
MATH 251
Instr. K. Ciesielski
Fall 2017

SAMPLE TEST # 4

Solve the following exercises. Show your work.

Ex. 1. Set up the integral formulas, including the limits of the integrations, for the
following problems. Do not evaluate the integrals! Where appropriate, use polar, cylindrical,
or spherical coordinates.

(a) The volume of the solid bounded by z = x2 + y2, z = 0, x = 0, y = 0, and x+ y = 1.

Solution: If T is a triangle bounded by x = 0, y = 0, and x+ y = 1 (i.e., y = 1− x),

then V =
∫ ∫ ∫

E 1dV =
∫ ∫

T

∫ x2+y2
0 1 dz dA =

∫ 1
0

∫ 1−x
0

∫ x2+y2
0 1 dz dy dx

(b) The mass of the plane lamina bounded by y = x2 and y = 2x + 3, with the density
δ(x, y) = x2.

Solution: If y = x2 and y = 2x+ 3, then x2 = 2x+ 3, that is, x2− 2x− 3 = 0, so that
x = −3 and x = 1. Then mass =

∫ ∫
R δ(x, y)dA =

∫ 1
−3
∫ 2x+3
x2 x2 dy dx.

(c) The mass of the solid T with the density δ(x, y, z) = x2 + ez bounded by the surfaces:
6x+ 2y + z = 12, x = 0, y = 0, and z = 0.

Solution: The solid is a tetrahedron with a triangular base B on the xy-plane z = 0
bounded by 6x + 2y = 12, x = 0, y = 0. The upper bound of T is z = 12 − 6x − 2y.
So, mass =

∫ ∫ ∫
T δ(x, y, z) dV =

∫ ∫
B

∫ 12−6x−2y
0 (x2 + ez) dz dA.

Since the triangle side 6x + 2y = 12 means that y = 6 − 3x, which quals 0 for x = 2,
we get mass =

∫ 2
0

∫ 6−3x
0

∫ 12−6x−2y
0 (x2 + ez) dz dy dx.

Ex. 2. Evaluate the integrals:

(a)
∫ 1

0

∫ π

0

1

x+ 1
+ sin y dy dx =

Solution: int =
∫ 1
0

[
1

x+1
y − cos y

]π
0
dx =

∫ 1
0

(
1

x+1
π − (cos π − cos 0)

)
dx. So

int =
∫ 1
0

(
1

x+1
π − (−1− 1)

)
dx = [π ln |x+ 1|+ 2x]10 = π(ln 2− ln 1) + 2 = π ln 2 + 2

(b)
∫ 0

−2

∫ y

0
(x+ 2y2) dx dy =

Solution: int =
∫ 0
−2

[
1
2
x2 + 2y2x

]x=y
x=0

dy =
∫ 0
−2

(
1
2
y2 + 2y3

)
dy =

[
1
6
y3 + 1

2
y4
]0
−2

=

0−
(
1
6
(−8) + 1

2
16
)

= 4
3
− 8 = −62

3

1



(c)
∫ ∫

R

dy dx√
9− x2 − y2

, where R is the second quadrant region bounded by x2 + y2 = 4.

Solution: We use the polar coordinates, in which the region R is given as 0 ≤ r ≤ 2
and π/2 ≤ θ ≤ π. So, in the second equation using substitution u = 9− r2,

int =
∫ π
π/2

∫ 2
0 (9− r2)−1/2r dr dθ =

∫ π
π/2

[
−(9− r2)1/2

]2
0
dθ =∫ π

π/2

[
−
(
(9− 4)1/2 − 91/2

)]2
0
dθ =

[
3−
√

5
]π
π/2

= 3−
√
5

2
π.

Ex. 3. Find the mass of the solid bounded by the hemisphere x2 +y2 + z2 ≤ R2, z ≥ 0, with
the density δ(x, y, z) = x2 + y2 + z2.

Solution: We use the spherical coordinates. Since the solid, T , is the upper hemisphere,
we get
mass =

∫ ∫ ∫
T δ(x, y, z) dV =

∫ ∫ ∫
T (x2 + y2 + z2) dV =

∫ π/2
0

∫ 2π
0

∫ R
0 (ρ2)ρ2 sinφ dρ dθ dφ =∫ π/2

0

∫ 2π
0

[
1
5
ρ5 sinφ

]R
0
dθ dφ =

∫ π/2
0

∫ 2π
0

1
5
R5 sinφ dθ dφ =

∫ π/2
0

[(
1
5
R5 sinφ

)
θ
]2π
0
dφ =∫ π/2

0
2
5
πR5 sinφ dφ =

[
2
5
πR5(− cosφ)

]π/2
0

= −2
5
πR5(cos(π/2)−cos 0) = −2

5
πR5(0−1) = 2

5
πR5

Ex. 4. Find the mass of the plane lamina bounded by x = 0 and x = 9 − y2 with density
δ(x, y) = x2.

