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Introductory Material

1. Teaching Objectives for the Linear Algebra Portion of the Course

2. Sample Lectures for Linear Algebra



TEACHING OBJECTIVES 
for the 

LINEAR ALGEBRA PORTION
of Math 251 (2-4 weeks)

1. Help engineering students to better understand how mathematicians do mathematics, including 
    understanding the concepts of concrete and abstract spaces.  
2. Know how to do matrix operations with real and complex matrices.  This may require some 
    remedial work in complex arithmetic including the conjugate of a complex number.
3. Require that students memorize the definition of the abstract concept of a Vector (or Linear) 
    Space as an abstract algebraic structure and that of a subspace of a vector space.  The 
    definition of a vector space includes the eight axioms for Vector Space Theory.  The general 
    definition of a Subspace in mathematics is a set with the same structure as the space.  For a 
    Vector Space, this requires closure of vector addition and multiplication by a scalar.
4. Be able to solve  for all three cases (unique solution, no solution, and infinte number Ax = b



    of solutions).  Understand what a problem is in mathematics, especially scalar and vector 
    equations.  
5. Develop some understanding of the definitions of Linear Operator, Span, Linear 
    Independence, Basis, and Dimension.  This need not be indepth, but exposure to all of the 
     definitions is important.  Understanding begins with exposure to the definitions.  This orients 
     students toward  as a mapping problem and understanding dimension as an algebraic Ax = b



     concept, helping them not to get stuck in 3-space.
6. Know how to compute determinants by both using the Laplace expansion and by using Gauss 
   elimination.  
7. Know how to compute the inverse of a matrix.  A formula for a 2x2 can be derived.
8. Know the properties of a nonsingular (square) matrix and other appropriate theory (without 
   proofs).



SAMPLE  LECTURES FOR LINEAR ALGEBRA

We begin with an algebraic rather than a geometric approach to vectors.  This will help the
engineers not to get stuck in 3-space.  If you start with geometry and then start talking about n-
space, the engineers decide that what you are saying has nothing to do with engineering and quit
listening.  “Help I’m stuck in three space and I can’t get out.” 

 DO NOT PRESENT IN CLASS ANY OF THE MATERIAL IN CHAPTER 1.  Have
them read it on their own.  This material provides background to help the students to convert
from a geometric approach to an algebraic approach to vectors.  This makes it easier to move on
to 4,5,...n...  dimensions but is not necessary to go over in class.

Lecture #1 “SPACE, THE FINAL FRONTIER”
Handout#1 Page 1 and  2 (on one sheet of paper) of any old exam. 

To a mathematician, a space is a set plus structure.  There are two kinds: Concrete and
Abstract.  The number systems, NZQRC, are sets with structure and hence are spaces. 
However, we do not call them spaces, we call them number systems.  We may begin with the
Peano Postulates, and then construct successively the positive integers (natural numbers) N, the
integers Z,the rational numbers Q, and the reals R and the complexes C.  However, in a real
analysis course, we follow Euclid and list the axioms that uniquely determine R.  These fall into
three categories: the field (algebraic) axioms, the order axioms, and the least upper bound axiom
(LUB). These are sufficient to determine every real number so that R is concrete (as are all the
number systems).  If we instead consider only the field axioms, we have the axioms for the
abstract algebraic structure we call a field.  We can define a field informally as a number system
where we can add, subtract, multiply, and divide (except by zero of course).  (Do not confuse an
algebraic  field with a scalar or vector field that we will encounter later in Vector Calculus.)  Since
an algebraic field is an abstract space, we give three examples: Q, R, and C.  N and Z are not
fields.  Why? 

A matrix is an array of elements in a field.  Teach them to do matrix algebra with C as
well as R as entries.  Begin with the examples on the old exam on page 1.  That is, teach them
how to compute all of the matrix operations on the old exam.  You may have to first teach them
how to do complex arithmetic including what the conjugate of a complex number is.  Some will
have had it in high school, some may not.  The True/False questions on page 2 of the old exam
provide properties of Matrix Algebra.  You need not worry about proofs, but for false statements
such as “Matrix multiplication of square matrices is commutative” you can provide or have them
provide counter examples.  DO NOT PRESENT THE MATERIAL IN CHAPTER 2 IN CLASS. 
It provides the proofs of the matrix algebra properties. 

Lecture #2 VECTOR (OR LINEAR) SPACES
Handout#2 One sheet of paper.  On one side is the definition of a vector space from the notes. 
On the other side is the definition of a subspace from the notes.  

Begin by reminding them that a space is a set plus structure.  Then read them the
definition of a vector space.  Tell them that they must memorize this definition.  This is our
second example of an abstract algebraic space.  Then continue through the notes giving them
examples of a vector space including Rn, Cn, matrices, and function spaces.  

Then read them the definition of a subspace.  Tell them that they must memorize this



definition.  Stress that a subspace is a vector space in its own right.  Why?  Use the notes as
appropriate, including examples (maybe) of the null space of a Linear Operator.

Lecture #3&4 SOLUTION OF Ax = b


Teach them how to do Gauss elimination.  See notes.  Start with the real 3x3 Example#1
on page 8 of Chapter 4 in the notes.  This is an example with exactly one solution.  Then do the
example on page 15 with an arbitrary .  Do both of the ‘s.   One has no solution; one has anb


b


infinite number of solutions.  Note that for a 4x4 or larger, geometry is no help.  They will get
geometry when you go back to Stewart.

Lecture #5&6 REST OF VECTOR SPACE CONCEPTS
Go over the definitions of Linear Operators, Span, Linear Independence, Basis Sets, and
Dimension.  You may also give theorems, but no proofs (no time).  Two examples of Linear
operators are T:Rn Rm defined by  and the derivative D:A (R,R)A (R,R) where ifT(x) = Ax 

fA (R,R) = {fF  (R,R): f is analytic on R) and F  (R,R) is the set of all real valued functions of a
real variable, and we define D by .    dfD(f) =

dx

Lecture #7 DETERMINANTS AND CRAMER’S RULE
Teach them how to compute determinants and how to solve   using Cramer’s Rule.Ax = b



Lecture #8 INVERSES OF MATRICES
Teach them how to compute (multiplicative) inverses of matrices.  You can do any size matrix by
augmenting it with the (multiplicative) identity matrix I and using Gauss elimination.  I do an
arbitrary 2x2 to develop a formula for the inverse of a 2x2 which is easy to memorize.

This indicates two weeks of Lectures, but I usually take longer and this is ok.  Try to get across
the idea of the difference in a concrete and an abstract space.  All engineers need Linear Algebra. 
Some engineers need Vector Calculus.  If we have to short change someplace, it is better the
Vector Calculus than the Linear Algebra.  When you go back to Stewart in Chapter 10 and pick
up the geometrical interpretation for 1,2, and 3 space dimensions, you can move a little faster so
you can make up some time.  My first exam covers up through 10.4 of Stewart at the end of the
fourth week.  Usually, by then I am well into lines and planes and beyond.
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CHAPTER 1

Review of Elementary Algebra 
and Geometry in 

One, Two, and Three Dimensions

1. Linear Algebra and Vector Analysis

2. Fundamental Properties of the Real Number System

3. Introduction to Abstract Algebraic Structures: An Algebraic Field

4.  An Introduction to Vectors

5.  Complex Numbers, Geometry, and Complex Functions of a Complex Variable
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Handout #1 LINEAR ALGEBRA AND VECTOR ANALYSIS Professor Moseley

As engineers, scientists, and applied mathematicians, we are interested in geometry for
two reasons:
1.  The engineering and science problems that we are interested in solving involve time and 
      space.  We model time by R and (three dimensional) space using R3.  However some 
      problems can be idealized as one or two dimensional problems. i.e., using R or R2.  We 
      assume familiarity with R as a model for one dimensional space (Descartes) and with R2 as a
      model for two dimensional space (i.e., a plane).  We assume less familiarity with R3 as a 
      model of three space, but we do assume some.
2.  Even if the state variables of interest are not position in space (e.g., amounts of chemicals in a 
      reactor, voltages, and currents), we may wish to draw graphs in two or three dimensions that 
      represent these quantities.  Visualization, even of things that are not geometrical, may 
      provide some understanding of the process.
It is this second reason (i.e., that the number of state variables in an engineering system of interest
may be greater than three) that motivates us to consider “vector spaces” of dimension greater
than three.  When speaking of a system, the term “degrees of freedom” is also used, but we will
usually use the more traditional term “dimension” in a problem solving setting where no
particular application has been selected.  

This leads to several definitions for the word “vector”;
1. A physical quantity having magnitude and direction. (What your physics teacher told you.)
2. A directed line segment in the plane or in 3-space.
3. An element in R2 or  R3 (i.e., an ordered pair or an ordered triple of real numbers).
4. An element in Rn (i.e., an ordered n-tuple of real numbers).
5. An element in Kn  where K is a field (an abstract algebraic structure e.g., Q, R and C). 
6. An element of a vector space (another abstract algebraic structure).

The above considerations lead to two separate topics concerning “vectors”.
1.  Linear Algebra.
2. Vector Analysis

In Linear Algebra a “vector” in an n dimensional vector space may represent n state
variables and thus a system having n degrees of freedom.  Although pictures of such vectors in
one, two, and three dimensions may provide insight into the behavior of our system, these graphs
need have no geometrical meaning.  A system having n degrees of freedom and requiring n state
variables resides in an n dimensional vector space which has no real geometrical meaning (e.g.,
amounts of n different chemicals in a reactor, n voltages or currents, tension in n different
elements in a truss, flow rates in n different connected pipes, or amounts of money in n different
accounts) .  This does not diminish the usefulness of these vector spaces in solving engineering,
science, and economic problems.  A typical course in linear algebra covers topics in three areas:
1. Matrix Algebra.
2. Abstract Linear Algebra  (Vector Space Theory).
3. How to Solve a System of m Linear Algebraic Equations in n Unknowns.
Although a model for the equilibrium or steady state of a linear system with n state variables
usually has n equations in n unknowns, little is gained and much is lost by a restriction to n
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equations in n unknowns.  Matrix algebra and abstract linear algebra (or vector space theory)
provide the tools for understanding the methods used to solve m equations in n unknowns.  The
big point is that no geometrical interpretation of a vector is needed to make vectors in linear
algebra useful for solving engineering, scientific, and economic problems.  A geometrical
interpretation is useful in one, two and three dimensions to help you understand what can happen
and the “why’s” of the solution procedure, but no geometrical interpretation of a vector in “n”
space is needed to make vectors in linear algebra useful for solving engineering, scientific,
and economic problems.

In Vector Analysis (Vector Calculus and Tensor Analysis) we are very much interested in
the geometrical interpretation of our vectors (and tensors).  Providing a mathematical model of
geometrical concepts is the central theme of the subject.  Interestingly, the “vector” spaces of
interest from a linear algebra perspective are usually infinite dimensional as we are interested in
physical quantities at every point in physical space and hence have an infinite number of degrees
of freedom and hence an infinite number of state variables for the system.  These are often
represented using functions rather than n-tuples of numbers as well as “vector” valued functions
(e.g., three ordered functions of time and space) .  We divide our system models into two
categories based on the number of variables needed to describe a state for our system:
1. Discrete System Models having only a finite number of state variables.  These are sometimes 
    referred to as lumped parameter systems in engineering books.  Examples are electric
circuits, systems of springs 
    and “stirred” chemical reactors.
2. Continuum System Models having an infinite number of state variables in one , two, or three 
     physical dimensions.  These are sometimes referred to as distributed parameter systems in 
    engineering books.  Examples are Electromagnetic Theory (Maxwell’s equations), Elasticity, 
    and Fluid Flow (Navier-Stokes equations). 
One last point.  Although the static or equilibrium problem for a discrete or lumped parameter
problem requires you to find values for n unknown variables, the dynamics problem requires
values for these n variables for all time and hence requires an infinite number of values.  Again,
these are usually given by n functions of time or equivalently by an n-dimensional time varying
“vector”.  (Note that here the term vector means n-tuple.  When we use “vector” to mean n-tuple,
rather than an element in a vector space, we will put it in quotation marks.)
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Handout #2 FUNDAMENTAL PROPERTIES Professor Moseley
OF THE REAL NUMBER SYSTEM

Geometrically, the real numbers R can be put in one-to-one correspondence with a line in
space (Descartes).  We call this the real number line and view  R as representing one
dimensional space.  We also view R as being a fundamental model for time.  However, we wish to
also view R mathematically as a set with algebraic and analytic properties.  In this approach, we
postulate the existence of the set R and use axioms to establish the fundamental properties.  Other
properties are then developed using a theorem/proof/definition format.  This removes the need to
view R geometrically or temporally and allows us to algebraically move beyond three dimensions. 
Degrees of freedom is perhaps a better term, but dimension is standard in mathematics and we
will use it.  We note that once a mathematical mode has been developed, although sometimes
useful for intuitive understanding, no geometrical interpretation of R is needed in the solution
process for engineering, scientific, and economic problems.  We organize the fundamental
properties of the real number system into several groups.  The first three are the standard
axiomatic properties of R:

1) The algebraic (field) properties.  (An algebraic field is an abstract algebraic structure. 
     Examples are Q, R, and C.  However, N and Z are not)
2) The order properties.  (These give R its one dimensional nature.)
3) The least upper bound property.  (This leads to the completeness property that
     insures that R has no  “holes” and may be the hardest property of R to understand.  R 
     and C are complete, but Q is not complete)
All other properties of the real numbers follow from these axiomatic properties.  Being

able to “see” the geometry of the real number line may help you to intuit other properties of R. 
However, this ability is not necessary to follow the axiomatic development of the properties of R,
and can sometimes obscure the need for a proof of an “obvious” property.  

We consider other properties that can be derived from the axiomatic ones.  To solve
equations we consider  

4)Additional algebraic (field) properties of R including factoring of polynomials.  
To solve inequalities, we consider: 

5) Additional order properties including the definition and properties of the order 
     relations <, >, , and .  
A vector space is another abstract algebraic structure.  Application problems are often

formulated and solved using the algebraic properties of fields and vector spaces.  R is not only a
field but also a (one dimensional) vector space.  The last two groups of properties of interest
show that R is not only a field and a vector space but also an inner product space and hence a
normed linear space: 

6) The inner product properties and 
7) The norm (absolute value or length) properties.  

These properties are of interest since the notion of length (norm) implies the notion of distance
apart (metric), and hence provides topological properties and allows for approximate solutions. 
They can be algebraically extended to two dimensions (R2), three dimensions (R3), n dimensions
(Rn), and even infinite dimensions (Hilbert Space).  There are many applications for vector
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spaces of dimension greater than three (e.g., solving m linear algebraic equations in n unknown
variables) and infinite dimensional spaces (e.g., solving differential equations).  In these
applications, the term dimension does not refer to space or time, but to the degrees of freedom
that the problem has.  A physical system may require a finite or infinite number of state variables
to specify the state of the system.  Hence it would aid our intuition to replace the term dimension
with the term degrees of freedom.  On the other hand (OTOH), just as the real number line aids
(and sometimes confuses) our understanding of the real number system, vector spaces in one two,
and three dimensions can aid (and confuse) our understanding of the algebraic properties of
vector spaces. 

ALGEBRAIC (FIELD) PROPERTIES.  Since the set R of real numbers along with the binary
operations of addition and multiplication satisfy the following properties, the system denoted by
the 5-tuple (R, +, .0,1) is an example of a field which is an abstract algebraic structure.

A1. x+y = y+x        x,y  R Addition is Commutative
A2. (x+y)+z = x+(y+z)      x,y z  R Addition is Associative
A3.  0  R  s.t. x+0 = x        x  R Existence of a Right Additive Identity
A4. x  R   w s.t. x+w = 0 Existence of a Right Additive Inverse
A5. xy = yx        x,y  R Multiplication is Commutative
A6. (xy)z = x(yz)      x,y z  R Multiplication is Association
A7.  1  R s.t. x 1 = x    x  R Existence of a Right Multiplicative Identity
A8. x  R s.t. x0   w  R s.t. xw=1 Existence of a Right Multiplicative Inverse

 A9. x(y+z) = xy + xz      x,y z  R Multiplication Distributes over Addition

There are other algebraic (field) properties which follow from these nine fundamental properties. 
Some of these additional properties (e.g., cancellation laws)  are listed in high school algebra
books and calculus texts.  Check out the above properties with specific values of  x, y, and z.  For
example, check out property A3  with  x = π.  Is π + 0 = π?

ORDER PROPERTIES.  There exists the subset  PR = R+  of positive real numbers that satisfies 
the following:

O1. x,y  PR implies x+y  PR
O2. x,y  PR implies xy  PR
O3. x  PR implies -x  PR

O4. x  R implies exactly one of x = 0  or  x  PR  or  -x  PR holds (trichotomy).

