
     

Chapter 1

Axiomatic set theory

1.1 Why axiomatic set theory?

Essentially all mathematical theories deal with sets in one way or another.
In most cases, however, the use of set theory is limited to its basics: el-
ementary operations on sets, fundamental facts about functions, and, in
some cases, rudimentary elements of cardinal arithmetic. This basic part
of set theory is very intuitive and can be developed using only our “good”
intuition for what sets are. The theory of sets developed in that way is
called “naive” set theory, as opposed to “axiomatic” set theory, where all
properties of sets are deduced from a fixed set of axioms.

Clearly the “naive” approach is very appealing. It allows us to prove a
lot of facts on sets in a quick and convincing way. Also, this was the way
the first mathematicians studied sets, including Georg Cantor, a “father
of set theory.” However, modern set theory departed from the “paradise”
of this simple-minded approach, replacing it with “axiomatic set theory,”
the highly structured form of set theory. What was the reason for such a
replacement?

Intuitively, a set is any collection of all elements that satisfy a certain
given property. Thus, the following axiom schema of comprehension,
due to Frege (1893), seems to be very intuitive.

If ϕ is a property, then there exists a set Y = {X : ϕ(X)} of all
elements having property ϕ.

This principle, however, is false! It follows from the following theorem of
Russell (1903) known as Russell’s antinomy or Russell’s paradox.
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Russell’s paradox There is no set S = {X : X ̸∈ X}.

The axiom schema of comprehension fails for the formula ϕ(X) defined
as “X ̸∈ X.” To see it, notice that if S had been a set we would have had
for every Y

Y ∈ S ⇔ Y ̸∈ Y.

Substituting S for Y we obtain

S ∈ S ⇔ S ̸∈ S,

which evidently is impossible.
This paradox, and other similar to it, convinced mathematicians that

we cannot rely on our intuition when dealing with abstract objects such as
arbitrary sets. To avoid this trouble, “naive” set theory has been replaced
with axiomatic set theory.

The task of finding one “universal” axiomatic system for set theory
that agrees with our intuition and is free of paradoxes was not easy, and
was not without some disagreement. Some of the disagreement still ex-
ists today. However, after almost a century of discussions, the set of ten
axioms/schemas, known as the Zermelo–Fraenkel axioms (abbreviated as
ZFC, where C stands for the axiom of choice), has been chosen as the most
natural. These axioms will be introduced and explained in the next chap-
ters. The full list of these axioms with some comments is also included in
Appendix A.

It should be pointed out here that the ZFC axioms are far from “per-
fect.” It could be expected that a “perfect” set of axioms should be com-
plete, that is, that for any statement ϕ expressed in the language of set
theory (which is described in the next section) either ϕ or its negation is a
consequence of the axioms. Also, a “good” set of axioms should certainly
be consistent, that is, should not lead to a contradiction. Unfortunately, we
cannot prove either of these properties for the ZFC axioms. More precisely,
we do believe that the ZFC axioms are consistent. However, if this belief
is correct, we can’t prove it using the ZFC axioms alone. Does it mean
that we should search for a better system of set-theory axioms that would
be without such a deficiency? Unfortunately, there is no use in searching
for it, since no “reasonable” set of axioms of set theory can prove its own
consistency. This follows from the following celebrated theorem of Gödel.

Theorem 1.1.1 (Gödel’s second incompleteness theorem) Let T be a set
of axioms expressed in a formal language L (such as the language of set
theory described in Section 1.2) and assume that T has the following “rea-
sonable” properties.

(1) T is consistent.
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(2) There is an effective algorithm that decides for an arbitrary sentence
of the language L whether it is in T or not.

(3) T is complicated enough to encode simple arithmetic of the natural
numbers.

Then there is a sentence ϕ of the language L that encodes the statement
“T is consistent.” However, ϕ is not a consequence of the axioms T .

In other words, Theorem 1.1.1 shows us that for whatever “reasonable”
systems of axioms of set theory we choose, we will always have to rely on
our intuition for its consistency. Thus, the ZFC axioms are as good (or
bad) in this aspect as any other “reasonable” system of axioms.

So what about the completeness of the ZFC axioms? Can we prove
at least that much? The answer is again negative and once again it is a
common property for all “reasonable” systems of axioms, as follows from
another theorem of Gödel.

