ f−1(U). Since r ∈ (x−δ, x+δ), we have |x−r| < δ. So, by the choice of δ,
|f(x)−f(r)| < ε. In particular, f(r) ∈ (f(x)−ε, f(x)+ε) = B(f(x), ε) ⊂ U .
Thus, r ∈ f−1(U), as required.

Reading assignment: Read Sections 1-7.
It is assumed that you are familiar with the material presented there.

Therefore, we will not cover this material in class. (If necessary, we will be
reviewing these notion on “as needed” basis.)

Written assignment: Write for the next class:

Exercise 1 Let f :X → Y be an arbitrary function and A,B ⊂ X. Prove,
or give a counterexample, for the following statements:

(a) f [A ∪B] = f [A] ∪ f [B]

(b) f [A ∩B] = f [A] ∩ f [B]
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Class of August 27:
What we covered last class: For x ∈ R and ε > 0 we define an open ball

B(x, ε) = {r ∈ R: |x− r| < ε} = (x− ε, x+ ε).

Let T be the family of all subsets U of R such that for every x ∈ U there is
an ε > 0 such that x ∈ B(x, ε) ⊂ U :

T = {U ⊂ R: ∀x ∈ U∃ε > 0(B(x, ε) ⊂ U)}.

We will refer to T as the standard topology on R and its elements U ∈ T will
be called open sets.

We proved

Let f :R→ R. The following two definitions of continuity of f are equivalent:

(a) (Topological definition) f−1(U) ∈ T for every U ∈ T .

(b) (ε-δ definition) For every x ∈ R and every ε > 0 there is a δ > 0 such
that for every r ∈ R, if |x− r| < δ, then |f(x)− f(r)| < ε.

New material:

Definition 1 Let X be an arbitrary set having at least two elements. A
topology on X is any family T of subsets of X having the following properties:

(1) ∅, X ∈ T .

(2) The union of any subfamily of T is in T , that is,
⋃
U ∈ T for every

U ⊂ T .

(3) The intersection of any finite subfamily of T is in T , that is,
⋂
U ∈ T

for every finite U ⊂ T .

The pair 〈X, T 〉 is called a topological space. For a fixed topological space
〈X, T 〉, the sets belonging to the family T will be refereed to as the open
sets (with respect to this topology).

In the above definition, we used the following notation:

• Arbitrary unions and intersections of sets: Let A be a family of sets,
say A = {At: t ∈ T}. Then

⋃
A =

⋃
t∈T At denotes the same set:

{x:∃A ∈ A(x ∈ A)}, that is, {x:∃t ∈ T (x ∈ At)}.
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• Similarly,
⋂
A =

⋂
t∈T At denotes the same set: {x: ∀A ∈ A(x ∈ A)},

that is, {x:∀t ∈ T (x ∈ At)}.
Remark 5 In the definition, condition (3) can be replaced with

(3’) The intersection of any two sets in T is in T , that is, if U, V ∈ T , the
also U ∩ V ∈ T .

Proof. Easy induction.

Example 6 Here are some examples of topological spaces 〈X, T 〉, where X
is an arbitrary set.

• T = P(X), where P(X) is the power set of X, that is, the family of
all subsets of X. This topology is called the discrete topology.

• T = {∅, X}. This topology is called trivial or indiscrete topology.

• The standard topology T on R, defined for Theorem 2.

More examples:

Example 7 Examples of topologies on a set X:

• For a three elements set X = {a, b, c}, there are many different pos-
sible topologies. (Nine are indicated in Example 1, page76). E.g.
{∅, {a}, {a, b}, X}. Other examples from the text, section 12.

• Finite complement topology Tf = {∅}∪{X \F :F is finite}. Notice
that 〈X, Tf〉 is discrete, for finite X.

• Countable complement topology TC = {∅}∪{X\F :F is countable}.
Notice that 〈X, TC〉 is discrete, for countable X.

Definition of finer and coarser topologies.
Solve Ex 1 page 83.
Proof that f−1(

⋃
t∈T At) =

⋃
t∈T f

−1(At):

x ∈ f−1(
⋃
t∈T

At) ⇔ f(x) ∈
⋃
t∈T

At (by the definition of preimage)

⇔ ∃t ∈ T f(x) ∈ At (by the definition of union)

⇔ ∃t ∈ T x ∈ f−1(At) (by the definition of preimage)

⇔ x ∈
⋃
t∈T

f−1(At) (by the definition of union).
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Class of August 29:
Recall that a topology on X is a family T of subsets of X such that

(1) ∅, X ∈ T ;

(2)
⋃
U ∈ T for every U ⊂ T ;

(3)
⋂
U ∈ T for every finite U ⊂ T .

Examples of topological spaces 〈X, T 〉:

• Discrete topology T = P(X), where P(X) is the power set of X.

• Trivial or indiscrete topology T = {∅, X}.

• The standard topology T on R, defined for Theorem 2.

• Finite complement topology Tf = {∅}∪{X \F :F is finite}. Notice
that 〈X, Tf〉 is discrete, for finite X.

• Countable complement topology TC = {∅}∪{X\F :F is countable}.
Notice that 〈X, TC〉 is discrete, for countable X.

New material:

Section 13: Basis for a Topology

Definition 2 Basis — Two related definitions

From a basis to topology — Basis for a topology: A collection B of
a subsets of a set X such that

(B1) For every x ∈ X there is a B ∈ B with x ∈ B (i.e.,
⋃
B = X).

(B2) For every B1, B2 ∈ B and x ∈ B1 ∩ B2 there is a B ∈ B with
x ∈ B ⊂ B1 ∩B2.

[From a topology to its basis — Basis for a given topology T :

Let 〈X, T 〉 be a fixed topological space. A basis for T is any collection
B ⊂ T such that for every U ∈ T and every x ∈ U there exists a B ∈ B
with x ∈ B ⊂ U .
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The first of these notion is used to create new topologies. The second
is used to easier deal with a given, fixed topology T . This second notion is
used considerably more often than the first one.

Fact 1 If B satisfies (B1) and (B2), then the family

T (B) = {U ⊂ X: ∀x ∈ U∃B ∈ B(x ∈ B ⊂ U)} =
{⋃
U :U ⊂ B

}
is a topology on X. The family B is a basis for the topology T (B).

Fact 2 (Lemma 13.2) If B is a basis for a topology T , then T = T (B).

Discuss examples 1–3.
Go over Lemma 13.3. (Not covered) — stated, to be proved next class.

There may be more than one basis for a given topology: Example 4 (from
Examples 1 and 2). Left for the next class.