Note that the order properties involve the binary operations of addition and multiplication and are
therefore linked to the field properties.  There are other order properties which follow from the
four fundamental properties.  Some of these are listed in high school algebra books and calculus
texts.  The symbols  <, >, <, and > can be defined using the set PR.  For example, ab if (and only
if) baPR{0}.  The properties of these relations can then be established.  Check out the above
properties with specific values of  x and  y.  For example, check out property O1  with x = 2
and y = π.  Is  + π positive?2
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LEAST UPPER BOUND PROPERTY: The least upper bound property leads to the 
completeness property that assures us that the real number line has no holes.  This is perhaps 
the most difficult concept to understand.  It means that we must include the irrational numbers 
(e.g. π  and ) with the rational numbers (fractions) to obtain all of the real numbers.2

DEFINITION.  If  S  is a set of real numbers, we say that  b  is an upper bound for  S  if for each 
x  S  we have  x < b.  A number c  is called a least upper bound for  S  if it is an upper bound 
for S  and if  c < b  for each upper bound  b  of  S.

LEAST UPPER BOUND AXIOM.  Every nonempty set  S  of real numbers that has an upper 
bound has a least upper bound.  

Check this property out with the set  S = {x  R:   x2 < 2}.  Give three different upper 
bounds for the set S.  What real number is the least upper bound for the set S?  Is it in the set S?

ADDITIONAL ALGEBRAIC PROPERTIES AND FACTORING.  Additional algebraic
properties are useful in solving for the roots of the equation f(x) = 0 (i.e., the zeros of f) where f
is a real valued function of a real variable.  Operations on equations can be defined which result in
equivalent equations (i.e., ones with the same solution set).  These are called equivalent
equation operations (EEO’s).  An important property of R states that if the product of two real
numbers is zero, then at least one of them is zero.  Thus if f is a polynomial that can be factored
so that f(x) = g(x) h(x) = 0, then either g(x) = 0 or  h(x) = 0 (or both since in logic we use the
inclusive or).  Since the degrees of g and h will both be less than that of f, this reduces a hard
problem to two easier ones.  When we can repeat the process to obtain a product of linear factors,
we can obtain all of the zeros of f  (i.e., the roots of the equation).

ADDITIONAL ORDER PROPERTIES.  Often application problems require the solution of
inequalities.  The symbols <, >, , and  can be defined in terms of the set of positive numbers 
PR = R+ = {xR: x>0} and the binary operation of addition.  As with equalities, operations on
inequalities can be developed that result in equivalent inequalities (i.e., ones that have the same
solution set).    These are called equivalent inequality operations (EIO’s).  

ADDITIONAL PROPERTIES.  There are many additional properties of R.  We consider here
only the important absolute value property which is basically a function.

x if x < 0
x =

x if x 0

 

This function provides a norm, a metric, and a topology for R.  Thus we can define limits,
derivatives and integrals over intervals in R.

Ch. 1 Pg. 6



Handout #3 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley
AN ALGEBRAIC FIELD

To introduce the notion of an abstract algebraic structure we consider (algebraic)
fields.  (These should not to be confused with vector and scalar fields in vector analysis.) 
Loosely, an algebraic field is a number system where you can add, subtract, multiply, and divide
(except for dividing by zero of course). Examples of fields are Q, R, and C.  Examples of other
abstract algebraic structures are: Groups, Rings, Integral Domains, Modules and Vector Spaces.

DEFINITION.  Let  F  be a set (of numbers) together with two binary operations (which we call
addition and multiplication), denoted by  +  and    (or juxtaposition), which satisfy the following
list of properties.:

F1) x,y  F   x + y = y + x Addition is commutative                 
F2)  x,y  F  x + ( y + z ) = ( x + y ) + z Addition is associative                    
F3)   an element  0  F  such that. x  F,  x + 0 = x Existence of a right additive identity
F4)   x  F,  a unique  y  F s.t. x + y = 0 Existence of a right                           
    We usually denote y by -x for each x in F. additive inverse for each element
F5)  xy = yx   x,y  F Multiplication is  commutative     
F6)  x(yz) = (xy)z   x,y,z  F Multiplication is associative         
F7)   an element 1  F such that 10 and   x  F,  x1 = x Existence of a                               

a right multiplicative identity
F8)   x  s.t.  x0,  a unique y  F s.t. xy = 1 Existence of a right multiplicative inverse
      We usually denote y by (x-1) or (1/x) for each nonzero x in F. for each element except 0 
F9)  x( y + z ) = xy + xz   x,y,z  F (Multiplication distributes over addition)

Then the ordered 5-tuple consisting of the set F and the structure defined by the two operations of
addition and multiplication as well as two identity elements mentioned in the definition, 
K = (F,+,,0,1), is an algebraic field. 

Although technically not correct, we often refer to the set  F  as the (algebraic) field.  The
elements of a field (i.e. the elements in the set F) are often called scalars.  Since the letter  F  is
used a lot in mathematics, the letter K is also used for a field of scalars.  Since the rational
numbers Q, the real numbers R, and the complex numbers C are examples of fields, it will be
convenient to use the notation K to represent (the set of elements for) any field K = (K,+,,0,1).  

The properties in the definition of a field constitute the fundamental axioms for field
theory.  Other field properties can be proved based only on these properties.  Once we proved
that Q, R, and C are fields (or believe that someone else has proved that they are) then, by the
principle of abstraction, we need not prove these properties for these fields individually, one
proof has done the work of three.  In fact, for every (concrete) structure that we can establish as a
field, all of the field properties apply.   

We prove an easy property of fields.  As a field property, this property must hold in every
algebraic field.  It is an identity and we use the standard form for proving identities. 

THEOREM #1. Let K = (K,+,,0,1) be a field..  Then xK, 0 + x = x. (In English, this property
states that the right identity element 0 established in F3 is also a left additive identity element.)  
Proof.  Let xK.  Then
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STATEMENT REASON
0 + x =  x + 0 F1. Addition is commutative
         = x F3  0 is a rightr additive identity element.

      (and properties of equality)
Hence  xK, 0 + x = x.

Q.E.D.

Although this property appears “obvious” (and it is) a formal proof can be written.  This is why
mathematicians may disagree about what axioms to select, but once the selection is made, they
rarely disagree about what follows logically from these axioms.  Actually, the first four properties
establish a field with addition as an Abelian  (or commutative) group (another abstract algebraic
structure).  Group Theory, particularly for Abelian groups have been well studied by
mathematicians.  Also, if we delete 0, then the nonzero elements of K along with multiplication
also form an Abelian group.  We list some (Abelian) group theory properties as they apply to
fields.  Some are identities, some are not.

THEOREM #2. Let K = (K,+,,0,1) be a field.  Then 
1.  The identity elements 0 and 1 are unique.
2.  For each nonzero element in K, its additive and multiplicative inverse element is unique.
3.  0 is its own additive inverse element (i.e., 0 + 0 = 0) and it is unique, but it has no
multiplicative inverse element.
4.  The additive inverse of an additive inverse element is the element itself.  (i.e., if a is the
additive inverse of a, then (a) = a ).
5.  (a + b) = a + b.  (i.e., the additive inverse of a sum is the sum of their additive inverses.)
6.  The multiplicative inverse of a multiplicative inverse element is the element itself.  (i.e., if a-1 is
the multiplicative inverse of a, then (a1)1 = a ).
7.  (a b)1 = a1 b1.  (i.e., the multiplicative inverse of a product is the product of their
multiplicative inverses.)
8.  Sums and products can be written in any order you wish.
9.  If a + b = a + c, then b = c.  (Left Cancellation Law for Addition)
10. If ab = ac and a  0, then b = c. (Left Cancellation Law for Multiplication.)
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Handout #5 AN INTRODUCTION TO VECTORS Prof. Moseley

Traditionally the concept of a vector is introduced by physicists as a quantity such as force
or velocity that has magnitude and direction.  Vectors are then represented geometrically by
directed line segments and are thought of geometrically.  Modern mathematical treatments
introduce vectors algebraically as elements in a vector space.  As an introductory compromise we
introduce two dimensional vectors algebraically and then examine the correspondence between
algebraic vectors and directed line segments in the plane.  To define a vector space algebraically,
we need a set of vectors and a set of scalars.  We also need to define the algebraic operations of
vectors addition and scalar multiplication.  Since we associate the analytic set  R2 = {(x,y): x,y
 R} with the geometric set of points in a plane, we will use another notation, 2,  for the set of
two dimensional algebraic vectors.

SCALARS AND VECTORS.  We define our set of scalars to be the set of real numbers R and
our set of vectors to be the set of ordered pairs  2  = {[x,y]T: x,y  R}.  We use the matrix
notation  [x,y]T (i.e.[x,y] transpose, see Chapter 2) to indicate a column vector to save space. 
(We could use row vectors, [x,y], but when we solve liear algebraqic equations we prefer column
vectors.)  When writing homework papers it is better to use column vectors explicitly.  We write 

 = [x,y]T and refer to x and y as the components of the vector .
x x

VECTOR ADDITION.  We define the sum of the vectors = [x1,y1]T and   = [x2,y2]T 
x1


x2

as the vector +  = [x1 + x2, y1 + y2]T.  For example, [2,1]T + [5,2]T = [7,1]T.  Thus we add
x1 2x

vectors component wise.

SCALAR MULTIPLICATION.  We define scalar multiplication of a vector  = [x,y]T 
x

by a scalar  α R  by  α  = [α x, α y]T .  For example, 3[2,1]T = [6,3]T.  Thus we multiply
x

each component in  by the scalar α.  We define = [1, 0]T and  = [ 0, 1]T so that every vector 
x i j

 = [ x, y]T may be written uniquely as   = x  + y .   
x x i j

GEOMETRICAL INTERPRETATION.  Recall that we associate the analytic set  
R2 = {(x,y): x,y  R} with the geometric set of points in a plane.  Temporarily, we use  = (x,y)~x
to denote a point in R2.  We might say that the points in a plane are a geometric interpretation of 
R2.  We can establish a one-to-one correspondence between the analytic set R2 and geometrical
vectors (directed line segments).  First consider only directed line segments which are position
vectors; that is, have their “tails” at the origin (i.e. at the point = (0,0) and their heads at some~0
other point, say, the point = (x,y) in the plane R2 = {(x,y): x, yR}.  Denote this set by G.~x

Position vectors are said to be “based at ”.  If R2 is a point in the plane, then we let

0 ~x 0 x

 

denote the position vector from the origin  to the point .  “Clearly” there exist a one-to-one~0 ~x
correspondence between G and the set R2 of points in the plane; that is, we can readily identify
exactly one vector in G with exactly one point in  R2.  Now “clearly” a one-to-one
correspondence also exists between the set of points in R2 and the set of algebraic vectors in 2. 
Hence a one-to-one correspondence exists between the set of algebraic vectors 2 and the set of
geometric vectors G.  In a traditional treatment, vector addition and scalar multiplication are
defined geometrically for directed line segments in G.  We must then prove that the geometric
definition of the addition of two directed line segments using the parallelogram law corresponds
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to algebraic addition of the corresponding vectors in  2.  Similarly for scalar multiplication.  We
say that we must prove that the two structures are isomorphic.  It is somewhat simpler to define
vector addition and scalar multiplication algebraically on  2  and think of G as a geometric
interpretation of the two dimensional vectors.  One can then develop the theory of vectors
without getting bogged down in the geometric proofs to establish the isomorphism.  We can
extend this isomorphism to R2.  However, although we readily accept adding geometric vectors in
G and will accept with coaxing adding algebraic vectors in 2 , we may baulk at the idea of
adding points in  R2.  However, the distinction between these sets with structure really just
amounts to an interpretation of ordered pairs rather than an inherent difference in the
mathematical objects being considered.  Hence from now on, for any of these we will use the
symbol R2 unless there is a philosophical reason to make the distinction.  Reviewing, we have 

2   G   R2 

where we have used the symbol  to denote that there is an isomorphism between these sets with
structure.

MAGNITUDE AND DIRECTION.  Normally we think of directed line segments as being “free”
vectors; that is, we identify any directed line segment in the plane with the directed line segment
in  G  which has the same magnitude (length) and direction.  The magnitude of the algebraic 

vector   = [x,y]T  2  is defined to be    =   which, using Pythagoras, is the
x x x y2 2

length of the directed line segment in G which is associated with  .  It is easy to show that the
x

property (i.e. prove the theorem)  α  = α    holds for all   2  and all scalars  α. 
x x x

It is also easy to show that if   0  the vector   /  = (1/ )   has magnitude equal
x x x x x

to one (i.e. is a unit vector).  Examples of  unit vectors are = [1, 0]T and  = [ 0, 1]T.  i j
“Obviously” any nonzero vector   = [x,y]T  can be written as  =     where   =  

x x x u u x
/  is a unit vector in the same direction as .  That is,  gives the direction of   and
x x u x

  gives its magnitude.   For example, = [ 3, 4]T = 5 [3/5, 4/5]T  where =  [3/5, 4/5]T and
x x u

  = 5.  To make vectors in  2 more applicable to two dimensional geometry we can
x

introduce the concept of an equivalence relation and equivalence classes.  We say that an
arbitrary directed line segment in the plane is equivalent to a geometrical vector in G if it has the
same direction and magnitude.  The set of all directed line segments equivalent to a given vector
in G forms an equivalence class.  Two directed line segments are related if they are in the same
equivalence classes.  This relation is called an equivalence relation since all directed line
segments that are related can be thought of as being the same.  The equivalence classes partition
the set of all directed line segments into sets that are mutually exclusive whose union is all of the
directed line segments.

VECTORS IN R3.  Having established an isomorphism between R2, 2, and G, we make no
distinction in the future and will usually use R2 for the set of vectors in the plane, the set of points
in the plane and the set of geometrical vectors.  The context will explain what is meant.  A similar
development can be done algebraically and geometrically for vectors in 3-space.  There is a
technical difference between the sets  R×R×R = {(x,y,z): x, y, zR},   R2×R = {((x,y),z): x, y,
zR}, and R×R2 =  {(x,(y,z)): x, y, zR}, but they are all isomorphic and we will usually consider
them to be the same and denote all three by R3.  Furthermore, similar to 2 dimensions, we will use 
R3 to represent: the set of ordered triples, the set of points in 3 dimensional space, the set of 3
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dimensional position vectors given by  = [x,y,z]T = x  + y  + z  where = [1, 0, 0]T,  = [
x i j k̂ i j

0, 1, 0]T, and  = [ 0, 0, 1]T, and the set of any three dimensional geometric vectors denoted byk̂
directed line segments.  

The same analytic (but not geometric) development can be done for 4,5,..., n to obtain the
set Rn of n-dimensional vectors.  Again, no “real” geometrical interpretation is available.  This
does not diminish the usefulness of  n-dimensional space for engineering since, for example, it
plays a central role in the theory behind solving linear algebraic equations (m  equations in  n 
unknowns) and the theory behind any system which has n state variables (e.g., springs, circuits,
and stirred tank reactors).  The important thing to remember is that, although we may use
geometric language for Rn, we are doing algebra (and/or analysis), and not geometry.

PROPERTIES THAT CAN BE EXTENDED TO HIGHER DIMENSIONS.  There are
additional algebraic, analytic,  and topological properties for R, R2, and R3 that deserve to be
listed since they are easily extended from R, R2,R3 to R4,..., Rn,... and, indeed to the (countably)
infinite dimensional Hilbert space.  We list these in four separate categories: inner product, norm,
metric, and topology.  Topologists may start with the definition of a topology as a collection of
open sets.  However, we are only interested in topologies that come from metrics which come
from norms.

INNER (DOT) PRODUCT PROPERTIES.  For x1, x2R, define  = x1x2.  For  =1 2x ,x  1x

[x1,y1]T = x1  + y1 ,  = [x2,y2]T = x2  + y2  R2, define  = x1x2 + y1y2.   For for   =i j 2x i j 1 2x ,x 
 

1x

[x1,y1,z1]T = x1  + y1  + z1 ,  = [x2,y2,z2]T = x2  + y2  + z2  R3  define   = x1x2
i j k̂ 2x i j k̂ 1 2x ,x 

 

+ y1y2 + z1z2.  Then in R, R2, and R3 and, indeed, in any (real) inner product space V, we have the
following (abstract) properties of an inner product:

IP1)  x,y y,x x,y V    
     

IP2) x y, z x,z y,z , , , ,x y z V                R      

IP3)  x,x 0 if 0x   
  

  < x,x > = 0 if x = 0
  

 Check these properties out using specific values of x, y, z, α, β.  For example, check out property 
IP2  with α = 2, β = 4, x = 1, y = 3  and  z = 5.  First calculate the left hand side (LHS), then the
right hand side (RHS).  Are they the same? Is the property true for these values?  Now do the
same when  = [2,3]T = 2  + 3 ,  = [1,4]T =  + 4  and α =2 and β = 3.  Also try some1x i j 2x i j
three dimensional vectors.

