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Notes

Krzysztof Chris Ciesielski

Linear Algebra classes

Class # 1: August 18, 2016

Discussed syllabus

Definition of a field: Chapter 1, page 5. Examples:
real numbers R; also complex numbers C and rational numbers Q.
Read the rest of Chapter 1.

Important points on Linear Algebra:
Matrices: definition and the following operations
transpose, scalar multiplication, addition and multiplication of matrices.
Typical exercise for this material:

Exercise 1 For A =

 2 3
4 5
11 −1

 and B =

 0 8
4 −2
5 1

 find AT , 2A − 3B,

ATB, and BAT .

Class # 2

Last class defined: matrices and the following operations
transpose, scalar multiplication, addition and multiplication of matrices;
zero matrix θ (A+ θ = θ + A = A);

Review of multiplication of matrices.
Example:[

1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
but

[
1 0
1 1

] [
1 1
0 1

]
=

[
1 1
1 2

]
The multiplication of matrices will be reviewed next class.

zero matrix θ (A+ θ = θ + A = A);
the identity matrix I (AI = A and IB = B);
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Properties:
A(BC) = (AB)C; AB = I implies BA = I; however, AB need not be

equal BA:[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
but

[
1 0
1 1

] [
1 1
0 1

]
=

[
1 1
1 2

]

Chapter 3, Vector spaces: Definition 1, Chapter 3 page 2.
Examples:

• Kn×m – the family of all n×m-matrices over the field K; e.g. Rn×m

• Rn×1 – the family of all n-dimensional (column) matrices [x1 · · ·xn]T ;
often denotes as Rn;

• R2, the classical plane vectors [x y]T often identified with [x y] and
written as 〈x, y〉; similarly 3D-vectors R3;

• The family F(D,R) of all functions from a set D ⊂ R into R; also the
classes of: all polynomials; of all differentiable functions; of solutions
of some differential equations; etc;

Subspaces: Definition 1, Chapter 3 page 10.

Theorem 1 If V is a vector space (over the field K) and W is non-empty
subset of V , then W is a subspace if, and only if, v +w and cv are in W for
every c from K and v, w ∈ W .

Examples:

• W = {〈x, 3x〉:x ∈ R}, a line in the plane R2 is a vector subspace of R2;

• polynomials forms a vector subspace of F(D,R); so are differentiable
functions;

Chapter 4, System of linear equations Ax = b:
For a system Ax = b of m equations with n unknowns x1, . . . , xn, A is

m× n coefficient matrix, x = [x1, . . . , xn]T , and b = [b1, . . . , bn]T .
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Class # 3: August 25, 2016

Solutions of Ax = b via Gauss elimination:
Use of Gauss elimination, that is, using augmented matrix approach. If

the system is consistent (i.e., has at least one solution), the solution must be
expressed in the vertical vector form: 2

3
−1

 or

 2
3
−1

+ α

 0
5

11

 or

 2
3
−1

+ α

 0
5

11

+ β

 1
4
5

.

From the text: Example # 1, Ch. 4, Pg. 8 (also Pg. 19)
From the text: Example # 2, Ch. 4, Pg. 19
Solve exercise 2 from the Sample Test # 1, via Gauss elimination.
Solve exercise 1 from the Sample Test # 1, via Gauss elimination.

Next class: Quiz # 1. Material as in Exercises 1 and 2 of the Sample
Test # 1, just solved. The Sample Test # 1 is available at

http://www.math.wvu.edu/˜kcies/teach/current/CurrentTeaching.html

System of linear equations Ax = b, revisited:
For a system Ax = b of m equations with n unknowns x1, . . . , xn, A is

m× n coefficient matrix, x = [x1, . . . , xn]T , and b = [b1, . . . , bn]T .
When b = 0 = [b1, . . . , bn]T , then the system Ax = b (i.e., Ax = 0) is a

homogeneous system.
The solutions x of the homogeneous system Ax = 0, that is, V =

{x:Ax = 0}, is a vector space:
0 ∈ V and αx + βy ∈ V for every x,y ∈ V .
In other words, V is a null space of the operator A: x 7→ Ax.

[A function T from a vector space into another is a linear operator when

T (αx + βy) = αT (x) + βT (y).

Its null space is the set of all vectors x for which T (x) = 0. Null space of
any linear operator is also a vector space.]

In particular Ax = 0 has either one, or infinitely many solutions.
If xp is a solution for Ax = b, then
x solution for Ax = b if, and only if, it is of the form xp + xh, where xh

is a solution for Ax = 0.
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Class # 4: August 30, 2016

Linear independence of vectors and basis

Inverse of a square, n × n, matrix A If there exists a matrix B such
that BA = I, then also AB = I and B is unique. It is denoted as A−1 and

referred to as the inverse of A. Example: If A =

[
a b
c d

]
and ad − bc 6= 0,

then the inverse of A exists and A−1 = 1
ad−bc

[
d −b
−c a

]
.

Note, A−1 6= 1
A

. In fact, the quotient 1
A

has no sense at all!
A is singular if A−1 does not exist; otherwise, it is non-singular.

Q. What A−1 is useful for?

A. Many uses. E.g.: Ax = b if, and only if, x = A−1b.

Also, in determining when vectors b1, . . . ,bn ∈ Rn are linearly inde-
pendent (form a basis) — notions to be discussed.

Q. When does A−1 exist (i.e., when A is non-singular)?

A. E.g.: when the determinant of A, denoted |A| or detA, is 6= 0.
Calculation of the determinants to be discussed, chapter 7.

Q. When A is non-singular, how to find A−1?

A. Gaussian elimination (again), to be explained.

Finding A−1 via Gaussian elimination: Chapter 9. To find A−1: (1)
write augmented matrix [A; I]; (2) Gaussian elimination to transform it to a
matrix [I;B]; (3) declare that A−1 equals B.

Go over Exercises 4, 5 from the sample test and Example 1, Ch. 9, Pg 5.

Class # 5: September 1, 2016

Calculation of the determinant: Via arbitrary row (or column) expan-
sion (known as Laplace Expansion Method), definition (not in the “text-
book”), Example on page Ch. 7, Pg 4. Take a look at Theorem Ch. 7, Pg
2, the properties of the determinant – leads to Gaussian elimination. Solve
(the same problem) using Gaussian elimination, see Ch. 7, Pg 6.

Solving Ax = b via Cramer Rule: application of determinants.
Just state (Ch. 6, Pg 7), no exercises.