Example 8 Two examples of topologies on R:

• Standard topology, generated by basis Bst = {(a, b): a, b ∈ R, a < b},
that is, the topology Tst = T (Bst). We usually write just R for 〈R, Tst〉.
Notice, that this is the same topology that was used in Theorem 2.

• Lower limit (or Sorgenfrey) topology T` is generated by basis
B` = {[a, b): a, b ∈ R, a < b}, that is, T` = T (B`). We usually write R`

for 〈R, T`〉.

Written assignment for Tuesday, September 3: Exercise 8, page 83.
(In part (b), do not forget to prove, that T (C) is indeed a topology. Do you
need to prove, in part (a), that T (B) is a topology?)

Bonus question to part (b): What if we replace family C with the fam-
ily C∗ = {[a, b): a < b, and a and b are irrational}? How T (C) and T (C∗)
compare to each other?

Be ready for a quiz next class time!
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Class of September 3:
Collect homework. Administer Q # 1.
Recall that (rephrasing):

Basis for a given topology T : Let 〈X, T 〉 be a fixed topological space. A
basis for T is any collection B ⊂ T such that for every U ∈ T and every
x ∈ U there exists a B ∈ B with x ∈ B ⊂ U .

Fact 3 For a collection B of subsets of X, let

T (B) = {U ⊂ X:∀x ∈ U∃B ∈ B(x ∈ B ⊂ U)}.
If B satisfies the following two conditions:

(B1) For every x ∈ X there is a B ∈ B with x ∈ B (i.e.,
⋃
B = X).

(B2) For every B1, B2 ∈ B and x ∈ B1 ∩ B2 there is a B ∈ B with x ∈ B ⊂
B1 ∩B2.

then T (B) is a topology on X and B is a basis for T (B).

Restate and prove Lemma 13.3. Use it to show that Example 4—two
bases give same topology.

(Partially) new material:

Example 9 Three examples of topologies on R, defined via bases:

• Standard topology, generated by basis Bst = {(a, b): a, b ∈ R, a < b},
that is, the topology Tst = T (Bst). We usually write just R for 〈R, Tst〉.
Notice, that this is the same topology that was used in Theorem 2.

• Lower limit (or Sorgenfrey) topology T` is generated by basis
B` = {[a, b): a, b ∈ R, a < b}, that is, T` = T (B`). We usually write R`

for 〈R, T`〉.

• K-topology TK : Let K = {1/n:n = 1, 2, 3, . . .}. Then TK is generated
by basis BK = Bst ∪ {(a, b) \K: a, b ∈ R, a < b}, that is, TK = T (BK).
We usually write RK for 〈R, TK〉.

Fact 4 (Lemma 13.4) T` and TK are strictly finer than Tst.

Definition of subbasis for a topology.
Note that S = {(a,∞): a ∈ R} ∪ {(−∞, b): b ∈ R} is a subbasis for R

(with the standard topology).
Go over exercises 3 and 6. Possibly, also exercises 4, 5, and/or 7.
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Class of September 5:
Next class: Quiz #2. Hand solutions to Homework #1,

Go briefly over:

Section 14: Order Topology: For linearly ordered set 〈X,≤〉, order
topology is generated by subbasis S = {(a,∞): a ∈ X} ∪ {(−∞, b): b ∈ X}.

Describe basis for X. (Definition, page 84.)
Go over examples 1-4.

Section 15: Product Topology on X × Y

Definition 3 For topological spaces 〈X, T1〉 and 〈Y, T2〉 let BT1,T2 be the
family of all open rectangles, that is,

BT1,T2 = {U × V :U ∈ T1 & V ∈ T2}.

Note that BT1,T2 satisfies conditions (B1) and (B2) for a topology on X × Y .
So, the family T (BT1,T2) is a topology on X × Y .

The topology T (BT1,T2) is called the product topology on X × Y .

Note that, in general,

T (BT1,T2) 6= BT1,T2 ,

since, BT1,T2 is not closed under unions, as, usually, (U1 × V1) ∪ (U2 × V2) is
not a rectangle (so, itdoes not belong to BT1,T2).

Theorem 10 If B1 is a basis for 〈X, T1〉 and B2 is a basis for 〈Y, T2〉, then
the family

BB1,B2 = {U × V :U ∈ B1 & V ∈ B2}
is a basis for the product topology on X × Y .

Corollary 11 (Example 1) The family B = {(a, b)× (c, d): a, b, c, d ∈ R} is
a basis for the product topology on R × R, where R is considered with the
standard topology. Thus, the product topology on R×R coincides with the
standard topology T (B) on R× R.

Definition 4 For the Cartesian product X1×X2 define the projection func-
tion π1:X1×X2 → X1 onto the first coordinate as π1(x1, x2) = x1. Similarly,
the projection onto the second coordinate is the function π2:X1 ×X2 → X2

defined as π2(x1, x2) = x2.
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Notice that for U ⊂ X1 and V ⊂ X2 we have

π−11 (U) = U ×X2 and π−12 (V ) = X1 × V.

In particular, for topological spaces 〈X1, T1〉 and 〈X2, T2〉, the family

S = {π−1i (W ): i ∈ {1, 2} & W ∈ Ti}

forms a subbasis for the product topology on X1 × X2, since we have the
identity π−11 (U) ∩ π−12 (V ) = U × V .

Written assignment for Tuesday, September 10: Exercise 6, page 92.
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Class of September 10:
Administer Quiz # 2. Collect homework. Discuss Ex 4 on order topology.

Recall that:

• For the topological spaces 〈X, T1〉 and 〈Y, T2〉, the product topology on
X × Y is generated by a basis: BT1,T2 = {U × V :U ∈ T1 & V ∈ T2}.

• If B1 is a basis for 〈X, T1〉 and B2 is a basis for 〈Y, T2〉, then the family
BB1,B2 = {U×V :U ∈ B1 & V ∈ B2} is a basis for the product topology
on X × Y .

Section 16: Subspace Topology

Definition 5 Let 〈X, T 〉 be a topological space and Y be any subset of X
(containing at least two points). Then the family

TY = {Y ∩ U :U ∈ T }

forms a topology on Y called the subspace topology.

Lemma 12 If B is a basis for a topological space 〈X, T 〉 and Y ⊂ X, then
the family

BY = {Y ∩B:B ∈ B}

is a basis for 〈Y, TY 〉.

Go over Lemma 16.2 and Example 1.

Discuss briefly Theorem 16.4.

Theorem 13 (Theorem 16.3) Let 〈A, TA〉 be a subspace of 〈X, T1〉 and
〈B, TB〉 be a subspace of 〈Y, T2〉. Then the following two topologies on A×B
coincide:

• TA×B, the subspace topology of the product topology on X × Y ;

• T (BTA,TB), the product topology for the spaces 〈A, TA〉 and 〈B, TB〉.