The inner or dot product of two vectors in two and three dimensions is more often
denoted by .  We have used the “physics” notation  in 2 and 3 dimensions since

 x y  
 x, y

(x,y) is used to denote the coordinates of a point in the plane R2 and (x,y,z) for a point in 3 space. 
Note that we do not use arrows over the “vectors” when we are in one dimension.  In R2 and R3,
the geometric definition of inner (dot) product is  where  is the norm1 2 1 2 cosx ,x x x      
(magnitude) (see below) of the vector and θ is the angle between the two vectors.  In Rn, the

definition of the inner product is  where   and
n

i i
i=1

(x,y) = x y   n
1 2 n i i=1

x = (x , x ,..., x ) = x
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.  Note we have moved to algebraic notation (no geometric interpretation is available).  n
i i=1

y = y

NORM (ABSOLUTE VALUE OR LENGTH) PROPERTIES.  For xR, define 
, i.e., the absolute value of the number.  For  = [x,y]T = x  + y   R2,2x,x x x x xx        x i j

define  .   For for   = [x,y,z]T = x  + y  + z  define   .  Then in2 2x x y 
 x i j k̂ 2 2 2x x y z  



R, R2, and R3 and, indeed, in any normed linear space V, we have the following (abstract)
properties of a norm:
 

N1)  0 if 0x x 


 = 0  if  x = 0x = 0 if x = 0
 

N2)  x  x x V,     R  

N3)   x, y  R       (Triangle Inequality)x, y Vx + y x + y       

 Check these properties out using specific values of  x  and  α.  For example check out 
property  2  with  α = -3  and  x = 2.  That is, calculate the left hand side (LHS), then the right
hand side (RHS).  Are they the same? Is the property true for these values?  Now check out these
properties for two and three dimensional vectors.

In R, R2 and R3, the norm is the geometric magnitude or length of the vector.  In Rn, the

norm of the vector  is defined to be .  n
i i=1

x = x n
2

i
i=1

= xx 


METRIC.  For x1, x2R, define .  For  = [x1,y1]T = x1  + y1 ,  = [x2,y2]T
1 2 1 2)(x ,x x x   1x i j 2x

= x2  + y2  R2, define  .   For   = [x1,y1,z1]T i j 2 2
1 2 1 21 2 1 2) = (x - x ) + (y - y )(x ,x x x  

   
1x

= x1  + y1  + z1 ,  = [x2,y2,z2]T = x2  + y2  + z2  R3  definei j k̂ 2x i j k̂
.  Then in R, R2, and R3, and indeed, in any2 2 2

1 2 1 2 1 21 2 1 2) ) ( ) ( )(x ,x x x x x y y z z        
   

metric space V, we have the following (abstract) properties of a metric:

M1 ρ(x,y) > 0 if x y   

       ρ(x,y) = 0 if x = y   

M2  ρ(x,y) = ρ(y,x) x,y V 
     

M3  ρ(x,z) ρ(x,y) +ρ(y,z) x,y,z V  
        

In R, R2 and R3, the metric is the geometric distance between the tips of the position
vectors.  In Rn, the metric of the vectors , Rn is defined to be n

i i=1
x = x  n

i i=1
y = y

.    A metric yields a definition of limit.  Although in Rn with n > 3,
n

2
i i

i=1

( = (x - y )x,y) x y   
   

this in not geometric, it does provides a measure for evaluating approximate solutions to
engineering problems having n state variables.  This also allows for the concept of a sequence of
approximate solutions that converges to the exact solution in engineering problems.
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TOPOLOGY.  A topology is a collection of (open) sets having certain properties.  Intuitively, an
open set is one that does not contain any of its boundary points.  For example, open intervals are
open sets in the usual topology for R.  Disks that do not contain any boundary points are open
sets in R2.  Balls which do not contain any boundary points are open sets in R3.  Similarly for Rn,
but no geometry.  Topologists characterize continuity in terms of open sets.
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Handout # 5 COMPLEX NUMBERS, GEOMETRY, AND COMPLEX Prof. Moseley
FUNCTIONS OF A COMPLEX VARIABLE

To solve  z2 + 1 = 0  we "invent" the number  i  with the defining property  i2 =  ) 1. 
(Electrical engineers use j instead if i.)  We then “define” the set of complex numbers as C =
{x+iy:x,yR}.  Then z = x+iy is known as the Euler form of z and  z = (x,y)C = {(x,y):x,yR}
is the Hamilton form of z where we identify C with R2  (i.e., with points in the plane).  If  z1 =
x1+iy, and  z2 = x2+iy2, then z1+z2 =df  (x1+x2) + i(y1+y2) and z1z2 =df  (x1x2-y1y2) + i(x1y2+x2y2). 
Using these definitions, the nine properties of addition and multiplication in the definition of an
abstract algebraic field can be proved.  Hence the system (C, + ,,0,1) is an example of an abstract
algebraic field.  Computation of the product of two complex numbers is made easy using the
Euler form and your knowledge of the algebra of R, the FOIL (first, outer, inner, last) method,
and the defining property i2 = 1.  Hence we have (x1+iy1)(x2+iy2) = x1x2+x1iy2 + iy1y2 + i2y1y2 =
x1x2 + i (x1y2 + y1y2)  y1y2 = (x1x2 y1y2) + i (x1y2+x2y1).  This makes evaluation of polynomial
functions easy.

EXAMPLE #1.  If f(z) = (3 + 2i) + (2 + i)z + z2, then 
f(1+i) = (3 + 2i) + (2 + i)(1 + i) + (1 + i)2 = (3 + 2i) + (2 + 3i + i2) + (1 + 2i + i2)

= (3 + 2i) + (2 + 3i 1) + (1 + 2i 1) = (3 + 2i) + (1 + 3i) + ( 2i ) =  4 + 7i 

Division and evaluation of rational functions is made easier by using the complex conjugate.  We
also define the magnitude of a complex number as the distance to the origin in the complex plane.

DEFINITION #1.  If z = x+iy, then the complex conjugate of z is given by = x  iy.  Also thez
magnitude of z is z = .x y2 2

THEOREM #1. If z,z1,z2C, then a) =  + , b) = , c) z2= , d) =z. z + z1 2 z1 z2 z z1 2 z1 z2 z z z

REPRESENTATIONS.  Since each complex number can be associated with a point in the
(complex) plane, in addition to the rectangular representation given above, complex numbers
can be represented using polar coordinates.

z = x + iy = r cos θ + i sin θ = r (cos θ + i sin θ) 
  =  r  θ   (polar representation)

Note that r = z.  You should be able to convert from Rectangular form to Polar form and vice
versa.  For example,  2 π/4   =   +  i and  1 + i =  2  π/3 .  Also, if z1 = 3 + i and 2 2 3

z2 = 1 + 2i, then = = = = = =
z1
z2

z1
z2

z2
z2

z1

z2

z2
2

(3 i)(1 2i)

(1 22 )

 



(3 6i i 2i2 )
(1 4)

  


(3- 2 i)
5
 7 1

5
7
5

i

EXAMPLE # 2   If f(z) = , evaluate f(4+i).z (3 i)
z (2 i)
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Solution.   f(4+i)) = = =   
(4 + i) (3 i)
(4 + i) (2 i)

 
 

(7 + 2i)
(6 + 3i)

(7 + 2i)
(6 + 3i)

(6 - 3i)
(6 - 3i)

= =  =   i  =    i(42 + 6) + (12 - 21)i
(36 +9)

48 - 9i
45

48
45

9
45

16
15

1
5

THEOREM #2.  If z1 = r1θ1  and z2 = r2θ2, then a) z1 z2 = r1 r2 θ1 + θ2  ,  b) If z20, then 

 =  θ1  θ2 ,  c)  z1
2 = r1

22θ1 ,  d) z1
n = r1

nnθ1 .
z1
z2

1

2

r
r

EULER’S FORMULA.  By definition   ei θ =df  cos θ + i sin θ.  This gives another way to write 
complex numbers in polar form.
 z =  1 + i      =   2(cos π/3 + i sin π/3 )  =  2  π/3   =  2e i  π / 33
 z =  + i    =  2 (cos π/4 + i sin π/4 )  =  2  π/4   =  e i  π / 42 2

More importantly, it can be shown that this definition allows the extension of  exponential, 
logarithmic, and trigonometric functions to complex numbers and that the standard properties 
hold.  This allows you to determine what these extensions should be and to evaluate these 
functions.

EXAMPLE #6.  If f(z) = (2 + i) e (1 + i) z , find f(1 + i).
Solution.  First (1 + i) (1 + i) = 1 + 2i + i2 = 1 + 2i  -1 = 2i.  Hence
f(1 + i) = (2 + i) e2i = (2 + i)( cos 2 + i sin 2) = 2 cos 2  + i ( cos 2   + 2 sin 2 ) + i2 sin 2 

= 2 cos 2  - sin 2 + i ( cos 2   + 2 sin 2 )              (exact answer)
 2(- 0.4161468)- (0.9092974)+ i (-0.4161468 +2 (0.9092974)) 
= -1.7415911 + i(1.4024480)                   (approximate answer)

How do you know that -1.7415911 + i(1.4024480) is a good approximation to 2 cos 2  - sin 2 + i
( cos 2   + 2 sin 2 ) ?  Can you give an expression for the distance between these two numbers?

In the complex plane, ez is not one-to-one.  Restricting the domain of ez to the strip 
R×(-π,π] ) {(0,0)}, in the complex plane, we can define Ln z as the (compositional) inverse 
function of ez with this restricted domain.  This is similar to restricting the domain of sin x to 
[-π/2, π/2] to obtain sin -1 x (Arcsin x) as its (compositional) inverse function.

EXAMPLE #7.  If f(z) = Ln [(1 + i) z] , find f(1 + i).
Solution.  First (1 + i) (1 + i) = 1 + 2i + i2 = 1 + 2i  -1 = 2i.  Now let w = x + iy = f(1 + i) where 
x,y  R.  Then w = x + iy = Ln 2i.  Since Ln z  is the (compositional) inverse of the function of 
ez, we have that 2i = exp(x + iy)  = e x ei y = ex ( cos y + i sin y ).  Equating real and imaginary
 parts we obtain ex  cos y = 0 and ex sin y = 2 so that cos y = 0 and hence y = ±π/2.  Now 
ex sin π/2 = 2 yields x = ln 2, but ex sin(- π/2) = 2 implies ex = -2.  Since this is impossible, we 
have the unique solution f(1 + i) = ln 2 + i (π/2).  We check by direct computation using Euler’s 
formula: exp[ ln 2 + i(π/2) ] = e ln 2  ei (π/2) = 2 ( cos (π/2) + i sin (π/2) ) = 2i.
This is made easier by noting that if z = x + iy = re i θ, then Ln z = Ln(r e i θ) = ln r + i θ.

Letting e i z = cos z + i sin z we have e -i z = cos z + i sin(-z) = cos z - i sin z.  Adding we 
obtain cos z = (e i z + e -i z )/2 which extends cosine to the complex plane. Similarly 
sin z = (e i z - e -i z )/2i.
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EXAMPLE #8.  If f(z) = cos [(1 + i)z] , find f(1 + i).
Solution.  First recall (1 + i) (1 + i) = 1 + 2i + i2 = 1 + 2i 1 = 2i.  Hence
f(1 + i) = cos (2i) = (ei 2i  + e  i(-2i) /2 = (e -2 + e 2)/2 = cosh 2     (exact answer)

 3.762195691.       (approximate answer)
How do you know that 3.762195691 is a good approximation to cosh 2 ?  Can you give an
expression for the distance between these two numbers (i.e., cosh 2 and 3.762195691)?

It is important to note that we represent C geometrically as points in the (complex) plane. 
Hence the domain of f:CC requires two dimensions.  Similarly, the codomain requires two
dimensions.  Hence a "picture” graph of a complex valued function of a complex variable requires
four dimensions.  We refer to this a s a geometric depiction of f of Type 1.  Hence we can not
visualize complex valued function of a complex variable the same way that we do real valued
function of a real variable.  Again, geometric depictions of complex functions of a complex
variable of Type 1 (picture graphs) are not possible.  However, other geometric depictions are
possible.  One way to visualize a complex valued function of a complex variable is what is
sometimes called a “set theoretic” depiction which we label as Type 2 depictions.  We visualize
how regions in the complex plane (domain) get mapped into other regions in the complex plane
(codomain).  That is, we draw the domain as a set (the complex z-plane) and then draw the w =
f(z) plane.  Often, points in the z-plane are labeled and their images in the w-plane are labeled with
the same or similar notation.  Another geometric depiction (of Type 3) is to let f(z) = f(x+iy) =
u(x,y) + iv(x,y) and sketch the real and imaginary parts of the function separately. 
Instead of drawing three dimensional graphs we can draw level curves which we call a Type 4
depiction.  If we put these level curves on the same z-plane, we refer to it as a Type 5 depiction.  
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Handout No. 1 INTRODUCTION AND Professor Moseley
BASIC ALGEBRAIC OPERATIONS

Although usually studied together in a linear algebra course, matrix algebra can be
studied separately from linear algebraic equations and abstract linear algebra (Vector Space
Theory).  They are studied together since matrices are useful in the representation and solution of
linear algebraic equations and yield important examples of the abstract algebraic structure called
a vector space.  Matrix algebra begins with the definition of a matrix.  It is assumed that you
have some previous exposure to matrices as an array of scalars.  Scalars are elements of another
abstract algebraic structure called a field.  However, unless otherwise stated, the scalar entries in
matrices can be assumed to be real or complex numbers (Halmos 1958,p.1).  The definition of a
matrix is followed closely by the definition of basic algebraic operations (computational
procedures) which involve the scalar entries in the matrices (e.g., real or complex numbers) as
well as possibly additional scalars.  These include unary, binary or other types of operations. 

Some basic operations which you may have previously seen are:
1.  Transpose  of a matrix.
2.  Complex Conjugate of a matrix.
3.  Adjoint of a matrix.  (Not the same as the Classical Adjoint of a matrix.)
4.  Addition of two matrices of a given size.
5.  Componentwise multiplication of two matrices of a given size (not what is usually called 
     multiplication of matrices).  
6.  Multiplication of a matrix (or a vector) by a scalar (scalar multiplication).
7.  Dot (or scalar) product of two column vectors (or row vectors) to obtain a scalar.
     Also called an inner product.  (Column and row vectors are one dimensional matrices.)
8.  Multiplication (perhaps more correctly called composition) of two matrices with the right
     sizes (dimensions).

A unary operation is an operation which maps a matrix of a given size to another matrix
of the same size.  Unary operations are functions or mappings, but algebraists and geometers
often think in terms of operating on an object to transform it into another object rather than in
terms of mapping one object to another  (already existing) object.  Here the objects being mapped
are not numbers, they are matrices.  That is, you are given one matrix and asked to compute
another.  For square matrices, the first three operations, transpose, complex conjugate, and
adjoint, are unary operations.  Even if the matrices are not square, the operations are still
functions.

A binary operation is an operation which maps two matrices of a given size to a third
matrix of the same size. That is, instead of being given one matrix and being asked to compute
another, you are given two matrices and asked to compute a third matrix.  Algebraist think of
combining or transforming two elements into a new element.  Addition and componentwise
multiplication (not what is usually called matrix multiplication), and multiplication of square
matrices are examples of binary operations.  Since on paper we write one element, the symbol for
the binary operation, and then the second element, the operation may, but does not have to,
depend on the order in which the elements are written.  (As a mapping, the domain of a binary
operation is a cross product of sets with elements that are ordered pairs.)  A binary operation
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that does not depend on order is said to be commutative.   Addition and componentwise
multiplication are commutative; multiplication of square matrices is not.  

This may be the first you have become aware that there are binary operations in
mathematics that are not commutative.  However, it is not the first time you have encountered a
non-commutative binary operation.  Instead of thinking of subtraction as the inverse operation of
addition (which is effected by adding the additive inverse element), we may think of subtraction as
a binary operation which is not commutative (a b is not usually equal to b a).  However, there
is another fundamental binary operation on (R,R) that is not commutative.  If f(x) = x2 and g(x)
= x + 2, it is true that (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x) xR so that f+g = g+f. 
Similarly, (fg)(x) = f(x) g(x) = g(x) f(x) = (gf)(x)xR so that fg = gf.  However, (fg)(x) =
f(g(x)) = f( x + 2) =  (x + 2)2, but (gf)(x) = g(f(x)) = g(x2) = x2 + 2 so that fg  gf.  Hence the
composition of functions is not commutative.

When multiplying a matrix by a scalar (i.e., scalar multiplication), you are given a matrix
and a scalar, and asked to compute another matrix.  When computing a dot (or scalar) product,
you are given two column (or row) vectors and asked to compute a scalar.