Theorem 1.1.2 (Gödel’s first incompleteness theorem) Let T be a set of
axioms expressed in a formal language L (such as the language of set theory
described in Section 1.2) and assume that T has the following “reasonable”
properties.

(1) T is consistent.

(2) There is an effective algorithm that decides for an arbitrary sentence
of the language L whether it is in T or not.

(3) T is complicated enough to encode simple arithmetic of the natural
numbers.

Then there is a sentence ϕ of the language L such that neither ϕ nor its
negation ¬ϕ can be deduced from the axioms T .

A sentence ϕ as in Theorem 1.1.2 is said to be independent of the
axioms T . It is not difficult to prove that a sentence ϕ is independent of
the consistent set of axioms T if and only if both T ∪{ϕ} and T ∪{¬ϕ} are
consistent too. Part of this course will be devoted to studying the sentences
of set theory that are independent of the ZFC axioms.

The preceding discussion shows that there is no way to find a good
complete set of axioms for set theory. On the other hand, we can find a
set of axioms that reach far enough to allow encoding of all set-theoretic
operations and all classical mathematical structures. Indeed, the ZFC ax-
ioms do satisfy this requirement, and the rest of Part I will be devoted to
describing such encodings of all structures of interest.
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1.2 The language and the basic axioms

Any mathematical theory must begin with undefined concepts. In the case
of set theory these concepts are the notion of a “set” and the relation “is
an element of” between the sets. In particular, we write “x ∈ y” for “x is
an element of y.”

The relation ∈ is primitive for set theory, that is, we do not define it.
All other objects, including the notion of a set, are described by the axioms.
In particular, all objects considered in formal set theory are sets. (Thus,
the word “set” is superfluous.)

In order to talk about any formal set theory it is necessary to specify
first the language that we will use and in which we will express the axioms.
The correct expressions in our language are called formulas. The basic for-
mulas are “x ∈ y” and “z = t,” where x, y, z, and t (or some other variable
symbols) stand for the sets. We can combine these expressions using the
basic logical connectors of negation ¬, conjunction &, disjunction ∨, impli-
cation →, and equivalence ↔. Thus, for example, ¬ϕ means “not ϕ” and
ϕ→ψ stands for “ϕ implies ψ.” In addition, we will use two quantifiers:
existential ∃ and universal ∀. Thus, an expression ∀xϕ is interpreted as
“for all x formula ϕ holds.” In addition, the parentheses “(” and “)” are
used, when appropriate.

Formally, the formulas can be created only as just described. However,
for convenience, we will also often use some shortcuts. For example, an ex-
pression ∃x ∈ Aϕ(x) will be used as an abbreviation for ∃x(x ∈ A & ϕ(x)),
and we will write ∀x ∈ Aϕ(x) to abbreviate the formula ∀x(x ∈ A→ϕ(x)).
Also we will use the shortcuts x ̸= y, x ̸∈ y, x ⊂ y, and x ̸⊂ y, where, for
example, x ⊂ y stands for ∀z(z ∈ x→z ∈ y).

Finally, only variables, the relations = and ∈, and logical symbols al-
ready mentioned are allowed in formal formulas. However, we will often
use some other constants. For example, we will write x = ∅ (x is an empty
set) in place of ¬∃y(y ∈ x).

We will discuss ZFC axioms throughout the next few sections as they
are needed. Also, in most cases, we won’t write in the main text the
formulas representing the axioms. However, the full list of ZFC axioms
together with the formulas can be found in Appendix A.

Let us start with the two most basic axioms.

Set existence axiom There exists a set: ∃x(x = x).

Extensionality axiom If x and y have the same elements, then x is equal
to y.

The set existence axiom follows from the others. However, it is the
most basic of all the axioms, since it ensures that set theory is not a trivial



   

1.2 The language and the basic axioms 7

theory. The extensionality axiom tells us that the sets can be distinguish
only by their elements.

Comprehension scheme (or schema of separation) For every for-
mula ϕ(s, t) with free variables s and t, set x, and parameter p there
exists a set y = {u ∈ x : ϕ(u, p)} that contains all those u ∈ x that
have the property ϕ.

Notice that the comprehension scheme is, in fact, the scheme for in-
finitely many axioms, one for each formula ϕ. It is a weaker version
of Frege’s axiom schema of comprehension. However, the contradiction
of Russell’s paradox can be avoided, since the elements of the new set
y = {u ∈ x : ϕ(u, p)} are chosen from a fixed set x, rather than from an
undefined object such as “the class of all sets.”