Discuss Theorem 13.
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Class of September 12:
Hand solutions for homework assigned August 29.
Next class I will hand solutions for homework assigned September 5.
Be ready for a quiz next class.

Recall that:

• If 〈X, T 〉 is a topological space and Y ⊂ X, then TY = {Y ∩U :U ∈ T }
is the subspace topology on Y .

• If B is a basis for a topological space 〈X, T 〉 and Y ⊂ X, then the
family BY = {Y ∩B:B ∈ B} is a basis for 〈Y, TY 〉.

Go over Exercise 1.
Go over Example 2. Read Example 3.
Remind discussion of Theorem 13.

(Ex. 9. p. 92) Show that the dictionary order topology T� on R×R coincides
with the product topology Tds of Rd × R. Compare this topology with the
standard topology Tst on R2.

Proof. In the proof, we will use the following two facts, mentioned many
times in class. (For notation, see lecture for Section 13.)

(i) If B0 ⊂ B1 ⊂ P(X), then T (B0) ⊂ T (B1).

(ii) If T0 is a topology (on X), then T (T0) = T0.

Property (i) holds, as T (B0) = {
⋃
B:B ⊂ B0} ⊂ {

⋃
B:B ⊂ B1} = T (B1).

Property (ii) holds, since the family B0 = T0 is a basis for T0, and so T (T0) =
T (B0) = T0.

Next, notice that, by Thm 15.1, Bds = {{x} × (p, q):x, p, q ∈ R} is a
basis for Tds. Also, B� = {(〈a, b〉, 〈c, d〉): a, b, c, d ∈ R} is a basis for T�,
where (〈a, b〉, 〈c, d〉) = {〈x, y〉 ∈ R2: 〈a, b〉 ≺ 〈x, y〉 ≺ 〈c, d〉}. (Here � is the
dictionary order on R× R.)

To show Tds ⊂ T�, notice that Bds ⊂ B�, as {x}×(p, q) = (〈x, p〉, 〈x, q〉) ∈
B�. Therefore, by (i), Tds = T (Bds) ⊂ T (B�) = T�.

To show T� ⊂ Tds, first notice that B� ⊂ Tds. So, take a non-empty
(〈a, b〉, 〈c, d〉) ∈ B�. If a = c, then (〈a, b〉, 〈c, d〉) = {a} × (b, d) ∈ Bds ⊂ Tds.
Otherwise a < c and (〈a, b〉, 〈c, d〉) is a union of the following sets from Tds:
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{a}× (b,∞), {c}× (−∞, d), and {z}×R, where a < z < c. Therefore, once
again, (〈a, b〉, 〈c, d〉) ∈ Bds ⊂ Tds. Hence, indeed, B� ⊂ Tds.

Now, T� ⊂ Tds follows from (i) and (ii): T� = T (B�) ⊂ T (Tds) = Tds.
To finish the exercise, we will show that Tst ( Tds. Indeed, to see the

inclusion, recall that the family Bst = {(a, b)× (c, d): a, b, c, d ∈ R} is a basis
for Tst. Also, any set from Bst belongs to the standard basis Bpr for Rd ×R:
Bpr = {U × V :U open in Rd and V open in R}. Therefore, Bst ⊂ Bpr ⊂ Tds
and, by (i) and (ii), Tst = T (Bst) ⊂ T (Tds) = Tds.

To see that the inclusion is strict, it is enough to notice that, for example,
a set W = {0} × (0, 1) belongs to Tds but it does not belong to Tst.

Written assignment for Thursday, September 12: Ex. 10, p. 92.
You can use in your solution, without a proof, results from Ex. 9, p. 92.
Also:

Exercise 2 For θ ∈ R let Lθ be the line given by equation y = θx. Describe,
for every θ ∈ R, the topology Lθ inherits as a subspace of R` × R`.

Go over Exercise 4.
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Class of September 17:
Collect homework. Quiz # 3 is planned for the next class.
Hand solutions for homework assigned September 5.

Section 17: Closed sets; Closure and Interior of a Set

Definition 6 A set A ⊂ X is closed in the topological space 〈X, T 〉 if its
complement X \ A is open.

Go over Examples 1-5.
Go over Theorem 17.1.
Go over Exercise 1.

Theorem 14 (Theorem 17.2) Let Y be a subspace of X. Then, A ⊂ Y is
closed in Y iff A = Y ∩ F for some closed subset F of X.

Go over Theorem 17.3.
Go over Exercises 2, 3, and 4.

Definition 7 Let A ⊂ X be a subset of a topological space 〈X, T 〉.
• The interior of A, denoted as int(A), is defined as a union of all open

subsets contained in A, that is, int(A) =
⋃
{U ∈ T :U ⊂ A}.

Notice that int(A) is open and that it is the largest open subset of A.

• The closure of A, denoted either as cl(A) or as Ā, is defined as an
intersection of all closed subsets containing in A, that is,
cl(A) =

⋂
{F ⊃ A:F is closed in X}.

Notice that cl(A) is closed and that it is the smallest closed set con-
taining A.

We will sometimes use symbols intX(A) and clX(A) in place of int(A) and
cl(A) to stress that the operation is with respect to the given topology on X.

Go over Exercise 6(a) and (b). The following theorems stated without a
proofs.

Theorem 15 (Theorem 17.4) Let Y be a subspace of X and A ⊂ Y . Then
clY (A) = Y ∩ clX(A).

Theorem 16 (Theorem 17.5) Let A ⊂ X be a subset of a topological space
〈X, T 〉 and B be a basis for X. Then

x ∈ cl(A) if, and only if, A ∩B 6= ∅ for every B ∈ B with x ∈ B.

In particular, the result is true with B = T .
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Class of September 19:
Administer Q #3. Recall, from the last class:

• A set A ⊂ X is closed in the topological space 〈X, T 〉 if its complement
X \ A is open.

• (Theorem 17.2) Let Y be a subspace of X. Then, A ⊂ Y is closed in
Y iff A = Y ∩ F for some closed subset F of X.

• The interior of A is int(A) =
⋃
{U ∈ T :U ⊂ A}.

• The closure of A is cl(A) =
⋂
{F ⊃ A:F is closed in X}.

New material: Restate and prove the following two theorems:

Theorem 17 (Theorem 17.4) Let Y be a subspace of X and A ⊂ Y . Then
clY (A) = Y ∩ clX(A).

Theorem 18 (Theorem 17.5) Let A ⊂ X be a subset of a topological space
〈X, T 〉 and B be a basis for X. Then

x ∈ cl(A) if, and only if, A ∩B 6= ∅ for every B ∈ B with x ∈ B.