EXERCISES on  Introduction and Basic Operations

EXERCISE #1.  True or False.

_____ 1.  Computing the transpose of a matrix is a binary operation.
_____ 2.  Multiplying two square matrices is a binary operation.
_____ 3.  Computing the dot product of two column vectors is a binary operation.

Halmos, P. R.1958, Finite Dimensional Vector Spaces (Second Edition) Van Nostrand Reinhold
Company, New York.
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Handout #2 DEFINITION OF A MATRIX Prof. Moseley

We begin with an informal definition of a matrix as an array of scalars.  Thus an  m×n
matrix is an array of elements from an algebraic field K (e.g.,real or complex numbers) which has 
m  rows and  n  columns.  We use the notation Km×n for the set of all matrices over the field K. 
Thus, R3x4 is the set of all 3x4 real matrices and C2x3 is the set of all 2x3 matrices of complex
numbers.  We represent an arbitrary matrix over K by using nine elements:

 =    =   [ aij ]    Kmxn (1)A
mxn

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

a a a
a a a

a a a

   
    
   
    
   
 

    

Recall that an algebraic field is an abstract algebra structure.  R and C as well as Q are examples
of algebraic fields.  Nothing essential is lost if you think of the elements in the matrices as real or
complex numbers in which case we refer to them as real or complex matrices.  Parentheses as
well as square brackets may be used to set off the array.  However, the same notation should be
used within a given discussion (e.g., a homework problem).  That is, you must be consistent in
your notation.  Also, since vertical lines are used to denote the determinant of a matrix (it is
assumed that you have had some exposure to determinants) they are not acceptable to denote
matrices. (Points will be taken off if your notation is not consistent or if vertical lines are used for
a matrix.)  Since Kmxn for the set of all matrices over the field K, Rmxn is the set of all real matrices
and Cmxn is the set of all complex matrices.  In a similar manner to the way we embed R in C and
think of the reals as a subset of the complex numbers, we embed Rmxn in Cmxn and, unless told
otherwise, assume Rmxn  Cmxn.  In fact, we may think of Cmxn as  
Rmxn + i Rmxn so that every complex matrix has a real and imaginary part.  Practically, we simply
expand the set where we are allowed to choose the numbers  ai j , i = 1, ..., m  and  j = 1, ..., n. 

The elements of the algebraic field, ai j , i = 1, ..., m  and  j = 1, ..., n, (e.g., real or complex
numbers) are called the entries in (or components of)  A.  To indicate that  ai j  is the element in
A  is the ith row and  jth column we have also used the shorthand notation  A = [aij].  We might
also use A = (aij).  The first subscript of ai j indicates the row and the second subscript indicates 
the column.  This is particularly useful if there is a formula for ai j .  We say that the size or 
dimension of the matrix is  m×n and use the notation  to indicate that  A is a matrix of size A

mxn

m×n.  The entries in  A will also be called scalars.  For clarity, it is sometimes useful to separate
the subscripts with a comma instead of a space.  For example we might use a12,2 and ai+3,i+j instead
of a12 2 and ai+3 i+j.
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EXAMPLES.   =  and  are examples of rational matrices.
3x3
A

1 3/2 4
7 2 6
1 8 0

 
 
 
  

 B 1/3, 2/5, 3

 = ,   and  =     are examples of real (non-rational) matrices. A
3x3

3 4
7 2 6
1 8 0

 
 
 
  

B
3x1

1

4

e



















, and  =      are examples of complex (non-real) A 1 i, 2, 3 2i   B
3x2





















2i e + i
3 / 4 +  3i 1.5

2e 7
matrices.

As was done above, commas (instead of just spaces) are often used to separate the entries in  1×n 
matrices (often called row vectors).  Although technically incorrect, this practice is acceptable
since it provides clarity.  

COLUMN AND ROW VECTORS.  An  m×1  matrix (e.g.,   ) is often called a column 
1
4
3

















vector.  We often use [1,4,3]T to denote this column vector to save space.  The T stands for
transpose as explained later.  Similarly, a 1×n  matrix (e.g., [1, 4, 3]) is often called a row vector. 
This stems from their use in representing physical vector quantities such as position, velocity, and
force.  Because of the obvious isomorphisms, we will often use Rn for the set of real column
vector Rn×1 as well as for the set of real row vectors R1×n.  Similarly conventions hold for complex
column and row vectors and indeed for Kn, Kn×1, and K1×n.  That is, we use the term “vector”
even when n is greater than three and when the field is not R.  Thus we may use Kn for a finite
sequence of elements in K of length n, no matter how we choose to write it.

EQUALITY OF MATRICES.  We say that two matrices are equal if they are the same; that is, if
they are identical.  This means that they must be of the same size and have the same entries in
corresponding locations.  (We do not use the bracket and parenthesis notation within the same
discussion.  All matrices in a particular discussion must use the same notation.) 

A FORMAL DEFINITION OF A MATRIX.  Since  R  and  C  are examples of an (abstract)
algebraic structure called a field (not to be confused with a vector field considered in vector
analysis), we formally define a matrix as follows:  An  m×n matrix A over the (algebraic) field K
(usually  K  is  R  or  C) is a function from the set  D = {1,...,. m} × {1, ..., n} to the set  K (i.e.,
A: D  K).  D is the cross product of the sets {1,...,. m} and {1, ..., n}.  Its elements are 
ordered pairs (i,j) where i{1,...,. m} and  j{1, ..., n}.  The value of the function  A  at the point
(i.j)  D is denoted by  aij and is in the codomain of the function. The value (i.j) in the domain that
corresponds to aij is indicated by the location of aij in the array.  Thus the array gives the values of
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the function at each point in the domain D.  Thus the set of m×n matrices over the field K is the
set of functions (D,K) which we normally denote by Km×n.  The set of real m×n matrices is Rm×n

= (D,R) and the set of complex m×n matrices is Cm×n = (D,C).

EXERCISES on Definition of a Matrix

EXERCISE #1.  Write the  2×3  matrices whose entries are: 
(a) aij = i+j,   (b)  aij = (3i + j2)/2, (c) aij = [πi + j].

EXERCISE #2.  Write the  3×1  matrices whose entries are given by the formulas in Exercise 1.

EXERCISE # 3.  Choose  x  and  y  so that  A = B if:  

(a)   and 

(b)

(c)

(d)
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Handout No. 3 FUNCTIONS AND UNARY OPERATIONS Professor Moseley

Let  K  be an arbitrary algebraic field. (e.g.  K = Q, R, or C).  Nothing essential is lost if
you think of K as R or C.  Recall that we use Kmxn to denote the set of all matrices with entries in 
K that are of size (or dimension) mxn (i.e. having m rows and n columns).  We first define the
transpose function that can be applied to any matrix  A   Kmxn.  It maps  Kmxn to Knxm.  We then
define the (complex) conjugate function from Cmxn to Cmxn.  Finally, we define the adjoint
function (not the same as the classical adjoint) from Cmxn to Cnxm.  We denote an arbitrary matrix
A in Kmxn by using nine elements.

 =     =   [ aij ]    Kmxn (1)A
mxn

a a a
a a a

a a a

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

  
  

  
  
  

  



























TRANSPOSE.

DEFINITION #1.  If   =  [ ai j ]   Kmxn, then   =  [ ]  Knxm is defined by  = a j i for
mxn
A

nxm  

TA ~aij
~aij

i=1,...,n, j=1,...,m.  AT is called the transpose of the matrix A.  (The transpose of A is obtained by
exchanging its rows and columns.)  The transpose function maps (or transforms) a matrix in 
Kmxn to (or into) a matrix in  Knxm.  Thus for the transpose function T, we have T: Kmxn Knxm..

Note that we have not just defined one function, but rather an infinite number of functions,
one for each set Kmxn.  We have named the function T, but we use AT instead of T(A) for the
element in the codomain Knxm to which A is mapped.  Note that, by convention, the notation

=  [ aij ]   means that aij is the entry in the ith row and jth column of A: that is, unless otherwise
mxn
A

specified, the order of the subscripts (rather than the choice of index variable ) indicates the row
and column of the entry.  Hence   [ aji ] .

nxm  

TA

EXAMPLE.  If , then .  If , the .  If
1 2 3

A = 4 5 6
7 8 9

 
 
 
  

T

1 4 7
A = 2 5 8

3 6 9

 
 
 
  

1 i
B = 3 + i 2i

5 1+ i

 
 
 
  

T 1 3 + i 5
B =

i 2i 1+ i
 
 
 

A is given by (1) above, then AT = .  Note that this makes the rows and

1,1 2,1 n,1

1,2 2,2 n,2

1,m 2,m n,m

a a a
a a a

a a a

   
    
   
    
   
 

    

columns hard to follow.   
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PROPERTIES.  There are lots of properties, particularly if K = C but they generally involve other
operations not yet discussed.  Hence we give only one at this time.  We give its proof using the
standard format for proving identities in the STATEMENT/REASON format.  We represent
matrices using nine components, the first , second, and last components in the first, second, and
last rows.  We refer to this as the nine element method.  For many proofs involving matrix
properties, the nine element method is sufficient to provide a convincing argument.

THEOREM #1.  For all A Km×n = the set of all m×n complex valued matrices,  ( AT )T = A.  

Proof:  Let

 =     =   [ aij ]    Kmxn (1)A
mxn

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

a a a
a a a

a a a

   
    
   
    
   
 

    

Then by the definition of the transpose of A we have

 =     =    Knxm (2)A
mxn

T

1,1 2,1 m,1

1,2 2,2 m,2

1,n 2,n m,n
nxm

a a a
a a a

a a a

   
    
   
    
   
 

    

[a ]i, j
~

where .  We now show (AT)T = A using the standard procedure for proving identities in~a aji, j j,i
the STATEMENT/REASON format.

STATEMENT        REASON

     

1,1 1,2 1,n

2,1 2,2 2,n

T

mxn  

m,1 m,2 m,n

a a a
a a a

A

a a a

TT

T

    
      
            
    
  

      

Definition of A (using the nine 
element representation) (Notation)

 Definition of transpose 

1,1 2,1 m,1

1,2 2,2 m,2

1,n 2,n m,n

a a a
a a a

a a a

T
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=    Definition of transpose

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,2 m,n

a a a
a a a

a a a

   
    
   
    
   
 

    

 =     A Definition of A

Since A was arbitrary, we have for all A Kmxn that ( AT )T = A as was to be proved.
Q.E.D.

Thus, if you take the transpose twice you get the original matrix back.  This means that the
function or mapping defined by the operation of taking the transpose is in some sense, its own
inverse operation.  (We call such functions or mappings operators.)  If f: Km×n  Km×n is defined
by f(A) = AT, then f1(B) =BT.  However, ff 1 unless m=n.  That is, taking the transpose of a
square matrix is its own inverse function.

DEFINITION #2.  If A Kn×n (i.e. A is square) and A = AT, then A is symmetric.

COMPLEX CONJUGATE.

DEFINITION #3.  If    =  [ aij ]    Cmxn, then  =  [ ]    Cmxn.  The (complex)
mxn
A

mxn
A ija

conjugate function maps (or transforms) a matrix in Cmxn to (or into) a matrix in Cmxn.  Thus for
the complex conjugate function C we have C: Cmxn Cmxn..

That is, the entry in the  ith  row and  jth  column is  for 1,...,n,   j=1,...,m.  (i.e. the complexija
conjugate of A is obtained by taking the complex conjugate componentwise; that is, by taking the
complex conjugate of each entry in the matrix.)  Again we have not just defined one function, but
rather an infinite number of functions, one for each set Kmxn.  We have named the function C, but
we use   instead of C(A) for the element in the codomain Knxm to which A is mapped.   NoteA
that unlike AT there is no problem in defining  directly.A

PROPERTIES.  Again, there are lots of properties but most of them  involve other operations not
yet discussed.  We give two at this time.

THEOREM #2.  For all A Cm×n = the set of all m×n complex valued matrices,   = A.  A

Thus if you take the complex conjugate twice you get the original matrix back.  As with the
transpose, taking the complex conjugate of a square matrix is its own inverse function.
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THEOREM #3.   (  )T  =  . A A T

That is, the operations of computing the complex conjugate and computing the transpose
in some sense commute.  That is, it does not matter which operation you do first.  If A is square,
then these two functions on Cn×n do indeed commute in the technical sense of the word.

ADJOINT.

DEFINITION #4.  If  =  [ aij ]    Cmxn, then *   =     (  )T     Cnxm.  The adjoint 
mxn
A

mxn
A A

function maps (or transforms) a matrix in Cmxn to (or into) a matrix in  Knxm.  Thus for the adjoint
function A, we have , A: Cmxn Cnxm..

That is, the entry in the ith row and jth column is  for 1,...,n,    j=1,...,m.  (i.e. the adjoint of Ajia
is obtained by taking the  complex conjugate componentwise and then taking the transpose.) 
Again we have not just defined one function, but rather an infinite number of functions, one for
each set Cmxn.  We have named the function A (using italics to prevent confusion with the matrix
A, but we use A* instead of A(A) for the element in the codomain Cnxm to which A is mapped.   .  
Note that having defined AT and , A* can be defined in terms of these two functions withoutA
having to directly refer to the entries of A.

PROPERTIES.  Again, there are lots of properties but most of them involve other operations. 
Hence we give only one at this time.         

THEOREM #4.    A*  =  .A T

That is, in computing A*, it does not matter whether you take the transpose or the
complex conjugate first.  

DEFINITION #4.   If  A*  =  A, then A is said to be a Hermitian matrix.

THEOREM #5.  If ARn×n, then A is symmetric if and only if  A is Hermitian.

Hermitian matrices (and hence real symmetric matrices) have nice properties; but  more
background is necessary before these can be discussed.  Later, when we think of a matrix as
(defining) an operator, then a Hermitian matrix is (defines) a self adjoint operator.
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EXERCISES on Some Unary Matrix Operations

EXERCISE # 1. Compute the transpose of each of the following matrices

a)  b) A = [1, ½ ] c)  d)   
1 2

A =
3 4
 
 
 

1 i 1+ i
A =

2 2 + i 0
 
 
 

π
A = e

2

 
 
 
  

e)A=[π,2]  f)       g)  h)     i)   A = [i,e,π]

i
A = 2 + i

3

 
 
 
  

2 2i
A =

0 1
 
  

0 0
1+ i 2 + i
1 0

 
 
 
  

EXERCISE # 2. Compute the (complex) conjugate of each of the matrices in Exercise 1 above.

EXERCISE # 3. Compute the adjoint of each of the matrices in Exercise 1 above.

EXERCISE # 4.  The notation B = [bi j ] defines the entries of an arbitrary m×n matrix B.  Write
out this matrix as an array using a nine component representation (i.e, as is done in Equation (1). 
Now write out the matrix C = [cij] as an array.  Now write out the matrix CT as an array using the
nine component method.

EXERCISE # 5. Write a proof of Theorem #2.  Since it is an identity, you can use the standard
form for writing proofs of identities.  Begin by defining the arbitrary matrix A.  Represent it using
the nine component method.  Then start with the left hand side and go to the right hand side,
justifying every step in a STATEMENT/REASON format.

EXERCISE # 6. Write a proof of Theorem #3.  Since it is an identity, you can use the standard
form for writing proofs of identities.  Begin by defining the arbitrary matrix A.  Represent it using
the nine component method.  Then start with the left hand side and go to the right hand side,
justifying every step.
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Handout #4 MATRIX ADDITION Professor Moseley

DEFINITION #1.  Let  A  and  B  be  m × n  matrices in Km×n defined by

=  = [aij],   = = [bij]  (1)A
mxn

a a a
a a a

a a a

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

  
  

  
  
  

  



























B
mxn

b b b
b b b

b b b

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

  
  

  
  
  

  



























We define the sum of  A  and  B  by

  =      Kmxn (2)A B
mxn mxn



a + b a + b a + b
a + b a + b a + b

a + b a + b a + b

1,1 1,1 1,2 1,2 1,n 1,n

2,1 2,1 2,2 2,2 2,n 2,n

m,1 m,1 m,1 m,1 m,n m,n

  
  

  
  
  

  



























that is,  A + B  C  [ci j ]  where  ci j = ai j + bi j  for  i = 1,..., m  and  j = 1,..., n.

We say that we add  A  and  B  componentwise.  Note that it takes less space (but is not
as graphic) to define the  i,jth  component (i.e., c i j ) of  A + B = C  then to write out the sum in
rows and columns.  Since m and n are arbitrary, in writing out the entries,  we wrote only nine
entries.   However, these nine entries may give a more graphic depiction of a concept that helps
with the visualization of matrix computations.  3×3 matrices are often used to represent physical
quantities called tensors.  Similar to referring  to elements in Kn, Kn×1, and K1×n as “vectors” even
when n>3 and KR, we will refer to A = ai j (without parentheses or brackets) as tensor notation
for any matrix A even when A is not 3×3.  Thus ci j = ai j + bi j defines the matrix ci j as the sum of
the matrices  ai j and bi j using tensor notation.  (The Einstein summation convention is discussed
later, but it is not assumed unless so stated .)  