Solution: Notice that x = 0 and x = 9− y2 when 9− y2 = 0 that is, when y = ±3.

mass =
∫ ∫

R δ(x, y)dA =
∫ 3
−3
∫ 9−y2
0 x2 dx dy =

∫ 3
−3

[
1
3
x3
]9−y2
0

dy =
∫ 3
−3

1
3
(9− y2)3 dy =∫ 3

−3
1
3
(93 − 3 · 92(y2) + 3 · 9(y2)2 − (y2)3) dy =

∫ 3
−3(3

5 − 34y2 + 32y4 − 1
3
y6) dy =[

35y − 33y3 + 32

5
y5 − 1

21
y7
]3
−3

= 35(3 + 3)− 33(33 + 33) + 32

5
(35 + 35)− 1

21
(37 + 37) =

2 · 36 − 2 · 36 + 2
5
37 − 2

21
37 = 2(1

5
− 1

21
)37 = 221−5

105
37 = 216

35
36 = 32

35
36

Ex. 5. Evaluate
∫
C
xy ds, where C is the parametric curve for which x = 3t, y = t4, and

0 ≤ t ≤ 1.

Solution: Since ds =
√

(x′(t))2 + (y′(t))2 dt =
√

(3)2 + (4t3)2 dt =
√

9 + 16t6 dt,

∫
C xy ds =

∫ 1
0 (3t)(t4)

√
9 + 16t6 dt =

∫ 1
0 (9 + 16t6)1/2 (3t5dt)

For u = 9 + 16t6, we get du
dx

= 6 · 16t5, and so 3t5dt = 1
32
du.

Hence,
∫

(9 + 16t6)1/2 (3t5dt) =
∫
u1/2 1

32
du = 1

3·16u
3/2 + C = 1

48
(9 + 16t6)3/2 + C. Thus∫

C xy ds =
[

1
48

(9 + 16t6)3/2
]1
0

= 1
48

[(9 + 16)3/2 − 93/2] = 1
48

[125− 27] = 49
24

= 2 1
24
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Ex. 6. Evaluate the integral, where C is the graph of y = x3 from (−1,−1) to (1, 1)∫
C
y2 dx+ xdy =

Solution: Clearly x changes from −1 to 1. Put x = t. Then y(t) = t3 and −1 ≤ t ≤ 1
and∫
C y

2 dx+xdy =
∫ 1
−1(y(t))2 x′(t) dt+x(t) y′(t) dt =

∫ 1
−1[(t

3)2 1+t (3t2)] dt =
∫ 1
−1(t

6+3t3) dt =[
1
7
t7 + 3

4
t4
]1
−1

= 1
7
(1 + 1) + 3

4
(1− 1) = 2

7

Ex. 7. Determine if the following vector field is conservative. Find potential function for a
field, if it is conservative.

(a) F =
(
x3 + y

x

)
i + (y2 + lnx)j

Solution: We have P = x3 + y
x

and Q = y2 + lnx. So ∂P
∂y

= 1
x

and ∂Q
∂x

= 1
x
. Since

∂P
∂y

= ∂Q
∂x

, the field is conservative and we can find the potential function f(x, y). We
have

f(x, y) =
∫
P dx =

∫
x3 + y

x
dx = 1

4
x4 + y ln(x) +K(y).

Taking partial derivative, in terms of y, of both side we get

ln(x) +K ′(y) = ∂f
∂y

= Q = y2 + lnx, so that K ′(y) = y2 and K(y) = 1
3
y3 + C.

Answer: The potential function f(x, y) = 1
4
x4 + y ln(x) + 1

3
y3 + C.

(b) F = (y cosx+ ln y) i +
(
x
y

+ ey
)
j

Solution: We have P = y cosx+ ln y and Q = x
y

+ ey. So ∂P
∂y

= cosx+ 1
y

and ∂Q
∂x

= 1
y
.

Since ∂P
∂y
6= ∂Q

∂x
, the field is not conservative and the potential function does not exist.

Ex. 8. Find a potential function of the vector field and use the fundamental theorem for
line integrals to evaluate∫ (π,π)

(π/2,π/2)
(sin y + y cosx) dx+ (sinx+ x cos y) dy =

Solution: We have P = sin y + y cosx and Q = sinx + x cos y. It is easy to see that
∂P
∂y

= cos y + cosx = ∂Q
∂x

so indeed we can find the potential function f(x, y). We have

f(x, y) =
∫
P dx =

∫
sin y + y cosx dx = x sin y + y sinx+K(y).

Taking partial derivative, in terms of y, of both side we get

x cos y + sinx+K ′(y) = ∂f
∂y

= Q = sinx+ x cos y, so that K ′(y) = 0 and K(y) = C.

So, the potential function f(x, y) = x sin y + y sinx+ C and

int = [f(x, y)]
(π,π)
(π/2,π/2) = [x sin y + y sinx]

(π,π)
(π/2,π/2) = (π sin π + π sinπ)− (π

2
sin π

2
+ π

2
sin π

2
) =

(0 + 0)− (π
2

+ π
2
) = −π
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Ex. 9. Apply Green’s theorem to evaluate the following integral, where the simple closed
curve C, with counter clockwise direction, is the boundary of the circle x2 + y2 = 1.∮
C

(sinx− x2y) dx+ xy2 dy =

Solution: Let D denoted the disk x2 + y2 ≤ 1.

By Green’s theorem int =
∫ ∫

D

(
∂Q
∂x
− ∂P

∂y

)
dA, where P = sinx− x2y and Q = xy2. So,

int =
∫ ∫

D (y2 − (−x2)) dA =
∫ ∫

D (x2 + y2) dA

Changing to the polar coordinates, we get

int =
∫ 2π
0

∫ 1
0 r

2 r dr dθ =
∫ 2π
0

[
1
4
r4
]1
0
dθ =

∫ 2π
0

1
4
dθ =

[
1
4
θ
]2π
0

= 1
2
π
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