In particular, the result is true with B = T .

Read Examples 6 and 7. Try to solve at home Ex 9. (Not homework.)

Let A = K ∪ (2, 3), where K = {1/n:n ∈ {1, 2, 3, . . .}}. Find the closures
of A in: R (i.e., R with the standard topology), R`, Rd (i.e., R with the
discrete topology), and RK .

Answer: clR(A) = {0}∪K∪ [2, 3]; clR`
(A) = {0}∪K∪ [2, 3); clRd

(A) = A;
clRK

(A) = K ∪ [2, 3];

Written assignment due Tuesday, Sept. 24: Ex 8(b) & 17, p. 101.
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Section 17, Limit Points

Definition 8 Let A ⊂ X be a subset of a topological space 〈X, T 〉. A point
x ∈ X is a limit point (or accumulation point) of A provided x ∈ cl(A \ {x}).
The set of all limit points of A is denoted as A′.

Go over Example 8.

Theorem 19 (Theorem 17.6) Let A be a subset of a topological space
〈X, T 〉. Then cl(A) = A ∪ A′.

Theorem 20 (Theorem 17.7) Let A be a subset of a topological space
〈X, T 〉. Then A is closed in X if, and only if, A′ ⊂ A.
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Class of September 24:

Ready for a quiz next class. Recall, from the last class:

• If Y is a subspace of X, then clY (A) = Y ∩ clX(A).

• If B is a basis for X, then x ∈ cl(A) if, and only if, A∩B 6= ∅ for every
B ∈ B with x ∈ B.

• A′ = {x ∈ X:x ∈ cl(A \ {x})}.

• cl(A) = A ∪ A′.

• A is closed if, and only if, A′ ⊂ A.

New material

Section 17: Hausdorff spaces

Definition 9 Let 〈X, T 〉 be a topological space. We say that:

• X is Hausdorff (or a T2 space) provided for every distinct x, y ∈ X
there exists disjoint open sets U, V ⊂ X such that x ∈ U and y ∈ V .

• X is a T1 space provided for every distinct x, y ∈ X there exists an
open set U ⊂ X such that x ∈ U and y /∈ U .

• X is a T0 space provided for every distinct x, y ∈ X there exists an
open set U ⊂ X such that either x ∈ U and y /∈ U or y ∈ U and x /∈ U
(i.e., such that U contains precisely one of the points x and y).

Notice that if X is T2 then it is also T1, and if X is T1 then it is also T0.

Examples:

• A space X with a trivial topology T = {∅, X} is not T0.

• X = {0, 1} with a topology T = {∅, {0}, X} is T0 but not T1.

• X = R with a cofinite topology T = {∅} ∪ {X \ F :F is finite} is T1
but not T2.

• The following spaces are T2: any space with the discrete topology, R
with the standard topology, R`, RK .
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Theorem 21 (Exercise 15) A space X is T1 if, and only if, every finite subset
of X is closed.

Corollary 22 (Theorem 17.8) Every finite subset in a Hausdorff space is
closed.

Theorem 23 (Theorem 17.9) Let X be a T1 topological space and A ⊂ X.
Then x ∈ A′ if, and only if, U ∩ A is infinite for every open U containing x.

Definition 10 Let X be a topological. We say that x ∈ X is an isolated
point provided {x} is open in X.

Remark 24 If X is T1 and an open set U is finite, then every x ∈ U is
isolated.

Definition 11 Let X be a topological. We say that a sequence 〈xn〉∞n=1 of
points of X converges to an x ∈ X provided for every open set U containing
x there exists an N such that xn ∈ U for every n ≥ N .

If this is the case, we say also, that x is a limit of a sequence 〈xn〉∞n=1.

Theorem 25 (Theorem 17.10) If X is a Hausdorff topological space, then
any sequence 〈xn〉∞n=1 of points of X converges to at most one point in X.

Example: (Exercise 14) Theorem 23 (17.10) is false for T1 spaces. For
example, if X = R is considered with the cofinite topology (which is T1) and
xn = 1/n for every n, then every real number is a limit of 〈xn〉∞n=1.
Ex. 11. p. 101: Show that the product of two Hausdorff spaces is Hausdorff.

Solution: Let X and Y be Hausdorff. Let p1 = 〈x1, y1〉 and p2 = 〈x2, y2〉
be distinct points from X × Y . We need to find disjoint open subsets W1

and W2 of X × Y such that p1 ∈ W1 and p2 ∈ W2.
If x1 6= x2, then, since X is Hausdorff, there are disjoint open subsets

U1 and U2 of X such that x1 ∈ U1 and x2 ∈ U2. Then, W1 = U1 × Y and
W2 = U2 × Y are as desired.

If x1 = x2, then y1 6= y2, since p1 6= p2. Then, since Y is Hausdorff, there
are disjoint open subsets V1 and V2 of Y such that y1 ∈ V1 and y2 ∈ V2.
Then, W1 = X × V1 and W2 = X × V2 are as desired.
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Class of September 26:

Administer Quiz #4.
Recall that for a topological space 〈X, T 〉 and A ⊂ X:

• A′ = {x ∈ X:x ∈ cl(A \ {x})}.

• X is a T1 space provided for every distinct x, y ∈ X there exists an
open set U ⊂ X such that x ∈ U and y /∈ U . Equivalently, X is T1 if,
and only if, every singleton is closed in X.

• If X is a T1 space and A ⊂ X, then

x ∈ A′ if, and only if, U ∩ A is infinite for every open U containing x.

• X is Hausdorff (or a T2 space) provided for every distinct x, y ∈ X
there exists disjoint open sets U, V ⊂ X such that x ∈ U and y ∈ V .

• A sequence 〈xn〉∞n=1 of points of X converges to an x ∈ X provided for
every open U 3 x there exists an N such that xn ∈ U for every n ≥ N .

• (Theorem 17.10) If X is a Hausdorff topological space, then any se-
quence 〈xn〉∞n=1 of points of X converges to at most one point in X.

• The product of two Hausdorff topological spaces is a Hausdorff space.
A subspace of a Hausdorff topological space is a Hausdorff space.

New material
Ex. 13 page 101: Show that X is a Hausdorff space if, and only if, the
diagonal ∆ = {〈x, x〉:x ∈ X} is closed in X2 = X ×X.

Solution: It is enough to prove that

• X is a Hausdorff if, and only if, ∆c = X2 \∆ is open in X2.

“=⇒” Let z = 〈x, y〉 ∈ ∆c. It is enough to show that there exists an open
W ⊂ X2 such that z ∈ W ⊂ ∆c.