As a mapping, + maps an element in Km×n × Km×n to an element in Km×n, 
+ : Km×n × Km×n  Km×n where Km×n × Km×n = {(A,B):A,BKm×n} is the cross product of Km×n

with itself.  The elements in Km×n × Km×n are ordered pairs of elements in Km×n.  Hence the order
in which we add matrices could be important.  Part b of Theorem 1 below establishes that it is
not, so that matrix addition is commutative.  Later we will see that multiplication of square
matrices is a binary operation that is not commutative so that the order in which we multiply
matrices is important.
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PROPERTIES.  Since the entries in a matrix are elements of a field, the field properties can be
used to prove corresponding properties of matrix addition.  These properties are then given the
same names as the corresponding properties for fields.

THEOREM #1.  Let  A, B, and  C  be  m × n  matrices.  Then

a. + ( + )   =    ( + ) + (matrix addition is associative)      (3)
mxn
A

mxn
B

mxn
C

mxn
A

mxn
B

mxn
C

b.    +    =     + (matrix addition is commutative)      (4)
mxn
A

mxn
B

mxn
B

mxn
A

THEOREM #2.  There exists an  m × n  matrix  Ο  such that for all  m × n  matrices 
+    =    (existence of a right additive identity in Km×n).

mxn
A

mxn
O

mxn
A

We call the right additive identity matrix the zero matrix since it can be shown to be the  m × n 
matrix whose entries are all the zero element in the field K.  (You may think of this element as the
number zero in R or C.)  To distinguish the zero matrix from the number zero we have denoted it
by  Ο; that is 

           =         =   [ 0 ]   Kmxn (1)
mxn
O

0 0 0
0 0 0

0 0 0

  
  

  
  
  

  



























THEOREM #3.  The matrix  Ο  Kmxn is the unique additive identity element in Kmxn.

PARTIAL PROOF.  The definition of and proof that Ο is an additive identity element is left to the
exercises.  We prove only that it is unique.  To show that Ο is the unique element in Kmxn such
that for all A Kmxn, A + Ο = Ο + A = A, we assume that there is some other matrix, say  Θ
Kmxn that has the same property, that is, for all A Kmxn,  A + Θ = Θ + A = A, and show that Θ =
Ο.  A proof can be written in several ways including showing that each element in Θ is the zero
element of the field so that by the definition of equality of matrices we would have Θ =  Ο. 
However, we can write a proof without having to consider the entries in Θ directly.  Such a prove
is considered to be more elegant.  Although the conclusion, Θ = Ο is an equality, it is not an
identity.  We will write the proof in the STATEMENT/REASON format, but not by starting with
the left hand side.  We start with a known identity.

Ch. 2 Pg. 13



STATEMENT REASON

   A Kmxn,  A =  Ο + A It is assumed that Ο has been established as
an additive identity element for Kmxn.

Θ =  Ο + Θ Let A= Θ in this known identity.
    = Ο Θ is assumed to be an identity so that for all

A Kmxn,  A + Θ = Θ + A = A.  This includes
A = Ο so that Ο + Θ = Ο.

Since we have shown that the assumed identity Θ must in fact be Ο, (i.e., Θ =  Ο), we have that
Ο is the unique additive identity element for Kmxn.

Q.E.D.

THEOREM #4.  For every matrix , there exists a matrix, call it  such that 
mxn
A

mxn
B

    +  =     (existence of a  right additive inverse).
mxn
A

mxn
B

mxn
O

It is easily shown that  B  is the matrix containing the negatives of the entries in  A.  That is, if 
A = [aij] and B = [bij], then  bij  =   aij.  Hence we denote  B  by  A.  (This use of the minus sign
is technically different from the multiplication of a matrix by the scalar  ) 1.  Multiplication of a
matrix by a scalar is defined later.  Only then can we prove that these are the same.)

COROLLARY #5.  For every matrix the unique right additive inverse matrix, call it , is 
mxn
A 

mxn
A

 = [ ]   (Computation of the unique right additive inverse).  
mxn
A ija

THEOREM #6.  For every matrix , the matrix  has the properties 
mxn
A 

mxn
A

+ ( ) =  +  = .   (-A is a (right and left) additive inverse).
mxn
A 

mxn
A 

mxn
A

mxn
A

mxn
O

Furthermore, this right and left inverse is unique.

INVERSE OPERATION.  We define subtraction of matrices by  
A - B = A + (-B).  Thus to compute  A  )  B, we first find the additive inverse matrix for B 
(i.e., C =  ) B  where if  C = [cij]  and  B = [bij],  then  cij = )bij).  Then we add  A  to  C =  ) B. 
Computationally, if  A = [aij]  and  B = [bij] then  
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    =      KmxnA B
mxn mxn



1,1 1,1 1,2 1,2 1,n 1,n

2,1 2,1 2,2 2,2 2,n 2,n

m,1 m,1 m,1 m,1 m,n m,n

a - b a - b a - b
a - b a - b a - b

a - b a - b a - b

   
    
   
    
   
 

    

THEOREM #7.  Let A, B  Km×n.  Then (A + B)T   =   AT + BT.

THEOREM #8.  Let A, B  Cm×n.  Then the following hold:
1) ( )     =     +  A B A B
2) (A + B)*   = A* + B*

EXERCISES on Matrix Addition

EXERCISE #1.  If possible, add  A  to  B (i.e., find the sum A + B) if

a) ,       b) A = [1,2] ,  B = [1,2,3]1 1 + i
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

c)  ,   d) ,  
0 1 + i

A = 2e 3

1 i i

 
 
 
  

1 + i 3

B = 2 0

0 1 i

 
 
 
  

2 + i

 A = 0

1 i

2



 
 
 
  

2 + 2 i

B = 0

1 2 i

2



 
 
 
  

EXERCISE #2.  Compute  A+(B+C) (that is, first add  B  to  C  and then add  A  to the sum
obtained) and (A+B)+C (that is, add A+B  and then add this sum to  C) and show that you get the
same answer if 

a) , ,  b) ,   ,   1 1 + i
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

2 1 + i
C =

1 1 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

1 + i 3

B = 2 0

0 1 i

 
 
 
  

2 2 + i

C = 3e 3

3 i i

 
 
 
  

,   
2 + i

 A = 0

1 i

2



 
 
 
  

2 + 2 i

B = 0

1 2 i

2



 
 
 
  

1 + i

 C = 0

2 i

2



 
 
 
  

EXERCISE #3.  Compute  A+B (that is, add A to B) and  B+A (that is, add  B to  A) and show
that you get the same answer if:

a) ,   b) ,  ,   1 1 + i
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

1 + i 3

B = 2 0

0 1 i

 
 
 
  

2 + i

 A = 0

1 i

2



 
 
 
  

2 + 2 i

B = 0

1 2 i

2



 
 
 
  

EXERCISE #4.  Can you explain in one sentence why both commutativity and associativity hold
for matrix addition?  (Hint:  They follow because of the corresponding properties for                  .)

       (Fill in the blank)
Now elaborate.
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EXERCISE #5.  Find the additive inverse of  A  if 

a)      c)   A = [i,e,π]

EXERCISE # 6. Write a proof of Theorem #1.  Since these are identities, use the standard form
for writing proofs of identities.  Begin by defining arbitrary matrices A and B.  Represent them
using at least the four corner entries.  Then start with the left hand side and go to the right hand
side, justifying every step.

EXERCISE # 7. Write a proof of Theorem #2.  Since it is an identity, you can use the standard
form for writing proofs of identities.  Begin by defining the arbitrary matrix A.  Represent it using
at least the four corner entries.  Then start with the left hand side and go to the right hand side,
justifying every step.

EXERCISE # 8. Finish the proof of Theorem #3.  Theorem #2 claims that O is a right additive
identy, i.e., AKmxn we have the identity A+O = A.  Thus we can use the standard form for
writing proofs of identities to show that O is also a left additive identity.  Begin by defining the
arbitrary matrix A.  Represent it using at least the four corner entries.  Then define the additive
inverse element O using at least the four corners.  Then start with the left hand side and go to the
right hand side, justifying every step.  Hence O is an additive identity.  We have shown uniqueness
so that O is the additive identity element. 

EXERCISE # 9. Write a proof of Theorem #4.  Since it is an identity, you can use the standard
form for writing proofs of identities.  Begin by defining the arbitrary matrix A.  Represent it using
at least the four corner entries.  Then define the additive inverse element B = A = [aij] using at
least the four corners.  Then start with the left hand side and go to the right hand side, justifying
every step.

EXERCISE # 10. Write a proof of Corollary  #5.  You can use the standard form for writing
proofs of identities to show that A is a right additive inverse.  Then show uniqueness.

EXERCISE # 11. Write a proof of Theorem #6.  Since it is an identity, you can use the standard
form for writing proofs of identities. 

EXERCISE # 12. Write a proof of Theorem #7.  Since it is an identity, you can use the standard
form for writing proofs of identities. 

EXERCISE # 13. Write a proof of Theorem #8.  Since these are identities, you can use the
standard form for writing proofs of identities.
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Handout #5 COMPONENTWISE MATRIX MULTIPLICATION Professor Moseley

Componentwise multiplication is not what is usually called matrix multiplication. 
Although not usually developed in elementary matrix theory, it does not deserve to be ignored.  

DEFINITION #1.  Let  A  and  B  be  m × n  matrices in Km×n defined by

=  = [aij],   = = [bij]  (1)A
mxn

a a a
a a a

a a a

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

  
  

  
  
  

  



























B
mxn

b b b
b b b

b b b

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

  
  

  
  
  

  



























Then we define the componentwise product of  A  and  B  by

    =       Kmxn (2)A B
mxn mxn



a b a b a b
a b a b a b

a b a b a b

1,1 1,1 1,2 1,2 1,n 1,n

2,1 2,1 2,2 2,2 2,n 2,n

m,1 m,1 m,1 m,1 m,n m,n

  
  

  
  
  

  



























that is,  A  B  C  [cij]  where  cij = aij bij  for  i = 1,..., m  and  j = 1,..., n.

We say that we multiply  A  and  B  componentwise.  Note that it takes less space (but is
not as graphic) to define the  i,jth  component (i.e., ci j ) of C = A  B  then to write out the
product in rows and columns.  Even in writing out the entries we were terse since we wrote only
nine entries of the array.   Again, since this nine element  technique often gives a more graphic
depiction of a concept, it will often be used to help with the visualization of matrix computations.

PROPERTIES.    Since the entries in a matrix are elements of a field, the field properties can be
used to prove corresponding properties for componentwise matrix multiplication.

THEOREM #1.  Let  A, B, and  C  be  m × n  matrices.  Then
a.    (  )  =  (  )    (componentwise matrix mult. is associative) (3)A

mxn
B

mxn
C

mxn
A
mxn

B
mxn

C
mxn

b.       =   (componentwise matrix mult. is commutative) (4)A
mxn

B
mxn

B
mxn

A
mxn
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THEOREM #2.  There exists a unique  m × n  matrix 1  such that for all  m × n  matrices 
  =   =     (existence of a componentwise multiplicative identity).A

mxn
1

mxn
A
mxn

1
mxn

A
mxn

We call the componentwise multiplicative identity matrix the one matrix since it can be shown to
be the  m × n  matrix whose entries are all ones.  To distinguish the one matrix from the number
one we have denoted it by  1; that is 

         =      =   [ 1 ]   Kmxn (5)1
mxn

1 1 1
1 1 1

1 1 1

  
  

  
  
  

  



























THEOREM #3.  For every matrix = [aij] such that aij  0 for i =1, 2, ... , m, and j = 1, 2, ... ,A
mxn

n,   there exists a unique matrix, call it  such that B
mxn

  =   =        (existence of a unique componentwise multiplicative inverse).A
mxn

B
mxn

B
mxn mxn

A 1
mxn

It is easily shown that  B  is the matrix containing the multiplicative inverses of the entries in  A. 
That is, if A = [aij] and B = [bij], then  bij  = 1/ aij.  Hence we denote  B  by  1/A. 

INVERSE OPERATION.  We define componentwise division of matrices by  
A / B = A   (1/B).  Thus to compute  A / B, we first find the componentwise multiplicative
inverse matrix for B (i.e., C = 1/B  where if  C = [cij]  and  B = [bij],  then  cij = 1/bij).  Then we
componentwise multiply  A  by  C =  1/B.  Computationally, if  A = [aij]  and  B = [bij] then  

/     =       Kmxn (6)A
mxn

B
mxn

a / b a / b a / b
a / b a / b a / b

a / b a / b a / b

1,1 1,1 1,2 1,2 1,n 1,n

2,1 2,1 2,2 2,2 2,n 2,n

m,1 m,1 m,1 m,1 m,n m,n
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EXERCISES on Componentwise Matrix Multiplication

EXERCISE #1.  If possible, multiply componentwise  A  to  B (i.e., find the 
componentwise product A cm B) if

a) b) A = [1,2] ,  B = [1,2,3]

c) d)

EXERCISE #2.  Compute  A cm (B cm C) (that is, first componentwise multiply  B  and  C  and
then componentwise multiply  A  and the product obtained) and ( A cm B ) cm C (that is, first
componentwise multiply  A  and  B  and then componentwise multiply the product obtained with
C) and show that you get the same answer if 

a)

b)

EXERCISE #3.  Compute  AB and  BA and show that you get the same answer if:

a)       b)

EXERCISE #4.  Can you explain in one sentence why commutativity and associativity hold for
componentwise matrix multiplication?  (Hint:  They follow because of  the corresponding
properties for                                                                                          .)

  (Fill in the blank, then elaborate)

EXERCISE #5.  If possible, find the componentwise multiplicative inverse of  A  if 

a)      c)   A = [i,e,π]

 

EXERCISE # 6. Write a proof of Theorem #1.  Since these are identities, use the standard form
for writing proofs of identities.  Begin by defining arbitrary matrices A and B.  Represent them
using at least the four corner entries.  Then start with the left hand side and go to the right hand
side, justifying every step.

EXERCISE # 7. Write a proof of Theorem #2.  Since it is an identity, you can use the standard
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form for writing proofs of identities.  Begin by defining the arbitrary matrix A.  Represent it using
at least the four corner entries.  Then start with the left hand side and go to the right hand side,
justifying every step.

EXERCISE # 8. Write a proof of Theorem #3.  Since it is an identity, you can use the standard
form for writing proofs of identities.  Begin by defining the arbitrary matrix A.  Represent it using
at least the four corner entries.  Then define the additive inverse element B = -A = [-aij] using at
least the four corners.  Then start with the left hand side and go to the right hand side, justifying
every step.
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Handout No.6 MULTIPLICATION BY A SCALAR Professor Moseley

DEFINITION #1.  Let    be an  m×n  matrix and  α  a scalar ( α  K where K is a field):A
mxn

=  = [aij]    Kmxn,         α K (e.g., K = R or K = C) (1)A
mxn

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

a a a
a a a

a a a

   
    
   
    
   
 

    

then we define the product of  α  and  A (called multiplication by a scalar, but not scalar
product) by

α =    =   [ α aij ]   Kmxn (1)A
mxn

  
  

  

a a a
a a a

a a a

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

  
  

  
  
  

  



























that is, αA  C = [cij] where  cij = αaij  for  i = 1,..., m  and j = 1,..., m.  That is, we multiply each
component in  A  by  α.  Again defining an arbitrary component  cij  of  αA  takes less space but is
less graphic, that is, does not give a good visualization of the operation.  However, you should
learn to provide that visualization, (i.e., look at  cij = αaij  and visualize each component being
multiplied by  α, for example, the nine element graphic above or the four corner graphic.) 
Sometimes we place the scalar on the right hand side (RHS): αA =α[aij] = [aij]α = Aα.

PROPERTIES.  The following theorems can be proved.

THEOREM #1.  Let  A  be an  m×n  matrix and 1 be the multiplicative identity in the associated
scalar field K (e.g., 1  R  or  1  C), then 1A = A.

THEOREM #2.  Let  A  and  B  be an  m×n  matrix and  α and β be scalars in K(e.g., α,β  R  or 
α,β  C), then
a.   α(βA) = (αβ)A  (Note the difference in the meaning of the two sets of parentheses.)
b.   (α + β)A = (αA) + (βA)  (Note the difference in the meaning of the two plus signs.)
c.   α(A+B) = (αA) + (βB)  (What about parentheses and plus signs here?)
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INVERSE OPERATION.  If  α is a nonzero scalar,  the division of a matrix A by the scalar α is
defined to be multiplication by the multiplicative inverse of the scalar.  Thus A/α = (1/α) A.