From the set existence axiom and the comprehension scheme used with
the formula “u ̸= u,” we can conclude the following stronger version of the
set existence axiom.

Empty set axiom There exists the empty set ∅.

To see the implication, simply define ∅ = {y ∈ x : y ̸= y}, where x is a
set from the set existence axiom. Notice that by the extensionality axiom
the empty set is unique.

An interesting consequence of the comprehension scheme axiom is the
following theorem.

Theorem 1.2.1 There is no set of all sets.

Proof If there were a set S of all sets then the following set

Z = {X ∈ S : X ̸∈ X}

would exist by the comprehension scheme axiom. However, with S being
the set of all sets, we would have that Z = {X : X ̸∈ X}, the set from
Russell’s paradox. This contradiction shows that the set S of all sets cannot
exist. !

By the previous theorem all sets do not form a set. However, we some-
times like to talk about this object. In such a case we will talk about a
class of sets or the set-theoretic universe. We will talk about classes only
on an intuitive level. It is worth mentioning, however, that the theory of
classes can also be formalized similarly to the theory of sets. This, however,
is far beyond the scope of this course. Let us mention only that there are
other proper classes of sets (i.e., classes that are not sets) that are strictly
smaller than the class of all sets.



   

8 1 Axiomatic set theory

The comprehension scheme axiom is a conditional existence axiom, that
is, it describes how to obtain a set (subset) from another set. Other basic
conditional existence axioms are listed here.

Pairing axiom For any a and b there exists a set x that contains a and
b.

Union axiom For every family F there exists a set U containing the union
⋃

F of all elements of F .

Power set axiom For every set X there exists a set P containing the set
P(X) (the power set) of all subsets of X.

In particular, the pairing axiom states that for any a and b there exists
a set x such that {a, b} ⊂ x. Although it does not state directly that there
exists a set {a, b}, the existence of this set can easily be concluded from
the existence of x and the comprehension scheme axiom:

{a, b} = {u ∈ x : u = a ∨ u = b}.

Similarly, we can conclude from the union and power set axioms that for
every sets F and X there exist the union of F

⋃

F = {x : ∃F ∈ F (x ∈ F )} = {x ∈ U : ∃F ∈ F (x ∈ F )}

and the power set of X

P(X) = {z : z ⊂ X} = {z ∈ P : z ⊂ X}.

It is also easy to see that these sets are defined uniquely. Notice also that
the existence of a set {a, b} implies the existence of a singleton set {a},
since {a} = {a, a}.

The other basic operations on sets can be defined as follows: the union
of two sets x and y by

x ∪ y =
⋃

{x, y};

the difference of sets x and y by

x \ y = {z ∈ x : z ̸∈ y};

the arbitrary intersections of a family F by
⋂

F =
{

z ∈
⋃

F : ∀F ∈ F (z ∈ F )
}

;

and the intersections of sets x and y by

x ∩ y =
⋂

{x, y}.
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The existence of sets x\y and
⋂

F follows from the axiom of comprehension.
We will also sometimes use the operation of symmetric difference of two

sets, defined by
x△y = (x \ y) ∪ (y \ x).

Its basic properties are listed in the next theorem. Its proof is left as an
exercise.

Theorem 1.2.2 For every x, y, and z

(a) x△y = y△x,

(b) x△y = (x ∪ y) \ (x ∩ y),

(c) (x△y)△z = x△(y△z).

We will define an ordered pair ⟨a, b⟩ for arbitrary a and b by

⟨a, b⟩ = {{a}, {a, b}}. (1.1)

It is difficult to claim that this definition is natural. However, it is com-
monly accepted in modern set theory, and the next theorem justifies it by
showing that it maintains the intuitive properties we usually associate with
the ordered pair.

Theorem 1.2.3 For arbitrary a, b, c, and d
⟨a, b⟩ = ⟨c, d⟩ if and only if a = c and b = d.

Proof Implication ⇐ is obvious.
To see the other implication, assume that ⟨a, b⟩ = ⟨c, d⟩. This means

that {{a}, {a, b}} = {{c}, {c, d}}. In particular, by the axiom of extension-
ality, {a} is equal to either {c} or {c, d}.

If {a} = {c} then a = c. If {a} = {c, d}, then c must belong to {a} and
we also conclude that a = c. In any case, a = c and we can deduce that
{{a}, {a, b}} = {{a}, {a, d}}. We wish to show that this implies b = d.