Indeed, x 6= y, since 〈x, y〉 ∈ ∆c. So, by Hausdorff property, there exists
disjoint open sets U 3 x and V 3 y. Let W = U × V . Then, W is open and
z = 〈x, y〉 ∈ W . Moreover, if 〈a, b〉 ∈ W = U × V , then a 6= b, as U ∩ V = ∅.
In particular, 〈a, b〉 ∈ ∆c. Therefore, z ∈ W ⊂ ∆c, as required.
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“⇐=” Choose distinct x, y ∈ X. Then, 〈x, y〉 ∈ ∆c. Since ∆c is open,
there exists a basic open set U × V (i.e., U and V open in X) such that
〈x, y〉 ∈ U × V ⊂ ∆c. Clearly x ∈ U and y ∈ V . It is enough to prove that
U ∩ V = ∅.

Indeed, if U ∩ V 6= ∅, then there exists an a ∈ U ∩ V . However, this
is impossible, since then 〈a, a〉 ∈ (U × V ) ∩ ∆, contradicting the fact that
U × V ⊂ ∆c.

Go over Exercise 10.

Section 18: Continuous functions

Definition 12 Let X and Y be the topological spaces. A function f :X → Y
is continuous provided f−1(V ) is open in X for every open subset V of Y .

Notice, that the definition agrees with (a) from Theorem 2.

Theorem 26 Let X and Y be the topological spaces and B a basis for Y .
Then f :X → Y is continuous if, and only if, f−1(B) is open in X for every
B ∈ B.

Similarly, if S is a subbasis for Y , then f :X → Y is continuous if, and
only if, f−1(S) is open in X for every S ∈ S.

Example 3:

• f :R → R`, f(x) = x, is discontinuous, as f−1([0, 1)) = [0, 1) is not
open in R.

• f :R` → R is continuous, as f−1(U) = U ∈ Tst ⊂ T` for every U ∈ Tst.

Go over Exercise 3(a).

Go over Theorem 18.1. (Very important!) (Proved only equivalence
of parts (1)-(3).
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Class of October 1:
Collect homework.
Next class I will hand solutions for all remaining homework.

The Mid Term Test will be in class, on Tuesday, October 15, 2019. (Re-
member, that there is no class on Thursday, October 13.) It will consists of
the following parts:

• State few definitions (in format of the quizzes).

• Sketch a proof of one of the results from the text, which was covered
in the lecture.

• Solve some (probably two) of the exercises from a list that will be given
to you on Tuesday, October 8. You will not be able to use any notes
during the test.

• Possibly, solve another exercise, not in the list.

Review is planned for Tuesday, October 8.

Key elements to review for the test: (1) Any homework assignment.
(2) All definitions. (3) All theorems, with special emphasis on: continuous
functions, closure and interior operations, Hausdorff and T1 spaces, as well
as subspaces and product spaces. (4) The exercises from the text.

Recall that:

• If B a basis for Y , then f :X → Y is continuous if, and only if, f−1(B)
is open in X for every B ∈ B.

• Restate conditions (1)–(4) from Theorem 18.1. Recall we proved that
(1)-(3) are equivalent.

New material
Finish the proof of Theorem 18.1: (4) equivalent to other conditions.
Stress continuity at a point, (4)
Go over Exercises 2 and 6.
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Section 18: Homeomorphisms

Definition 13 Let X and Y be the topological spaces and let f :X → Y be
a bijection (i.e., one-to-one and onto). Then f is a homeomorphism (from X
onto Y ) provided both f and f−1:Y → X are continuous.

Topological spaces X and Y are homeomorphic provided there is a home-
omorphism from X onto Y .

Fact. If f :X → Y is homeomorphism, then U ⊂ X is open in X, if, and
only if, f [U ] is open in Y . In particular, if τ is a topology on X and T is a
topology on Y , then T = {f [U ]:U ∈ τ} and τ = {f−1[V ]:V ∈ T }.

Proof. Notice that (f−1)−1 = f .
If U ∈ τ , then, since f−1:Y → X is continuous, f [U ] = (f−1)−1(U) ∈ T .
If f [U ] ∈ τ , then, since f :X → Y is continuous, U = f−1(f [U ]) ∈ T .

Go over Examples 4-6.

A mapping f :X → Y is an imbedding provided f is injective (i.e., one-
to-one), continuous, and f−1: f [X] → X is also continuous. In such a case
a mapping f ′:X → f [X], f ′(x) = f(x), is a homeomorphism (from X onto
f [X].

Go over Exercises 4 and 5.

Section 18: Constructing Continuous Functions
Go over Theorem 18.2.
Go over Theorem 18.3 (The pasting Lemma).
Go over Example 8.

Try to solve at home (not for credit) Exercises 10 and 13 page 112.
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Class of October 3:
Hand solutions of all remaining homework.
Next class we will have review preparing for the mid term test. I plan

to go over some of the exercises from my previous mid term tests for this
course.

Recall that:

• Spaces X and Y are homeomorphic provided there exists a homeomor-
phism f :X → Y , that is, a bijection such that both f and f−1:Y → X
are continuous.

• Fact. If f : 〈X, τ〉 → 〈Y, T 〉 is a homeomorphism, then U ∈ τ , if,
and only if, f [U ] ∈ T . In particular, T = {f [U ]:U ∈ τ} and τ =
{f−1[V ]:V ∈ T }.

• f :X → Y is an imbedding provided f is injective (i.e., one-to-one),
continuous, and f−1: f [X]→ X is also continuous.

New material:

Go over Example 8; Theorem 18.4, and Exercise 11.

Variant of Exercise 12, with f(x, y) = xy2

x2+y4
for 〈x, y〉 6= 〈0, 0〉 and

f(0, 0) = 0. Show that it is discontinuous (on curve y2 = x), but f � L
is continuous for every straight line L.

Section 19: The product topology (Will not to be included in the mid
term test.)

Definition 14 For sets J and X let XJ denotes the family of all functions
f : J → X.

Let {Aα}α∈J be an arbitrary indexed family of sets and let X =
⋃
α∈J Aα.

(Notice that the index set J may be uncountable!) The Cartesian product of
the family {Aα}α∈J , denoted by

∏
α∈J Aα, is defined as∏

α∈J

Aα = {f ∈ XJ : f(j) ∈ Aj for all j ∈ J}.

Elements of {Aα}α∈J will be also sometimes denotes as 〈aα〉α∈J and referred
to as J-tuples.
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Notice that XJ =
∏

α∈J Aα, where Aα = X for every α ∈ J .

Notice, that this definition agrees the definition of the finite cartesian
product (over the set J = {1, . . . , n})

∏n
i=1Ai = A1 × · · · × An as the set

of all sequences 〈a(1), . . . , a(n)〉 with a(i) ∈ Ai, since any such sequence can
be considerd as a function a: {1, . . . , n} → X. Similar agreement is also for
J = {1, 2, 3, . . .}.