THEOREM #3.  Let A, B  Cm×n.  Then the following hold:
1) (αA)T   =  α AT

2)αA = αA
3) (αA)* = α A*

EXERCISES on Multiplication by a Scalar

EXERCISE #1.  Multiply  A by the scalar α if

a) α = 2 and      b) α = 2+i and A = [1,2]  c) α = 1 and  1 1 + i
A =

2 2 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

 d) α =1 /2 and  
2 + i

 A = 0

1 i

2



 
 
 
  

EXERCISE #2.  Compute  (αA)T  (that is, first multiply α by A and take the transpose) and then 
α AT  (that is, multiply α by A transpose) and show that you get the same answer if 

a) α = 2 and      b) α = 2+i and A = [1,2]    c) α = 1 and  1 1 + i
A =

2 2 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

 d) α = 1/2 and  
2 + i

 A = 0

1 i

2



 
 
 
  

EXERCISE #3.  Compute  (that is, multiply α by A and then compute the complex conjugate)αA
and then compute  (that is, compute  and then  and then multiply  by ) and  thenαA  A α A
show that you get the same answer if:

a) α = 2 and      b) α = 2+i  and A = [1,2]    c) α = 1 and  1 1 + i
A =

2 2 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

 d) α = ½  and   
2 + i

 A = 0

1 i

2
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Handout No.7 DOT OR SCALAR PRODUCT Professor Moseley

DEFINITION #1.  Let = [x1,x2,...,xn]  and = [y1,y2,...,yn] be row vectors in R1×n or C1×n (we
x y

could just as well use column vectors).  Then define the scalar product of  and  by
x y

     =  =  
x y x y +  x y  +  ...  +  x y1 1 2 2 n n x yi

i 1

n

i



In R2 and R3, this is usually called the dot product.  (In an abstract setting, this operation is
usually called an inner product.)

PROPERTIES.  The following theorem can be proved.

THEOREM #1.  Let  = [x1,x2,...,xn], = [y1,y2,...,yn], and = [z1,z2,...,zn] be row vectors in 
x y z

R1×n or C1×n; we could just as well use column vectors) and α be a scalar. Then    

    a.      =   =       

x


y y x  

y

x

    b.   (x y) z x y x z
      
     

    c.     = α (  )( x) y 
  x


y

    d.    x x 0 
 

          
   
x x 0 if and only if  x = 0 

The term inner product is used for an operation on an abstract vector space if it has all of the 
properties given in Theorem #1.  Hence we have that the operation of scalar product defined 
above is an example of an inner product and hence  R1×n and K1×n (and Rn×1 and  Cn×1 and Rn and
Cn) are inner product spaces.

EXERCISES on Dot or Scalar Product.

EXERCISE #1. Compute    if
x


y

a)     b)      c)[1,2,1], [2,3,1]x y 
  [1,2,3,4], [2,4,0,1]x y 

  [1,0,1,0], [1,2,0,1]x y 
 

EXERCISE #2. Compute    if

x


y

a)   b)   [1 ,2 ,0,1], [1 ,2 ,0,1]x i i y i i     
  [1 ,0,0, ], [1 ,2 ,0,1]x i i y i i    

 

c) [1,0,1, ], [1 ,2 ,0,1]x i y i i   
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Handout #8 MATRIX MULTIPLICATION Professor Moseley

Matrix multiplication should probably be called matrix composition, but the term matrix
multiplication is standard and we will use it.

DEFINITION #1.  Let = [ aij ],  = [ aij ].  Then = AB = [ cij ] where  .A
mxp

B
pxn

C
mxn

c = a bij ik
i 1

p

kj



Although the definition of the product matrix C is given without reference to the scalar product, it
is useful to note that the element cij is obtained by computing the scalar product of the ith row of A
with the jth column of B and placing this result in the ith row and jth column of C.  Using tensor

notation, we may just write .  If we adopt the Einstein summation convention ofc = a bij ik
i 1

p

kj



summing over repeated indices, then this may be written as cij =aik bkj.  This assumes that the
values of m, n, and p are known.

EXAMPLE.

 =  
















1 2 1
0 2 5
1 3 1

0 3 2
1 -1 3
1 1 1

















3 - 4 5
7 3 11
4 1 12

















        A       B     C

  c11 = [-1,2,1][0,1,1] = [-1,2,1][0,1,1]T    = (-1)(0) + (2)(1) + (1)(1) = 3 

   c12 = [-1,2,1][3,-1,1] = [-1,2,1][3,-1,1]T    = (-1)(3) + (2)(-1) + (1)(1) = -4

 
 
 

SIZE REQUIREMENT:  In order to take the dot product of the ith row of A with the jth column
of B, they must have the same number of elements.  Thus the number of columns of A must be the
same as the number of rows of B.

A B C
nxp pxn nxm



THE SCALAR PRODUCT IN TERMS OF MATRIX MULTIPLICATION.  The dot product of
two row vectors in R1×n can be given in terms of matrix multiplication.  Let  = [x1,x2,...,xn]  and 

x
= [y1,y2,...,yn] be row vectors in R1×n.  Then y
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        =  =  =  x y x y +  x y  +  ...  +  x y1 1 2 2 n n x yi
i 1

n

i

  

x  y
1xn    nx1

T

If  and  are defined as column vectors, we have
x y

     =  =  =  
x y 1 1 2 2 n nx y + x y  + ... + x y x yi

i 1

n

i

 T

1xn    nx1
x  y 

Using tensor notation, including the Einstein summation convention, we have   = xi yi.
x y

PROPERTIES.  For multiplication properties, we must first be sure that all of the operations are
possible.  Note that unless A and B are square, we can not compute both AB and BA.  Even for
square matrices, AB does not always equal BA (except for 1×1's).  However, we do have:

THEOREM #1.  Let  ,  ,   and  be matrices so that the  multiplications  , A
mxp

B
pxr rxn

C
mxp
A

pxr
B

, ( ),  and ( )  are all possible.  Then B
pxr rxn

C A
mxp

B
pxr rxn

C A
mxp

B
pxr

C
rxn

    A(BC) = (AB)C. matrix multiplication is associative

THEOREM #2.  Let    ,  ,   and  be matrices so that the  multiplications    ,     
mxp
A B

pxn
C
pxn

A
mxp

B
pxn

  and the additions +   and    +  are all possible.  Then A
mxp

C
pxn

B
pxn

C
pxn

A
mxp

B
pxn

A
mxp

C
pxn

    A(B + C) = AB + AC matrix multiplication on the left 
distributes over matric addition 

Now let ,  ,   and  be matrices so that the  multiplications , , and theA
mxp

B
mxp

C
pxn mxp pxn

A B C
pxn

B
mxp

C
pxn

additions + , and +  are all possible.  Then A
mxp

B
mxp

A
mxp

C
pxn

B
mxp

C
pxn

    (A+B)C = AC + BC matrix multiplication on the right 
distributes over matric addition 

THEOREM #3.  Let   and  be matrices so that the matrix multiplications AB, (αA)B, and A
mxp

B
pxn

A(αB) are all possible.  Then   (αA)B = A(αB) = α(AB).
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EXERCISES on Matrix Multiplication

EXERCISE #1.  If possible, multiply  A times B (i.e., find the product AB) if

a) ,      b) ,        c) A = [1,2] ,  B = [1,2,3]1 1 + i
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

1 1+ i
A =

1 1 i
 
  

0 2i
B =

3 1 i

 
  

d)  ,   e) ,       f) ,      
0 1 + i

A = 2e 3

1 i i

 
 
 
  

1 + i 3

B = 2 0

0 1 i

 
 
 
  

1 0
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

1 1 + i
A =

2 0
 
  

0 2i
B =

3 1 i

 
  

g) ,    h) , 
2 + i

 A = 0

1 i

2



 
 
 
  

2 + 2 i

B = 0

1 2 i

2



 
 
 
  

1 0 0
A = 0 1 0

0 0 1

 
 
 
  

1 0 0
B = 1+ i 1 0

0 0 1

 
 
 
  

EXERCISE #2. .  If posible, compute  A(B+C) (that is, first add  B  to  C  and then add  A  times
this sum) and then AB and BC (that is, multiply AB  and then BC) and then show that you get 
A(B+C) = AB +AC if 

a) , ,  b) ,      1 1 + i
A =

2 2 i

 
  

0 2i
B =

3 1 i

 
  

2 1 + i
C =

1 1 i

 
  

0 1 + i

A = 2e 3

1 i i

 
 
 
  

1 + i 3

B = 2 0

0 1 i

 
 
 
  

2 2 + i

C = 3e 3

3 i i
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Handout #9 MATRIX ALGEBRA FOR SQUARE MATRICES Professor Moseley

If A and B are square, then we can compute both AB and BA.  Unfortunately, these may
not be the same.

THEOREM #1.  If n >1, then there exists A, BR n×n such that AB  BA.  Thus matrix
multiplication is not commutative.  

Thus AB=BA is not an identity.  Can you  give a counter example for n=2? (i.e. an example
where AB  BA.  See Exercise #2.)

DEFINITION #1.  For square matrices, there is a multiplicative identity element.  We define
the n×n matrix I by

 =         One's down the diagonal.  Zero's everywhere else.I
mxn

1 0 0

0 1 0

0 0 1

  

  

  

  

  

  





























THEOREM #2. We have      =        =              A  Knxn   A
nxn

I
nxn

I
nxn

A
nxn

A
nxn

DEFINITION #2.  If there exists B such that AB = I., then B is a right (multiplicative) inverse
of A.    If there exists C such that CA = I., then C is a left (multiplicative) inverse of A.  If  
AB = BA = I, then B is a (multiplicative) inverse of A and we say that A is invertible.  If B is
the only matrix with the property that AB = BA = I, then B is the inverse of A.  If A has a unique
inverse, then we say A is nonsingular and denote its inverse by A-1.

THEOREM #3. Th identity matrix is its own inverse.  

Later (Chapter 9) we show that if A has a right and a left inverse, then it has a unique inverse. 
Hence we prove that A is invertible if and only if it is nonsingular.  Even later, we show that if A
has a right (or left) inverse, then it has a unique inverse.  Thus, even though matrix multiplication
is not commutative, a right inverse is always a left inverse and is indeed the inverse.  Some
matrices have inverses; others do not.  Unfortunately, it is usually not easy to look at a matrix and
determine whether or not it has a (multiplicative) inverse.

THEOREM #4. There exist A, BR n×n such that AI is invertible and B has no inverse.   
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INVERSE OPERATION.  If  B  has a right and left inverse then it is a unique inverse ((i.e.,  B-1

such that B-1B = BB-1 = I) and we can define Right Division  AB-1 and  Left Division  B-1A of A
by B (provided B-1 exists).  But since matrix multiplication is not commutative, we do not know

that these are the same.  Hence   is not well defined since no indication of whether we mean
A
B

left or right division is given.

EXERCISES on Matrix Algebra for Square Matrices

EXERCISE #1.  True or False.
_____ 1. If A and B are square, then we can compute both AB and BA. 
_____ 2. If n >1, then there exists A, BR n×n such that AB  BA. 
_____ 3. Matrix multiplication is not commutative.  
_____ 4. AB=BA is not an identity.
_____ 5.  For square matrices, there is a multiplicative identity element, namely the n×n matrix I,   

              given by  = .nxnI

1 0 0

0 1 0

0 0 1

  

  

  

  

  

  





























_____ 6.    A  Knxn   we have    =        =            A
nxn

I
nxn

I
nxn

A
nxn

A
nxn

_____ 7.  If there exists B such that AB = I., then B is a right (multiplicative) inverse of A. 

_____ 8.   If there exists C such that CA = I., then C is a left (multiplicative) inverse of A.
_____ 9.  If AB = BA = I, then B is a multiplicative inverse of A and we say that A is invertible. 
_____ 10. If B is the only matrix with the property that AB = BA = I, then B is the inverse of A.
_____ 11.  If A has a unique inverse, then we say A is nonsingular and denote its inverse by A-1.
_____ 12. The identity matrix is its own inverse.  
_____ 13. If A has a right and a left inverse, then it has a unique inverse.  
_____ 14. A is invertible if and only if it is nonsingular. 
_____ 15. If A has a right (or left) inverse, then it has a unique inverse. 
_____ 16.  Even though matrix multiplication is not commutative, a right inverse is always a left
                   inverse.
_____ 17.  The inverse of a matrix is unique.
_____ 18.  Some matrices have inverses; others do not.  
_____ 19. It is usually not easy to look at a matrix and determine whether or not it has a 
                  (multiplicative) inverse.
_____ 20.  There exist A, BR n×n such that AI is invertible and B has no inverse
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EXERCISE #2.   Let   α= 2,   A = , and B =  .    Compute the following:
1 i 1 i

1 0
 









1 0
i 1+ i










  = ___________.  AT =____________.   A* = ____________.   αA = ____________. A

 A+B =____________.   AB =_____________. 

EXERCISE #3.   Let   α= 3,   A = , and B =  .    Compute the following:
i 1 i
0 1+ i

 
 
 

1 0
i 1+ i
 
 
 

  = ___________.  AT =____________.   A* = ____________.   αA = ____________. A

 A+B =____________.   AB =_____________. 

EXERCISE #4. Solve  where , , and  .  
2x2 2x1 2x1
A x b

 1 i
A

i 1
 

   

x
x

 y 
 

  
 

 1
b

 i 
 

  
 



EXERCISE #5. Solve  where , , and  
2x2 2x1 2x1
A x b

 1 i
A

i 1
 

   

x
x

 y 
 

  
 

 1
b

 0 
 

  
 



EXERCISE #6 Solve  where , , and  
2x2 2x1 2x1
A x b

 1 i
A

i 0
 

  
 

x
x

 y 
 

  
 

 1
b

 i 
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Handout #10 ADDITIONAL MATRIX PROPERTIES Professor Moseley

Recall that if K is a field and Km×n is the set of all matrices over K, then  the following
properties of matrices are true.

THEOREM #1.  Let Km×n is the set of all matrices over K.  Then for all A, B, C Km×n , we have

 1)  A  + ( B  + C )  =  ( A  + B )  + C associativity of matrix addition
 2)  A  + B  =   B  + A commutativity of matrix addition
 3)  There exists a unique matrix O such that for every matrix A  ε Km×n, A  + O  = A.
 4)  For each A ε Km×n, there exist a unique matrix called  A  such that A  +  (A)  = O.

By using these properties, but without resorting to looking at the components of the matrices we
can prove

THEOREM #2.  Let Km×n is the set of all matrices over K.  Then for all A, B, C Km×n , we have

1)   Ο + A  = A.
2)   (B) + (A + B) = (A + B) + (B) =  A
3)  (A + B) = (A) + (B).      The additive inverse of a sum is the sum of the additive inverses.
4)  If  A + B = A + C, then B = C           This is the cancellation law (for addition).
 

The proofs of properties 1) to 3) in Theorem #2 are easily proved using the standard method for
proving identities in STATEMENT/REASON format.  However none of the reasons rely on
looking at the components of the matrices and hence do not rely directly on the properties of the
underlying field.  Now note that property 4) in Theorem #2 is not an identity.  The conclusion is
an equality, but it is a conditional equality.  Although one could write a somewhat contorted
proof of the concluding equality (B = C) by starting with one side and using the substitution
axiom of equality to achieve the other side, a better proof is achieved by simply adding the same
element to both sides of the given equation. Explanations of why the element to be added exists
(Property 4) in Theorem #4) and why you can add the same element to both sides of an equation
and the result is the same (axiom of equality) are needed.

The properties given in Theorem #1 establish Km×n as a Abelian (or commutative)
group.  Since only these properties are needed to prove Theorem #2, we see that any
mathematical structure having these properties (i.e., any commutative group) also has the
properties given in Theorem #2.  We refer to both the defining properties given in Theorem #1
and the resulting properties given in Theorem #2 as Abelian group properties.

Now recall that if K is a field and Km×n is the set of all matrices over K, then  the
following additional properties of matrices have been proved.

THEOREM #3.  Let Km×n is the set of all matrices over K.  Then for all scalars α ß  K and  
A, B Km×n , we have
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1)  α ( ß A  )  =  ( α ß ) A  (Note that (α ß) indicates multiplication in the field K.)
2)  (α + ß) A   =  α A   +  ß A
3)  α (A  + B )  =  α A  + α B
4)  1 A  = A .

The properties in Theorem #4 below are easy to prove directly for matrices.  However, they can
also be proved by using the properties in Theorem #1 and Theorem #3 (and the properties in
Theorem #2 since these can be proved using only Theorem #1), but without resorting to looking
at the components of the matrices.

THEOREM #4.  Let Km×n is the set of all matrices over K.  Then for all scalars α   K and  
A Km×n , we have

1)   0A  = Ο,
2)   α Ο = Ο,
3)   If α A = Ο, then either α = 0 or A = Ο.

