MATH 251
NAME (print):
Instr. K. Ciesielski
Fall 2016

SAMPLE TEST \# 2 with SOLUTIONS

Solve the following exercises. Show your work.

Ex. 1. Find a vector equation of the line that passes through the point $P(11,13,-7)$ and is perpendicular to the plane with the equation: $x-2 z=17$.

Solution: The direction vector \mathbf{v} of the line coincides with the normal vector of the plane: $\langle 1,0,-2\rangle$.

Answer: $\langle x, y, z\rangle=\langle 11,13,-7\rangle+t\langle 1,0,-2\rangle$, or $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}11 \\ 13 \\ -7\end{array}\right]+t\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$.
Ex. 2. Find: (a) the unit tangent vector to the curve $\mathbf{r}(t)=\left\langle e^{t}, t, \cos \pi t\right\rangle$ at the point $(1,0,1)$, and (b) the vector equation of the line tangent to the same curve at the point $(e, 1,-1)$.

Solution: $\mathbf{r}^{\prime}(t)=\left\langle e^{t}, 1,-\pi \sin \pi t\right\rangle$.
(a) The curve passes through the point $(1,0,1)$ at the time t when $\left\langle e^{t}, t, \cos \pi t\right\rangle=\langle 1,0,1\rangle$, that is, for $t=0$. So, $\mathbf{r}^{\prime}(0)=\left\langle e^{0}, 1,-\pi \sin 0\right\rangle=\langle 1,1,0\rangle$ and $\left|\mathbf{r}^{\prime}(0)\right|=\sqrt{1+1+0}=\sqrt{2}$. Thus, the unit tangent vector is equal $\mathbf{T}(0)=\frac{\mathbf{r}^{\prime}(0)}{\left|\mathbf{r}^{\prime}(0)\right|}=\frac{1}{\sqrt{2}}\langle 1,1,0\rangle=\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right\rangle$.
(b) The curve passes through the point $(e, 1,-1)$ at the time t when $\left\langle e^{t}, t, \cos \pi t\right\rangle=$ $\langle e, 1,-1\rangle$, that is, for $t=1$. So, $\mathbf{r}^{\prime}(1)=\left\langle e^{1}, 1,-\pi \sin \pi\right\rangle=\langle e, 1,0\rangle$ is the direction vector of the line.

Answer for (b): $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}e \\ 1 \\ -1\end{array}\right]+t\left[\begin{array}{l}e \\ 1 \\ 0\end{array}\right]$.
Ex. 3. Find the volume of the pyramid with the vertices: $P(3,2,-1), Q(-2,5,1), R(2,1,5)$, and the origin $O(0,0,0)$. The volume of a pyramid is equal $1 / 6$ th of the volume of parallelepiped spanned by the same vectors.

Solution: We need three vectors indicating the pyramid. For this we can use the vectors $\mathbf{a}=\overrightarrow{O P}=\langle 3,2,-1\rangle, \mathbf{b}=\overrightarrow{O Q}=\langle-2,5,1\rangle$, and $\mathbf{c}=\overrightarrow{O R}=\langle 2,1,5\rangle$. Now, the volume of parallelepiped indicated by these vectors is $V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$.

Since $\mathbf{b} \times \mathbf{c}=\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 5 & 1 \\ 2 & 1 & 5\end{array}\right|=\mathbf{i}(25-1)-\mathbf{j}(-10-2)+\mathbf{k}(-2-10)=\langle 24,12,-12\rangle$, we have $V=|\langle 3,2,-1\rangle \cdot\langle 24,12,-12\rangle|=|3 \cdot 24+2 \cdot 12-1 \cdot(-12)|=|12(6+2+1)|=12 \cdot 9$.

Answer: The volume of the pyramid is $V / 6=12 \cdot 9 / 6=18$.
Ex. 4. Find an equation of the plane passing through point $(1,11,-13)$ and parallel to the plane with equation $2 x-17 z+\pi=0$.

Solution: The normal of the given equation, $2 x-17 z=-\pi$, is $\langle 2,0,-17\rangle$. The plane we seek has the same normal.

Answer: $2(x-1)+0(y-11)-17(z+13)=0$.

Ex. 5. Describe and sketch the graphs of the surfaces given by the following equations. Name each surface. Give specific informations, like center and radius in the case of a sphere.
(a) $2 x^{2}+2 y^{2}+2 z^{2}=7 x+9 y+11 z$

Solution: The equation is equivalent to: $x^{2}+y^{2}+z^{2}-\frac{7}{2} x-\frac{9}{2} y-\frac{11}{2} z=0$. Completing to the square is $x^{2}-\frac{7}{2} x+\left(\frac{7}{4}\right)^{2}+y^{2}-\frac{9}{2} y+\left(\frac{9}{4}\right)^{2}+z^{2}-\frac{11}{2} z+\left(\frac{11}{4}\right)^{2}=\left(\frac{7}{4}\right)^{2}+\left(\frac{9}{4}\right)^{2}+\left(\frac{11}{4}\right)^{2}$, that is, $\left(x-\frac{7}{4}\right)^{2}+\left(y-\frac{9}{4}\right)^{2}+\left(z-\frac{11}{4}\right)^{2}=\frac{49+81+121}{4^{2}}$. Since $49+81+121=251$,
Answer: Sphere, with the center $\left(\frac{7}{4}, \frac{9}{4}, \frac{11}{4}\right)$ and radius $\frac{\sqrt{251}}{4}$.
(b) $4 y=x^{2}+z^{2}$

Answer: Circular paraboloid, revolving around the y-axis, opening towards the positive side of the y-axis. Sketch: to be presented in class.
(c) $4 y=z^{2}$

Answer: Cylinder, based on a parabola on $y z$-plane, opening towards the positive side of the y-axis. The lines forming cylinder are parallel to the x-axis. Sketch: to be presented in class.