But {a, b} belongs to {{a}, {a, d}}. Thus we have two cases.
Case 1: {a, b} = {a, d}. Then b = a or b = d. If b = d we are done. If

b = a then {a, b} = {a} and so {a, d} = {a}. But d belongs then to {a}
and so d = a. Since we had also a = b we conclude b = d.

Case 2: {a, b} = {a}. Then b belongs to {a} and so b = a. Hence we
conclude that {a, d} = {a}, and as in case 1 we can conclude that b = d.
!
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Now we can define an ordered triple ⟨a, b, c⟩ by identifying it with
⟨⟨a, b⟩, c⟩ and, in general, an ordered n-tuple by

⟨a1, a2, . . . , an−1, an⟩ = ⟨⟨a1, a2, . . . , an−1⟩, an⟩.

The agreement of this definition with our intuition is given by the following
theorem, presented without proof.

Theorem 1.2.4 ⟨a1, a2, . . . , an−1, an⟩ = ⟨a′1, a′2, . . . , a′n−1, a
′
n⟩ if and only

if ai = a′i for all i = 1, 2, . . . , n.

Next we will define a Cartesian product X ×Y as the set of all ordered
pairs ⟨x, y⟩ such that x ∈ X and y ∈ Y . To make this definition formal,
we have to use the comprehension axiom. For this, notice that for every
x ∈ X and y ∈ Y we have

⟨x, y⟩ = {{x}, {x, y}} ∈ P(P(X ∪ Y )).

Hence, we can define

X × Y = {z ∈ P(P(X ∪ Y )) : ∃x ∈ X ∃y ∈ Y (z = ⟨x, y⟩)}. (1.2)

The basic properties of the Cartesian product and its relation to other
set-theoretic operations are described in the exercises.

The last axiom we would like to discuss in this section is the infinity
axiom. It states that there exists at least one infinite set. This is the
only axiom that implies the existence of an infinite object. Without it,
the family F of all finite subsets of the set of natural numbers would be a
good “model” of set theory, that is, F satisfies all the axioms of set theory
except the infinity axiom.

To make the statements of the infinity axiom more readable we intro-
duce the following abbreviation. We say that y is a successor of x and write
y = S(x) if y = x ∪ {x}, that is, when

∀z[z ∈ y ↔ (z ∈ x ∨ z = x)].

Infinity axiom (Zermelo 1908) There exists an infinite set (of some spe-
cial form):

∃x [∀z(z = ∅→z ∈ x) & ∀y ∈ x∀z(z = S(y)→z ∈ x)] .

Notice that the infinity axiom obviously implies the set existence axiom.
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EXERCISES

1 Prove that if F ∈ F then
⋂

F ⊂ F ⊂
⋃

F .

2 Show that for every family F and every set A

(a) if A ⊂ F for every F ∈ F then A ⊂
⋂

F , and

(b) if F ⊂ A for every F ∈ F then
⋃

F ⊂ A.

3 Prove that if F ∩ G ̸= ∅ then
⋂

F ∩
⋂

G ⊂
⋂

(F ∩ G). Give examples
showing that the inclusion cannot be replaced by equality and that the
assumption F ∩ G ̸= ∅ is essential.

4 Prove Theorem 1.2.2.

5 Show that ⟨⟨a, b⟩, c⟩ = ⟨⟨a′, b′⟩, c′⟩ if and only if ⟨a, ⟨b, c⟩⟩ = ⟨a′, ⟨b′, c′⟩⟩
if and only if a = a′, b = b′, and c = c′. Conclude that we could define an
ordered triple ⟨a, b, c⟩ as ⟨a, ⟨b, c⟩⟩ instead of ⟨⟨a, b⟩, c⟩.

6 Prove that X × Y = ∅ if and only if X = ∅ or Y = ∅.

7 Show that for arbitrary sets X,Y, and Z the following holds.

(a) (X ∪ Y ) × Z = (X × Z) ∪ (Y × Z).

(b) (X ∩ Y ) × Z = (X × Z) ∩ (Y × Z).

(c) (X \ Y ) × Z = (X × Z) \ (Y × Z).

8 Prove that if X × Z ⊂ Y × T and X × Z ̸= ∅ then X ⊂ Y and Z ⊂ T .
Give an example showing that the assumption X × Z ̸= ∅ is essential.