The first two properties are identities and can be proved using the standard method.  Some might
argue that such proofs can become contorted and other methods may be clearer.  The third is
neither an identity nor a conditional equality.  The hypothesis is an equality, but the conclusion
states that there are only two possible reasons why the suppose equality could be true, either of
the possibilities given in 1) or 2) (or both) but no others.  

The properties given in Theorems #1 and #3 establish Km×n as a vector space (see Chapter
2-3)  over K.  Since only properties in Theorems #1 and #3 are needed to prove Theorems #2 and
#4, we see that any mathematical structure having the properties given in Theorems #1 and #3
(i.e., any vector space) also has the properties given in Theorems #2 and 4.  We refer to both the
defining properties given in Theorems #1 and #3 and the resulting properties given in Theorems
#2 and #4 as vector space properties.  We consider additional vector spaces in the next chapter. 
Later, we consider more propertiess of (multiplicative) inverses of square matrices.
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EXERCISES on Additional Matrix Properties

EXERCISE #1.  True or False.
_____ 1.If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have
              A  + ( B  + C )  =  ( A  + B )  + C.
_____ 2.If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have
               the associativity of matrix addition.
_____ 3.If Km×n is the set of all matrices over K, then for all A, B Km×n , we have
               A  + B  =   B  + A.
_____ 4.If Km×n is the set of all matrices over K, then for all A, B Km×n , we have
              the commutativity of matrix addition.

_____ 5.If Km×n is the set of all matrices over K, then we have that there exists a unique matrix O 
              such that for every matrix A  ε Km×n, A  + O  = A.
_____ 6.If Km×n is the set of all matrices over K, then  we have that for each A ε Km×n, there exist 
              a unique matrix called  A  such that A  +  (A)  = O.
_____ 7. If Km×n is the set of all matrices over K, then  we have  Ο + A  = A.
_____ 8. If Km×n is the set of all matrices over K, then  (B) + (A + B) = (A + B) + (B) =  A
_____ 9. If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have 
               (A + B) = (A) + (B).
_____ 10. If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have that the 
                additive inverse of a sum is the sum of the additive inverses.
_____ 11. If Km×n is the set of all matrices over K, then for all A, B, C Km×n , we have that if  
                A + B = A + C, then B = C  
_____ 12. If Km×n is the set of all matrices over K, then A + B = A + C, then B = C is called the 
                 cancellation law for addition. 
_____ 13. Many of the properties of matrices are identies and can be proved using the 
                STATEMENT/REASON format.  
_____ 14.  Some of the properties of matrices do not rely on looking at the components of the 
                  matrices.
_____ 15. Some of the properties of matrices do not rely directly on the properties of the 
                underlying field.  
_____ 16. Some of the properties of matrices are not identities.
_____ 17. Some of the properties of matrices are conditional equalities. 
_____ 18. Some of the properties of matrices can be proved by starting with one side and using 
                the substitution axiom of equality to achieve the other side.
_____ 19. Sometimes a better proof of a matrix property can be obtained by simply adding the 
                same element to both sides of a given equation. 
_____ 20. Sometimes a proofs of a matrix properties can be obtained by using properties of 
                 equality. 
_____ 21. A group is an abstract algebraic structure.
_____ 22. An Abelian group is an abstract algebraic structure.
_____ 23. A commutative group is an abstract algebraic structure.
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_____ 24.  The set of all matrices over a field K is a group.
_____ 25.  The set of all matrices over a field K is an abelian group.
_____ 26.  The set of all matrices over a field K is a commutative group.
_____ 27.  The set of all matrices over a field K is a group.
_____ 28.  If Km×n is the set of all matrices over K, then for all scalars α, ß  K and A Km×n , we 
                have  α ( ß A  )  =  ( α ß ) A
_____ 29.  If Km×n is the set of all matrices over K, then for all scalars α, ß  K and A,B Km×n , 
                 we have   (α + ß) A   =  α A   +  ß A
_____ 30.  If Km×n is the set of all matrices over K, then for all scalars α  K and A,B Km×n , we 
                have  α (A  + B )  =  α A  + α B
_____ 31.  If Km×n is the set of all matrices over K, then for all A Km×n , we have  1 A  = A .
_____ 32.  If Km×n is the set of all matrices over K, then for all A Km×n , we have  0A  = Ο.
_____ 33.  If Km×n is the set of all matrices over K, then for all all scalars α  K  we have 
                  α Ο = Ο.
_____ 34.  If Km×n is the set of all matrices over K, then for all scalars α  K and  A Km×n , we    
                 have that if α A = Ο, then either α = 0 or A = Ο.
_____ 35.  The set of all matrices over K is a vector space. 
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Handout #1 DEFINITION OF AN ABSTRACT VECTOR SPACE Professor Moseley

Abstract linear algebra begins with the definition of a vector space (or linear space) as
an abstract algebraic structure.  We may view the eight properties in the definition as the
fundamental axioms for vector space theory.  The definition requires knowledge of another
abstract algebraic structure, a field where we can always add (and subtract) as well as multiply
(and divide except for zero), but nothing essential is lost if you always think of the field (of
scalars) as being the real or complex numbers (Halmos 1958,p.1).

DEFINITION #1.  A nonempty set of objects (vectors), V, together with an algebraic field (of
scalars) K, and two algebraic operations (vector addition and scalar multiplication) which
satisfy the algebraic properties listed below (Laws of Vector Algebra) comprise a vector space. 
(Following standard convention, although technically incorrect, we will usually refer to the set of
vectors  V  as the vector space).  The set of scalars  K  are usually either the real numbers R  or
the complex numbers C  in which case we refer to V  as a real or complex vector space.  Let 

, , ε V  be any vectors and  α,ß ε K  be any scalars.  Then the following must hold:x
y z

VS1)   + ( + ) = ( + ) + Associativity of vector addition      
x y z x y z

VS2)    +  = + Commutativity of vector addition   
x y y x

VS3)  There exists a vector  , Existence of a right additive identity

0

            such that for every V, +  = vector for vector addition               
x x


0 x

VS4)  For each V, there exist a vector, denoted Existence of a right additive inverse 
x

          by , such that + ( ) = . vector for each vector in V              - x
x - x


0

VS5)   α (ß ) = ( αß) An associativity property for scalar 
x x

multiplication                                  
VS6) (α+ß) = (α ) + (ß ) A distributive property for scalar    

x x x
multiplication and vector addition  

VS7)  α( + )= (α ) + (α ) Another distributive property for scalar 
x y x y

multiplication and vector addition         
VS8)   1  =  A scaling property for scalar multiplication

x x

These eight properties are an essential part of the definition of a vector space.  In abstract algebra
terminology, the first four properties establish a vector space with vector addition as an Abelian 
(or commutative) group (another abstract algebraic structure).  The last four properties give
rules on how vector addition and scalar multiplication must behave together.   

Although technically not correct, we often refer to the set V of vectors as the vector
space.  Thus the R, R2,R3, Rn, and Rm×n are referred to as real vector spaces and C, Cn, and Cm×n

as complex vector spaces.  Also Q, Qn and Qm×n, and indeed, K, Kn, and Km×n  for any field are
referred to as vector spaces.  However, the definition of a vector space requires that its structure
be given.  Thus to rigorously represent a vector space, we use a 5-tuple consisting of 1) the set of
vectors, 2) the set of scalars, 3) vector addition, 4) scalar multiplication, and 5) the zero vector
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(which is the only vector required to be in all vector spaces).  Thus V  = (V, K, +,  , ).  (Since

0

we use juxtaposition to indicate scalar multiplication, we have no symbol for multiplication of a
vector by a scalar and hence just leave a space.) 

 We consider some properties that hold in all vector spaces (i.e., they are vector space
properties like the original eight, but unlike the original eight, these follow from the original eight
using mathematical logic).  Specific examples of vector spaces are given in the next handout. 
Once they have been shown to be vector spaces, it is not logically necessary to show directly that
the properties in Theorems #1, #2 and #3 and Corollary #4 hold in these spaces.  The properties
hold since we can show that they are vector space properties (i.e., they hold in an abstract vector
space).  However, you may wish to check out these properties in specific vector spaces (i.e.,
provide a direct proof) to improve your understanding of the concepts.  We start with an easy
property for which we provide proof.

THEOREM #1. Let V = (V,K, +, , ) be a vector space.  Then for all V,   +  = .

0 x


0 x x

Proof.  Let  be any vector in V and let  be the right additive identity for V (or V).  Then
x


0

STATEMENT REASON
 +  =  +  VS2. Vector addition is commutative

0 x x 0



         = VS3   is the right  additive identity element
x


0

for V (or V   ).
Hence for all V,   +  =  (i.e.,  is a left additive identity element as well as a right

x

0 x x


0

additive identity element ).
Q.E.D.

As in the proofs of any identity, the replacement of  +  by is effected by the property of

0 x x

equality that says that in any equality, a quantity may be replaced by an equal quantity.  (Note that
the second equality is really  +  =  as the LHS is assumed.)  This proof is in some sense


0 x x

identical to the proof that for all xK, 0 + x = 0 for fields.  This is because the property is really a
group theory property and vectors with vector addition (as well as scalars with scalar addition)
form groups.  We now list additional properties of a vector space that follow since the vectors in
a vector space along with vector addition form a group.  Since  is both a left and right additive


0

identity element, we may now say that it is an additive identity element. 

THEOREM #2.    Let V be a vector space over the field K.  (i.e., Let V = (V, K, +, , ) be a

0

vector space.)  Then 
1.  The zero vector is unique (i.e., there is only one additive identity element in V).
2.  Every vector has a unique additive inverse element.
3.  is its own additive inverse element (i.e., ,  +  = ).

0


0


0


0

4.  The additive inverse of an additive inverse element is the element itself.  (i.e., if -  is the 
x

     additive inverse of  , then ( ) =   ).
x x x
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5.  (  = ) =(  ) +(  ).  (i.e., the additive inverse of a sum is the sum of their additivex y x y

      inverses.)
6.  Sums of vectors can be written in any order you wish.
7.  If   +  =  + , then  = .  (Cancellation Law for Addition)

x y x z y z

We now give a theorem for vector spaces analogous to the one for fields that says that if the
product of two numbers is zero, one of the numbers must be zero.

THEOREM #3.  Let V be a vector space over the field K.  (i.e., Let V = (V, K, +, , ) be a

0

vector space.  The scalars K may be thought of as either R or C so that we have a real or
complex vector space, but V may not be thought of as Rn or Cn.)
1.   V, 0 =  .

x x

0

2.  α K, α  = 

0


0

3.  α  K,     V, α  =   implies either  α = 0 or  = .
x x


0 x


0

COROLLARY#4 (Zero Product).  Let V be a vector space over the field K.  (K may be thought
of  is either R or C.)  Let α K, V.  Then  α  =    if and only if  α = 0 or  = . 

x x

0 x


0

In the abstract algebraic definition of a vector space, vectors do not have a magnitude (or length). 
Later, we will discuss normed linear spaces where this structure is added to a vector space. 
However, the concept of direction, in the sense indicated in the following theorem,  is in all
vector spaces. 

DEFINITION #2.  Let V  be a vector space over a field K.  Two nonzero vectors ,  V are 
x y

said to be parallel if there is a scalar αK such that  α  = .  (The zero vector has no
x y

direction.)  If V is a real vector space so that K=R, then two (non-zero) parallel vectors are in the
same direction if  α>0, but in opposite directions if α<0.

EXERCISES on The Definition of an Abstract Vector Space

EXERCISE #1.  True or False.
For all questions, assume V is a vector space over a field K, , , V are any vectors and x

y z
α,ß K are any scalars.  
_____ 1.  The following property is an axiom in the definition of a vector space: 
                VS)   + ( + ) = ( + ) +  

x y z x y z
_____ 2.  The following property is an axiom in the definition of a vector space: 
                VS)    +  = +

x y y x
_____ 3.  The following property is an axiom in the definition of a vector space: 
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               VS)There exists a vector    such that for every V, +  = 

0 x x


0 x

_____ 4.  The following property is an axiom in the definition of a vector space: 
                VS)   For each V, there exist a vector, denoted by , such that + ( ) = . 

x - x
x - x


0

_____ 5.  The following property is an axiom in the definition of a vector space: 
                VS)  )   α (ß ) = ( αß)  

x x
_____ 6.  The following property is an axiom in the definition of a vector space: 
               VS)   (α+ß) = (α ) + (ß )

x x x
_____ 7.  The following property is an axiom in the definition of a vector space: 
                VS)  α( + )= (α ) + (α )

x y x y
_____ 8.  The following property is an axiom in the definition of a vector space: 
                VS)  )   1  =     

x x
_____ 9. In V, vector addition is associative.
_____ 10. In V, vector addition is commutative.
_____ 11.In V, for vector addition, there exist a right additive identity such that for every V, 

x
               +  = . 

x

0 x

_____ 12. For vector addition, every vector in V has a right additive inverse, denoted by , x

                such that .              x +( x) = 0
 

_____ 13. For all V, we have   +  = .
x


0 x x

_____ 14. In V, the zero vector is unique.
_____ 15. There is only one additive identity element in V
_____ 16.  In V, every vector has a unique additive inverse element.
_____ 17. In V,  is its own additive inverse element 


0

_____ 18. The additive inverse of an additive inverse element is the element itself
_____ 19.  if    is the  additive inverse of   in V, then ( ) =  .

x x x x
_____ 20. α  K,   V, α  =   implies either  α = 0 or  = .

x x

0 x


0

Halmos, P. R.1958, Finite Dimensional Vector Spaces (Second Edition) Van Nostrand Reinhold
Company, New York.
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Handout #2 EXAMPLES OF VECTOR SPACES Professor Moseley

If we define a specific set of vectors, a set of scalars and two operations that satisfy the
eight properties in the definition of a vector space (i.e., the Laws or Axioms of Vector Algebra)
we obtain an example of a vector space.  Note that this requires that the eight properties given in
the definition of an (abstract) vector space be verified for the (concrete) example.  We give
examples of vector spaces, but the verification that they are indeed vector spaces is left to the
exercises.  We also give two ways of building a more complicated vector space from a given
vector space.

EXAMPLE #1.  The set of sequences of a fixed length in a field K.  Since we are not interested
in matrix multiplication at this time, we may think of them not only as sequences, but as column
vectors or as row vectors.  When we consider linear operators, we wish them to be column
vectors and so we use this interpretation.  For example, if K = R, we let

i)  V =    = Rnx1 Rnx

x

x

 :x R, i 1,2,3,.., n

1

n

i


























 



























  ii) The scalars are the real numbers R.
 iii) Vector addition is defined by

    +      =   .  (i.e. Add componentwise as in matrix addition)

x

x

1

n



























y

y

1

n



























x y

x y

1 1

n n





























 iv) Scalar multiplication is defined by

   α    =      .  (i.e. Multiply each component in  x  by  α as in multiplication 

x

x

1

n































x

x

1

n



























                                                                     of a matrix by a scalar.)

Again, the space of  row vectors:   V = {(x1,...,xn):  xiR, i = 1,...,n} = R1xn Rn  is technically
different from the space of column vectors.  However, as far as being a vector space is concerned,
the distinction is merely technical and not substantive.  Unless we need to make use of the
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technical difference we will denote both spaces by Rn.  We refer to Rn as the space of n-tuples of
real numbers whether they are written as row vectors or column vectors.  If we wish to think of
row vectors as  n × 1  matrices, column vectors as  1 ×  n  matrices, and consider matrix
multiplication, then we must distinguish between row and column vectors.  If we wish the scalars
to be the complex numbers, we must consider the space Cn of n-tuples of complex numbers.

EXAMPLE #2.  Consider the set Rm× n  of all matrices of real numbers with a fixed size,  m × n. 
We define vector addition as matrix addition.  (To find the sum of  two matrices, add them
componentwise.)  Scalar multiplication of a vector (i.e. a matrix) by a scalar is defined in the usual
way (multiply each component in the matrix by the scalar).  Note that matrix multiplication is not
required for the set of matrices of a given size to have the vector space structure.  The Laws of
Vector Algebra can be shown to hold and hence Rm× n is a vector space.  We may also consider
Cm×n, the set of all matrices of complex numbers.

EXAMPLE #3.  Function Spaces.  Let  (D,R) = {f: D  R}  where  D  R; that is, let  (D) 
be the collection of all real valued functions of a real variable which have a common domain  D  in 
R.  Often, D = I = (a,b).  The scalers will be R.  Vector addition is defined as function addition. 
Recall that a function  f  is defined by knowing (the rule that determines) the values  y = f(x) for
each  x  is the domain of  f.  Given two functions  f  and  g  whose domains are both  D, we can
define a new function h = f + g (h  is called the sum of  f  and  g) by the rule  h(x) = f(x) + g(x) 
for all  x  D.  Similarly we define the function  αf  by the rule  (αf)(x) = α  f(x)   for all  x  D. 
This defines scalar multiplication of a “vector” (i.e. a function) by a scalar.  The Laws of Vector
Algebra can be shown to hold and hence (D) is a vector space.  We may also define (D) to be
{f: D  C}  where  D  C.  That is, we may also let  (D) describe the set of all complex valued
functions of a complex variable that have a common domain D in C.  Function spaces are very
important when you wish to solve differential equations.