Definition 15 Let {Xα}α∈J be an indexed family of topological spaces.
Then, on the product space X =

∏
α∈J Xα, we define the following two

kinds of topologies.

box topology Tbox: Generated by a basis Bbox formed by all sets of the form∏
α∈J

Uα where each Uα is open in Xα.

product topology Tprod: Generated by a subbasis S formed by all sets of
the form

π−1β (Uβ) for all β ∈ J and open subsets Uβ of Xβ,

where πβ:X → Xβ is the projection onto βth coordinate, that is, de-
fined as πβ(x) = x(β).

Notice that π−1β (Uβ) =
∏

α∈J Uα, where Uα = Xα for all α 6= β.

A natural basis, Bprod associated with S is formed by finite intersections
of sets from S, that is, all sets of the form

∏
α∈J Uα where each Uα is open

in Xα and the set {α ∈ J :Uα 6= Xα} is finite.

Go over Theorem 19.6:

Theorem 27 Let X =
∏

α∈J Xα. If fα:A → Xα and f :A → X is given by
f(a)(α) = fα(a), then

• continuity of f implies the continuity of each fα;

• continuity of all fα’s implies the continuity of f :A→ 〈X, Tprod〉.

Go over Example 2.
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Class of October 8:
Hand out the exercises for the mid term test.

Review for the mid term test: the following exercises come for past tests.

Ex. 1. Show that if X is a T1 topological space, then so is X2, where
X2 = X ×X is considered with the product topology. Include definition of
a T1 topological space.

Proof. Essentially the same as the proof for T2 topological spaces.

Ex. 2. Let 〈X, T 〉 be a topological space and, for A ⊂ X, let int(A) denote
the interior of A in X.

(a) Show that A ⊂ B ⊂ X implies that int(A) ⊂ int(B). Include the
definition of int(A).

(b) Prove, using (a), that int(A∩B) = int(A)∩ int(B) for every A,B ⊂ X.

(c) Give an example showing that, in general, the equation int(A ∪ B) =
int(A)∪ int(B) need not hold. (Specify sets A and B and a topological
space of your example.)

Proof. (a): straight from the definition; (b): easy.
For (c) consuder R with the standard topology and its subsets: A = Q

and B = R \ A.

Ex. 3. Let f be a function from a topological space X into a topological
space Y . Let F = {Fi: i = 1, . . . , n} be a finite family of closed subsets of X
such that X =

⋃n
i=1 Fi. Show that if the restriction f � Fi:Fi → Y of f to

Fi is continuous for every i ∈ {1, . . . , n}, then f is continuous.

Proof. Let C be an arbitrary closed subset of Y . Then

f−1(C) = f−1(C) ∩
n⋃
i=1

Fi =
n⋃
i=1

(Fi ∩ f−1(C)) =
n⋃
i=1

(Fi ∩ (f � Fi)
−1(C))

is closed in X, since each set Fi ∩ (f � Fi)−1(C) is closed in Fi, and so, also
in X, as Fi is closed in X.
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Ex. 4. Consider X×Y with the product topology and define p:X×Y → X
as p(x, y) = x for all 〈x, y〉 ∈ X × Y .

(a) Define the product topology on X × Y .

Prove, or disprove (by giving a counterexample), each of the following
two statements:

(b) For every Z ⊂ X × Y , if Z is open in X × Y , then p[Z] is open in X.

(c) For every Z ⊂ X × Y , if Z is closed in X × Y , then p[Z] is closed in
X.

Proof. (a): The product topology is generated by a basis

B = {U × V : U open in X and V open in Y }.

(b): True. Assume that Z is open in X × Y . For every x ∈ p[Z] there is
y ∈ Y such that 〈x, y〉 ∈ Z. So, there is Ux × V ∈ B with x ∈ Ux × V ⊂ Z.
Hence x ∈ Ux = p[Ux × V ] ⊂ p[Z]. So, P [Z] =

⋃
x∈p[Z] Ux is open.

(c): False. It is easy to see that Z = {〈x, 1/x〉:x > 0} is closed in R2

(considered with the standard topology). But p[Z] = (0,∞) is not closed in
R.
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Ex. 5. Let X be an arbitrary topological space and let U be open in X.

(a) Show that int(cl(int(cl(U)))) = int(cl(U)).

(b) Give an example of a topological space X and an open U in X for
which int(cl(U)) 6= U .

Proof. (a) We will repeatedly use the fact that

• If P ⊂ Q ⊂ X, then int(P ) ⊂ int(Q) and cl(P ) ⊂ cl(Q).

“⊂” direction: Clearly int(cl(U)) ⊂ cl(U). So, by •, cl(int(cl(U))) ⊂
cl(cl(U)) = cl(U). Therefore, again by •, int(cl(int(cl(U)))) ⊂ int(cl(U)).

“⊃” direction: Clearly U ⊂ cl(U). So, by • and since U is open, U =
int(U) ⊂ int(cl(U)). Therefore, using • two more times, cl(U) ⊂ cl(int(cl(U)))
and int(cl(U)) ⊂ int(cl(int(cl(U)))).

(b) In R with standard topology: take U = R \ {0}. Then int(cl(U)) =
R 6= U .

Remark: Note, that we proved cl(int(cl(U))) ⊂ cl(U) and cl(U) ⊂ cl(int(cl(U))),
so actually, cl(U) = cl(int(cl(U))). This is a stronger result.

The theorem, as stated, can be also proved without the assumption that
U is open, as we did not use the assumption in the “⊂” direction and the
“⊃” direction can be proved:

“⊃” direction: Clearly int(cl(U)) ⊂ cl(int(cl(U))). Therefore, utilizing •,
we also have int(cl(U)) = int(int(cl(U))) ⊂ int(cl(int(cl(U)))).

Class of October 15: In class Mid Term Test.

Class of October 17:
Hand the results of the test and the solutions for its exercises.
Discuss test results and, in general, the course standings.
Discuss, in details, solutions of test problems.
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Class of October 22:
Recall last lecture, from Section 19: The product topology

• XJ denotes the family of all functions f : J → X;

• Cartesian product of {Aα}α∈J :∏
α∈J Aα = {f ∈ XJ : f(j) ∈ Aj for all j ∈ J}.

• Box topology Tbox: Generated by a basis Bbox of all sets∏
α∈J Uα where each Uα is open in Xα.