Ex. 6. Find the curvature $\kappa(t)$ of the curve with position vector $\mathbf{r}(t)=\mathbf{i} \cos t+\mathbf{j} \sin t+2 t \mathbf{k}$.
Solution: Recall that $\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$. Now, we have:
$\mathbf{r}^{\prime}(t)=\mathbf{i}(-\sin t)+\mathbf{j} \cos t+2 \mathbf{k}$;
$\mathbf{r}^{\prime \prime}(t)=\mathbf{i}(-\cos t)+\mathbf{j}(-\sin t) ;$
$\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+2^{2}}=\sqrt{1+4}=\sqrt{5} ;$
$\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin t & \cos t & 2 \\ -\cos t & -\sin t & 0\end{array}\right|=\mathbf{i}(0+2 \sin t)-\mathbf{j}(0+2 \cos t)+\mathbf{k}\left(\sin ^{2} t+\cos ^{2} t\right) ;$
$\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|=|2 \sin t \mathbf{i}-2 \cos t \mathbf{j}+\mathbf{k}|=\sqrt{4 \sin ^{2} t+4 \cos ^{2} t+1^{2}}=\sqrt{4+1}=\sqrt{5}$.
Answer: $\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}=\frac{\sqrt{5}}{(\sqrt{5})^{3}}=\frac{1}{5}$.

Ex. 7. Let $\mathbf{v}(t)=\mathbf{i}(t+e)^{-1}+\mathbf{k} t^{3}$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}(0)=3 \mathbf{i}$.

Solution: $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=-(t+e)^{-2} \mathbf{i}+3 t^{2} \mathbf{k}$.
$\mathbf{r}(t)=\int \mathbf{v}(t) d t=\mathbf{i} \ln |t+e|+\mathbf{k} t^{4} / 4+\vec{C}$. To find \vec{C}, we calculate $\mathbf{r}(0)$:
$\mathbf{i} \ln |0+e|+\mathbf{k} 0^{4} / 4+\vec{C}=3 \mathbf{i}$. Since $\ln e=1$, we get $\mathbf{i}+\vec{C}=3 \mathbf{i}$ and $\vec{C}=2 \mathbf{i}$. Therefore $\mathbf{r}(t)=\mathbf{i} \ln |t+e|+\mathbf{k} t^{4} / 4+2 \mathbf{i}=(2+\ln |t+e|) \mathbf{i}+\frac{t^{4}}{4} \mathbf{k}$.
Answer: $\mathbf{a}(t)=-(t+e)^{-2} \mathbf{i}+3 t^{2} \mathbf{k}$ and $\mathbf{r}(t)=(2+\ln |t+e|) \mathbf{i}+\frac{t^{4}}{4} \mathbf{k}$.

Ex. 8. Find the arc length, s, of the curve with position vector $\mathbf{r}(t)=2 e^{t} \mathbf{i}+2 t \mathbf{j}+e^{-t} \mathbf{k}$ from $t=0$ to $t=1$.

Solution: $s=\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{1}\left|2 e^{t} \mathbf{i}+2 \mathbf{j}-e^{-t} \mathbf{k}\right| d t=\int_{0}^{1} \sqrt{\left(2 e^{t}\right)^{2}+2^{2}+\left(e^{-t}\right)^{2}} d t$. Rearranging, we get $s=\int_{0}^{1} \sqrt{\left(2 e^{t}\right)^{2}+2\left(2 e^{t}\right)\left(e^{-t}\right)+\left(e^{-t}\right)^{2}} d t=\int_{0}^{1} \sqrt{\left(2 e^{t}+e^{-t}\right)^{2}} d t$. Thus, $s=\int_{0}^{1}\left(2 e^{t}+e^{-t}\right) d t=\left[2 e^{t}-e^{-t}\right]_{0}^{1}=\left(2 e^{1}-e^{-1}\right)-\left(2 e^{0}-e^{0}\right)=2 e-e^{-1}-1$.

Answer: $s=2 e-\frac{1}{e}-1$.

Ex. 9. Sketch and fully describe the graph of a function $f(x, y)=\sqrt{1+x^{2}+y^{2}}$.
Solution: Substituting z for $f(x, y)$ we get $z=\sqrt{1+x^{2}+y^{2}}$, or, equivalently, $z^{2}=1+x^{2}+y^{2}$ and $z \geq 0$. The equation transforms to $-x^{2}-y^{2}+z^{2}=1$, which is the hyperboloid of two sheets, revolving around z-axis. Since, $z \geq 0$ we get:

Answer: The graph of a function $f(x, y)$ is the upper half (above $x y$-plane) of the hyperboloid of two sheets $-x^{2}-y^{2}+z^{2}=1$. Sketch: to be presented in class.

Ex. 10. Sketch and fully describe the domain of the following function, including the name of the surface representing the domain's boundary: $f(x, y, z)=\ln \left(25-4 x^{2}-9 y^{2}-z^{2}\right)$.

Solution: The argument of the logarithm must be positive: $25-4 x^{2}-9 y^{2}-z^{2}>0$, that is, $4 x^{2}+9 y^{2}+z^{2}<25$, or $\frac{x^{2}}{(5 / 2)^{2}}+\frac{y^{2}}{(5 / 3)^{2}}+\frac{z^{2}}{5^{2}}<1$.

Answer: The points inside the ellipsoid $\frac{x^{2}}{(5 / 2)^{2}}+\frac{y^{2}}{(5 / 3)^{2}}+\frac{z^{2}}{5^{2}}=1$. Sketch: to be presented in class.