• Product topology Tbox: Generated by a subbasis S of all sets

π−1β (Uβ) for all β ∈ J and open subsets Uβ of Xβ,

• If fα:A→ Xα and f :A→ X is given by f(a)(α) = fα(a), then

– continuity of f implies the continuity of each fα;

– continuity of all fα’s implies the continuity of f :A→ 〈X, Tprod〉.

• f :F → 〈R, Tbox〉, f(x) = 〈x, x, x, . . .〉 is discontinuous.

New material

• Tprod ⊂ Tbox; equation holds when J is finite (or all but finitely many
spaces Xα have trivial topology {∅, Xα});

Go over Theorem 19.2: bases for Tbox and Tprod in term of basis for Xα’s.
State Theorem 19.3: subspace topology on A =

∏
α∈J Aα ⊂ X.

Theorem 19.4: product of Hausdorff spaces is Hausdorff (Tbox and Tprod).
Go over Theorem 19.5:

∏
α∈J cl(Aα) = cl

(∏
α∈J Aα

)
(in Tbox and Tprod).

Solve Exercise 7.

Written assignment for Tuesday, October 29: Exercise 8, page 118:
Given sequences 〈a1, a2, . . .〉 and 〈b1, b2, . . .〉 of real numbers with ai > 0 for
all i, define h:Rω → Rω by the equation

h(〈x1, x2, . . .〉) = 〈a1x1 + b1, a2x2 + b2, . . .〉. (1)

Show that if Rω is given the product topology, then h is a homeomorphism of
Rω with itself. What happens if Rω is given the box topology?
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Class of October 24:

Section 20: The Metric Topology
Define a metric (distance) on X as a function d:X ×X → [0,∞).
A metric space is a pair 〈X, d〉, where d is a metric on X.
In a metric space 〈X, d〉, define an open ball (centered at x ∈ X with

radius ε > 0) as Bd(x, ε) = {y ∈ X: d(x, y) < ε}.
Prove that a family Bd = {B(x, ε):x ∈ X & ε > 0} is a basis for a

topology on X.
Define a metric topology for a metric space 〈X, d〉 as T (Bd), that is, as a

topology generated by the family of all open balls in 〈X, d〉.
Go over Example 1 (discrete metric) and 2 (standard metric on R).

Definition 16 A topological space 〈X, τ〉 is metrizable provided there exists
a metric d on X such that τ = T (Bd).

Go over Exercise 3(a): d:X × X → R is continuous in X2, where X is
considered with the metric topology.

Proof. Let B = (a, b) be basic open set in R. Need to prove that d−1(B)
is open in X2.

Fix 〈x, y〉 ∈ d−1(B). So, d(x, y) ∈ B. We need to find an open set U in X2

with 〈x, y〉 ∈ U ⊂ d−1(B). Let ε > 0 be such that (d(x, y)−ε, d(x, y)+ε) ⊂ B.
Define U = B(x, ε/2)×B(y, ε/2). It is open in X2 and contains 〈x, y〉.

So, fix 〈z, t〉 ∈ U . Then d(x, z) < ε/2 and d(y, t) < ε/2. By the triangle
inequality we get d(z, x) + d(x, y) + d(y, t) ≥ d(z, t), so

d(z, x) + d(y, t) ≥ d(z, t)− d(x, y).

Similarly, d(x, z) + d(z, t) + d(t, y) ≥ d(x, y), so

d(x, z) + d(t, y) ≥ d(x, y)− d(z, t).

Hence, |d(z, t) − d(x, y)| ≤ d(x, z) + d(t, y) < ε/2 + ε/2 and so we have
d(z, t) ∈ (d(x, y)− ε, d(x, y) + ε) ⊂ B, as required.

Define: bounded set and its diameter.

Go over Theorem 20.1. (So, boundedness is not a topological property!
Recall topological property, see page 105.)
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Class of October 24:
Recall that:

• A metric space is a pair 〈X, d〉, where d is a metric on X.

• Bd(x, ε) = {y ∈ X: d(x, y) < ε} is an open ball in 〈X, d〉.

• Bd = {B(x, ε):x ∈ X & ε > 0} is a basis for a topology on X.

• T (Bd) is the metric topology on X (for metric d).

• 〈X, τ〉 is metrizable provided τ = T (Bd) for some metric d on X.

New material

Define Euclidean metric and square metric on Rn.

Go over Theorem 20.3, using Lemma 20.2.

• uniform metric on RJ is defined as: ρ̄(x, y) = sup{d̄(xα, yα):α ∈ J},
where d̄(x, y) = min{|x− y|, 1}

• uniform topology on RJ : generated by ρ̄.

Theorem 20.4 (on relations between box, uniform, and product topologies
on RJ).

Go over Exercise 5, page 127. Note, that this implies that, on Rω, box,
uniform, and product topologies are distinct.

Go over Exercise 6.

Suggested to solve at home (no homework, yet): Exercise 4 page 127.

Be ready for a quiz next class.

Class of October 31:
Administer Quiz #6. Return graded homework.

Go over Theorem 20.5 (countable product of metric spaces is metrizable).

Written assignment for Thursday, Nov. 7: Exercise 4(a) page 127.

Solve Exercise 4(b) page 127.
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Class of November 5:
Solutions to homework assigned on October 22 will be handed.

Section 21: The Metric Topology continued

• Subspace of a metric space is metric.

• No relation between ordered topologies and metric topologies.

• Every metrizable space is Hausdorff.

• Finite and countable product of metric spaces is metrizable.

State Theorem 21.1: for metric spaces, ε-δ definition of continuity is
equivalent to topological definition of continuity. (This is an obvious gener-
alization of Theorem 2.)

Definition 17 Let 〈X, τ〉 be a topological space.

• A family Bx ⊂ τ is a basis (for X) at x provided for every open set
U 3 x there is a B ∈ Bx with x ∈ B ⊂ U .

• A topological space X is first countable (or satisfies the first countability
axiom) provided for every x ∈ X there exists a countable basis Bx of
X at x.

Proposition 28 Every metrizable space is first countable.

Note that for first countable spaces, a countable basis {Bn:n = 1, 2, 3, . . .}
can be chosen monotone: B1 ⊃ B2 ⊃ B3 ⊃ · · ·.

Go over Lemma 21.2, version for first countable spaces:

Lemma 29 Let X be a first countable topological space and let A ⊂ X.
Then x ∈ cl(A) if, and only if, there is a sequence of points of A converging
to x. Moreover, the implication “⇐=” does not require the assumption of
first countability.

Go over Lemma 21.4 (no proof) and Theorem 21.5.
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Definition 18 Let 〈Y, d〉 be a metric space, X any set, and fn:X → Y be
a sequence of functions. We say that the sequence 〈fn〉n converges uniformly
to an f :X → Y provided for every ε > 0 there exists an N (independent
of x) such that for every x ∈ X

d(fn(x), f(x)) < ε for all n > N.

State Theorem 21.6: uniform limit of continuous functions is continuous.

Go over Exercise 6: uniform convergence assumption in Thm 21.6 is essential.

Prove Theorem 21.6.

Discuss Exercise 9: the implication in Theorem 21.6 cannot be reversed.

Go over Example 1: Rω with the box topology is not first countable. In
particular, it is not metrizable.

Suggested to solve at home (no homework, not difficult, but interesting):
Exercise 7, p. 134.
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Class of November 7:
Test # 2 will be on Tuesday, Nov 19. Format the same as in the mid

term, but it will cover material up to, including, section 21.

Recall that:

• A topological space 〈X, T 〉 is first countable (or satisfies the first count-
ability axiom) provided for every x ∈ X there exists a countable basis
Bx of X at x, that is, Bx ⊂ T and for every open set U 3 x there is a
B ∈ Bx with x ∈ B ⊂ U .

• Lemma (21.2) Let X be a first countable topological space and let
A ⊂ X. Then x ∈ cl(A) if, and only if, there is a sequence of points of
A converging to x. Moreover, the implication “⇐=” does not require
the assumption of first countability.

• Theorem (21.3) Let X and Y topological spaces and let f :X → Y .
Assume also that X is first countable. Then f is continuous if, and only
if, for every sequence 〈xn〉n in X converging to an x ∈ X, 〈f(xn)〉n
converges to f(x). Moreover, the implication “=⇒” does not require
the assumption of first countability.

New material
Go over Example 2: uncountable product RJ , considered with the product

topology, is not first countable. In particular, it is not metrizable.

Skip the rest of Chapter 2, that is, section 22.

Chapter 3: Connectedness and Compactness

Stress usability of these notions to the proofs of three classical calcu-
lus theorems: Intermediate Value Theorem, Maximum Value Theorem, and
Uniform Continuity Theorem.

Intermediate Value Theorem is a consequence of connectedness property.
The other two theorems are the consequences of compactess property.
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Section 23: Connected spaces

Definition 19 Let X be a topological space. A separation of X is any pair
〈U, V 〉 of open, non-empty, disjoint sets for which X = U ∪V . A topological
space X is connected provided it does not exist a separation of X.

Example 1: Any X with indiscrete topology is connected.

Any X with discrete topology is disconnected, that is, not connected.

Fact: A space is connected, when ∅ and X are its only subsets that are
simultaneously closed and open.

Definition 20 Let Y be a subspace of X. A separation of Y is any pair
A,B ⊂ Y non-empty sets such that Y = A∪B and cl(A)∩B = A∩cl(B) = ∅.

Lemma 30 A subspace Y of X is connected is, and only if, there is no
separation of Y .

Go over Examples 2, 3, 4, and 5.

Lemma 31 Assume that sets C and D forms separation of X. If a subspace
Y of X is connected, then either Y ⊂ C or Y ⊂ D.

Theorem 32 (Star Lemma) Let {Aα}α∈J be a family of connected sub-
spaces of X. If

⋂
α∈J Aα 6= ∅, then

⋃
α∈J Aα is connected.

Theorem 33 (Theorem 23.4) Let A be a connected subspace of X. If
A ⊂ B ⊂ cl(A), then B is connected.

Theorem 34 (Theorem 23.5) Continuous image of connected space is
connected.

This, together with the fact that intervals are connected, is the Interme-
diate Value Theorem.
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Class of November 12:
Hand solutions for the last homework. Next class I will hand you mate-

rial for Test #2. Test #2 will be given on Tuesday, November 19. It will
be administered by Chang-Han Pan. There will be no class on Thursday,
November 21.

Recall

• A topological space X is connected provided it does not exist a separa-
tion of X, where a separation of X is any pair U , V of open, non-empty
disjoint sets with X = U ∪ V .

• (Star Lemma) Let {Aα}α∈J be a family of connected subspaces of X.
If
⋂
α∈J Aα 6= ∅, then

⋃
α∈J Aα is connected.

• A closure of a connected space is connected.

• Continuous image of connected space is connected.

New material

Theorem 35 (Thm 23.6) Finite product of connected spaces is connected.

Actually, arbitrary product of connected spaces, considered with the
product topology, is connected. We show this only for Rω, Example 7. (In
general, this is Exercise 10.)

Example 6: Rω with the box topology is disconnected.
Go over Exercises 2, 7, and 8, page 152.
Suggestion to students: Look over Exercises 3, 4, and 9, page 152.
Go over the Intermediate Value Theorem, Theorem 24.3.

Section 24: Connected spaces of the Real Line
Recall that R has the least upper bound property provided every non-

empty bounded above subset A of R has an upper bound sup(A) ∈ R.

Theorem 36 (Theorem 24.1, for R only) A subset A of R (considered
with the standard topology) is connected if, and only if, A is an interval
(possible degenerated).

Go over the Intermediate Value Theorem, Theorem 24.3.
Go over Ex 2 p. 158.
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Class of November 14
Test #2 will be given on Tuesday, November 19. It will be administered

by Chang-Han Pan.

Review for Test #2: T0-, T1-, and T2-spaces. Uniform metric.
There will be no class on Thursday, November 21.

The following is a Thanksgiving break. Next class meeting will be on
December 3.

Class of November 19:
Administration of Test # 2. No class on November 21. Next class De-

cember 3.
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Class of December 3
Discuss results of Test #2. Go over all the solutions of Test #2.

Recall

• Continuous image of connected space is connected.

• Finite product of connected spaces is connected.

• Rω with the box topology is disconnected, while with the product topol-
ogy is connected.

• A ⊂ R is connected if, and only if, A is convex (an interval).

• Intermediate Value Theorem.

New material
Define path connectedness.

Note that every path connected space is connected.

Go over Example : close balls are path connected.

Class of December 5
Recall definition of path connected space and that every path connected

space is connected.

Go over Exercises 1 and 3.

Go over Examples 3, 4, and 5.

Go over Examples 7, topologists sine curve: it is connected but not path
connected.
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Class of December 10
Recall Examples 7, topologists sine curve: it is connected but not path

connected.
Go over Exercise 8, page 158.

Section 25: Define components and path components.
Explain Theorem 25.1.
Go over Examples 1 and 2.
Define locally connected spaces and locally path connected spaces.
Go over Example 3.
Go over Theorems 25.3 and 25.4.
Briefly discuss Exercise 10: quasi components.

The rest of this class and that of December 12 (last class) will be review
for the final.

The final test will be Thursday, December 19, 8am-10am.

Start review with Exercises 9, 10, and 11 page 158.