EXAMPLE #4.  Suppose VR is a real vector space.  We construct a complex vector space VC as 
follows: As a set, let VC = VR × VR = {( , ): , VR}.  However, we will use the Eulerian 

x y x y
notation,  =  + i  for elements in VC.  We define vector addition and scalar multiplication 

z x y
componentwise in the obvious way:
If   =  + i ,   =  + i VC, then  +  = ( + ) + i( + ).
z1

x1
y1

z2
x2

y2
z1

z2
x1

x2
y1

y2

If γ=α+iβC and    =  + i VC, then γ   = (α  β ) +i (β + α ). 
z x y z x y x y

It is straight forward to show that with these definitions,  all eight of the Laws of Vector Algebra 
are satisfied so that VC is a complex vector space.  We see that VR can be embedded in VC and 
hence can be considered as a subset of VC.  It is not a subspace (see the next handout) since they 
use a different set of scalars.  However, if scalars are restricted to R and vectors to the form 
  =  + i , then the vector space structure of VR is also embedded in VC.  
z x


0

It is important to note that this process can be done for any vector space VR.  If we start 
with R, we get C.  If we start with Rn, we get Cn.  If we start with Rm×n, we get Cm×n.  If we start 
with real functions of a real variable, we get complex functions of a real variable.  For example,
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the complex vector space C1(R2,C) = C1(R2,R)+iC1(R2,R) with vectors that are complex valued
functions of two real variables of the form u(x,y) +iv(x,y) with u,vC1(R2,R) will be of interest
later.  Since there is a one-to-one correspondence between R2 and C (in fact, they are isomorphic
as real vector spaces) and have the same topology (they have the same norm and hence the same
metric, see Chapter 8) we may identify C1(R2,R) with set of real valued functions of a complex
variable C1(C,R)= {u(z)= C1(R2):z=x+iy} and hence C1(R2,R)+iC1(R2,R) with ~u(x, y)
the complex vector space of complex valued functions of a complex variable 
C1(C,C) = C1(C,R)+iC1(C,R) of the form w(z) = u(z) +iv(z) where u,vC1(R2,R).

EXAMPLE #5.  Time varying vectors.  Suppose V is a real vector space (which we think of as a
state space).  Now let V(I) = {x(t):IV}=F (I,V) where I = (a,b)R.  That is, V is the set of all
”vector valued” functions on the open interval I.  (Thus we allow the state of our system to vary
with time.)  To make V(I) into a vector space, we must equip it with a set of scalars, vector
addition, and scalar multiplication.  The set of scalars for V(I) is the same as the scalars for V
(i.e.,R).  Vector addition and scalar multiplication are simply function addition and scalar
multiplication of a function.  To avoid introducing to much notation, the engineering convention
of using the same symbol for the function and the dependent variable will be used (i.e., instead of
y=f(x), we  use y=y(x) ).  Hence instead of  , for a function in V(I), we use  = (t).  

x = f(t)
x x

The context will explain whether  is a vector in V or a function in V(I).
x

1) If  , V(I), then we define +  pointwise as , ( + )(t) = (t) + (t).
x y x y x y x y

2) If V(I) and α is a scalar, then we define (α )(t) V(I) pointwise as (α )(t) = α (t).
x x x x

The proof that V(I) is a vector space is left to the exercises.  We use the notation V(t) instead of
V(I), when, for a math model, the interval of validity is unknown and hence part of the problem. 
Since V is a real vector space, so is V(t).  V(t) can then be embedded in a complex vector space
as described above.   Although we rarely think of time as being a complex variable, this is often
useful mathematically to solve dynamics problems since we may wish state variables to be
analytic.  Thus the holomorphic function spaces are of interest.

EXAMPLE #6.  (Holomorphic functions) Consider C1(R2,R)+iC1(R2,R).    

Ch. 3 Pg. 8



EXERCISES on Examples of Vector Spaces

EXERCISE #1.  True or False.
For all questions, assume V is a vector space over a field K, , , V are any vectors and x

y z
α,ß K are any scalars.  

_____ 1.  V =    = Rn is a vector space.
x

x

x

 :x R, i 1,2,3,.., n

1

n

i


























 



























_____ 2. The scalars for the vector space R3 are the real numbers R.
_____ 3. Rmxn is a vector space
_____ 4.The scalars for the vector space R3x2 are the real numbers R.
_____ 5. C1x2 is a vector space
_____ 6. Rmxn is a real vector space
_____ 7. The scalars for the vector space R3x2 are the real numbers R.
_____ 8. The scalars for the vector space C3x2 are the real numbers R.
_____ 9. The scalars for the vector space R10 are the real numbers R.
_____ 10. R1x2 is a real vector space.
_____ 11. Cmxn is a real vector space.
_____ 12. The function space (D,R) = {f: D  R}  where  D  R is a vector space.
_____ 13. The set of all continuous functions on the open interrval I = (a,b), C(I,R), is a vector
                 space
_____ 14. The set of all analytic functions on the open interrval I = (a,b), A (I,R), is a vector
                 space.
_____ 15. The scalars for the vector space (D,R) = {f: D  R}  where  D  R are the real
                  numbers R.
_____ 16. (D,R) = {f: D  R}  where  D  R is a real vector space.
_____ 17.  The set of all real valued continuous functions on the open interrval I = (a,b), C(I,R), 
                   is a real vector space.
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Handout #3 SUBSPACE OF A VECTOR SPACE Professor Moseley

An important concept in abstract linear algebra is that of a subspace.  After we have
established a number of important examples of vector spaces, we may have reason to examine
subsets of these vector spaces.  Some subsets are subspaces, some are not.  It is important to be
able to determine if a given subset is in fact a subspace.

In general in mathematics, a set with structure is called a space.  A subset of a space that
has the same structure as the space itself is called a subspace.  Sometimes, all subsets of a space
are subspaces with the induced mathematical structure.  However, all subsets of a vector (or
linear) space need not be subspaces.  This is because not all subsets have a closed algebraic
structure.  The sum of two vectors in a subset might not be in the subset.  A scalar times a vector
in the subset might not be in the subset.

DEFINITION #1.  Let  W  be a nonempty subset of a vector space  V.  If for any vectors  
,   W and scalars  α,β  K (recall that normally the set of scalars  K  is either R or C), we 

x y
have that α  + β   W, then  W  is a subspace of  V.

x y

THEOREM #1.  A nonempty subset  W  of a vector space  V  is a subspace of  V  if and only if 
for ,   V  and  α  K (i.e. α  is a scalar) we have.

x y
 i) ,   W  implies   +   W, and
x y x y

ii)    W  implies  α  W.
x x

TEST FOR A SUBSPACE.  Theorem #1 gives a good test to determine if a given subset of a
vector space is a subspace since we can test the closure properties separately.  Thus if  W  V
where V is a vector space, to determine if W is a subspace,we check the following three points.

1)  Check to be sure that  W  is nonempty.  (We usually look for the zero vector since if 
     there is W, then 0  =  must be in W.  Every vector space and every subspace x x 0



     must contain the zero vector.)
2)  Let  and   be arbitrary elements of  W  and check to see if   +   is in  W.  

x y x y
                  (Closure of vector addition)
   3)   Let  be an arbitrary element in  W  and check to see if  α  is in W. 

x x
                  (Closure of scalar multiplication).

The checks can be done in different ways.  For example, by using an English description of the
subspaces, by visualizing the subspaces geometrically, and by using mathematical notation (which
you may have to develop).  Although, in some sense any clear argument to validate the three
properties constitutes a proof, mathematicians prefer a proof using mathematical notation since
this does not limit one to three dimensions, avoids the potential pitfalls of vagueness inherent in
English prose, and usually is more terse.  Hence we will refer to the use of English prose and the
visualization of subspaces geometrically as checks, and the use of mathematical notation as a
proof.  Use English prose and geometry to check in your mind.  Learn to write algebraic proofs
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using mathematical notation to improve your understanding of the concept.

EXAMPLE #1.  Let R3 = {(x,y,z): x,y,zR} and W be the subset of V which consists of vectors
whose first and second components are the same and whose third component is zero.  In
mathematically (more concise)notation we can define W as W = {(α,α,0): α  R}.  (Since matrix
multiplication is not needed, we use row vectors rather than column vector to save space.)  Note
that the scalars are the reals.  

English Check.  We first check to see if  W  is a subspace using English.
  1) "Clearly"  W  is nonempty since, for example if  α = 0, the vector (0,0,0) is in  W.  Recall 
        that the zero vector must always be in a subspace.
  2)  If we add two vectors in W (i.e. two vectors whose first two components are equal and 
      whose third component is zero), "clearly" we will get a vector in  W (i.e. a vector whose first 
     two components are equal and whose third component is zero).  Hence  W  is closed under 
     vector addition.
  3)  If we multiply a vector in  W (i.e. a vector whose first two components are equal and whose 
       third component is zero) by a scalar, "clearly" we will get a vector in  W  (i.e. a vector whose
       first two components are equal and whose third component is zero).  Hence  W  is closed 
       under scalar multiplication.

Note that if the parenthetical expressions are removed, the above "check" does not explain or
prove anything.  Hence, after a geometrical check,  we give a more mathematical proof using the
definition of  W as W = {(α,α,0): α  R}.

Geometrical Check.  Since we can sketch  R3  in the plane R2  we can give a geometrical
interpretation of  W  and can in fact check to see if  W  is a subspace geometrically.  Recall that
geometrically we associate the algebraic vector  = (x,y,z)  R3  with the geometric position 

x
vector (directed line segment) whose tail is the origin and whose head is at the point (x,y,z).  
Hence  W  is the set of position vectors whose heads fall on the line through the origin and the 
point (1,1,0).  Although technically incorrect, we often shorten this and say that  W  is the line 
through the origin and point (1,1,0).
  1) The line  W, (i.e. the line through (0,0,0) and (1,1,0) ) "clearly" contains the origin
       (i.e. the vector  = (0,0,0) ).


0

  2)  If we add two vectors whose heads lie on the line  W  (i.e. the line through (0,0,0) and 
       (1,1,0)), "clearly" we will get a vector whose head lies on the line  W (i.e. the line through 
       (0,0,0) and  (1,1,0) ).  (Draw a picture.)  Hence  W  is closed under vector addition.
  3)  If we multiply a vector whose head lies on the line through W (i.e. the line through (0,0,0) 
       and (1,1,0) ) by a scalar, "clearly" we will get a vector whose head lies on the line through 
      (0,0,0) and (1,1,0).  (Again, draw a picture.)  Hence  W  is closed under scalar multiplication.

THEOREM #2.  The set W =  {(α,α,0): α  R} is a subspace of the vector space R3.

Proof.  Let  W = {(α,α,0): α  R}.
   1) Letting  α = 0  we see that (0,0,0)  W  so that  W  .
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   2) Now let  = (α,α,0)  and   = (β,β,0) so that  , y  W.  Then
x y x y

                STATEMENT                                                          REASON
+  = (α,α,0)  + (β,β,0)                                              Notation

x y
            = (α+β,α+β,0)  .                                       Definition of Vector Addition in 3

"Clearly" (α+β,α+β,0)  W  since it is of the correct form.  Hence  W  is closed under
          vector addition.
   3) Let  = (α,α,0) and a  R  be a scalar.  Then

x

                STATEMENT        REASON
  a  = a(α,α,0) Notation

x
       = (aα,aα,0). Definition of Scalar Multiplication in 3

"Clearly" (aα,aα,0)  W  since it is of the correct form.  Hence  W  is closed under scalar
           multiplication.

Q.E.D.

Note that the proof is in some sense more convincing (i.e. more rigorous) than the
English check or a geometric check.  However we did have to develop some notation to do the
proof.  

EXAMPLE #2.  Let V = (I)  be the set of real valued functions on I=(a,b) where a<b.  Now let
W=C(I) be the set of continuous functions on I.  Clearly W=C(I) is a subset of V =(I).   Note
that the scalars are the reals.  

English Check.  We first check to see if  W  is a subspace using English.
  1) "Clearly"  W  is nonempty since, for example f(x) =x2 is a continuous function in C(I).  Also, 
       f(x) =0 is continuous as is required for W to be a subspace.
  2)  If we add two continuous functions, we get a continuous function so that sums of functions 
       in W are in W.  Hence  W  is closed under vector addition.  (Recall that this is a theorem 
       from calculus.)
  3)  If we multiply a continuous function by a scalar, we get a continuous function.  Hence  W  is 
       closed under scalar multiplication.  (Recall that this is anther theorem from calculus.)

“Clearly” there is no “geometrical” check that W is a subspace.  The reason is that C(I) is infinite
dimensional and hence a geometrical picture is not possible.  The concept of a basis for a vector
space or subspace and that of dimension will be discussed later.)  

The informal English check can be upgraded to a mathematical proof by a careful rewording and
by citing references for the appropriate theorems from calculus.

We close by noting that a subspace is in fact a vector space in its on right using the vector
addition and scalar multiplication of the larger vector space.
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THEOREM #3.  Suppose WV where V is a vector space over the scalars K.  If W is a subspace
of V, then all of the eight properties hold for all elements in W and all scalars in K (without
relying on any of the elements in V that are not in W).  Thus W with the vector addition and
scalar multiplication of V (but without the elements in V that are not in W) is a vector space.  

EXERCISES on Subspace of a Vector Space

EXERCISE #1.  True or False.
For all questions, assume V is a vector space over a field K, , , V are any vectors and x

y z
α,ß K are any scalars.  

_____ 1. If  WV is a nonempty subset of a vector space V and  for any vectors  ,   W and
x y

               scalars  α,β  K, we have that α  + β   W, then  W  is a subspace of  V.
x y

_____ 2.  A nonempty subset  W  of a vector space  V  is a subspace of  V  if and only if for 
              ,   V  and  α  K (i.e. α  is a scalar) we have  i) ,   W  implies   +   W,

x y x y x y
              and ii)    W  implies  α  W.

x x
_____ 3. If  W is a subspace of V, then W is nonempty.
_____ 4. If  W is a subspace of V, then for any arbitrary vectors  and   in W, the sum

x y
                 +   is in  W. 

x y
_____ 5. If  W is a subspace of V, then for any arbitrary vector  in W and scalar αK,  α  is

x x
                in W. 
_____ 6. If W be the subset of V= R3  which consists of vectors whose first and second 
              components are the same and whose third component is zero, then W is a subspace of V.
_____ 7. W = {(α,α,0): α  R} is a subspace of R3.
_____ 8. W = {(α,0,0): α  R} is a subspace of R3.
_____ 9. If  I = (a,b), then C(I,R) is a subspace of F  (I,R).
_____ 10. If  I = (a,b), then A  (I,R) is a subspace of F  (I,R).
_____ 11. If  I = (a,b), then A  (I,R) is a subspace of C(I,R).

EXERCISE #2. Let R3 = {(x,y,z): x,y,zR} and W be the subset of V which consists of vectors
where all three components are the same.  In mathematically (more concise) notation we can
define W as W = {(α,α,α): α  R}.  (Since matrix multiplication is not needed, we use row
vectors rather than column vector to save space.)  Note that the scalars are the reals.  If possible,
do an English check, a geometric check, and a proof that W is a subspace. 

EXERCISE #3. Let R3 = {(x,y,z): x,y,zR} and W be the subset of V which consists of vectors
where second ands third components are zero.  In mathematically (more concise) notation we can
define W as W = {(α,0,0): α  R}.  (Since matrix multiplication is not needed, we use row vectors
rather than column vector to save space.)  Note that the scalars are the reals.  If possible, do an
Englishcheck, a geometric check, and a proof that W is a subspace. 
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EXERCISE #4. Let R3 = {(x,y,z): x,y,zR}, R4 = {(x1,x2,x3, x4): x1,x2,x3, x4R}.  Consider the
following subsets W of these vector sapaces.  Determine which are subspaces.  (Since matrix
multiplication is not needed, we use row vectors rather than column vector to save space.)  Note
that the scalars are the reals.  For each subset, first write an English description of the subset.  If
possible, do an English check, a geometric check, and a proof that W is a subspace.  If W is not a
subspace explain clearly why it is not.  In mathematically (more concise) notation we define W as
1. W = {(α,1,0): α  R} R3. 
2. W = {(x,y,z): x2 + y2 + z2 =1 and x,y,z R} R3

3. W =  {(α,β,0): α,β  R}R3. 
4. W = {(α,β,0,0): α,β  R}R4 .
5.  W = {(α,α,α,α): α  R}R4

6.  W = {(α,α,β,β): α,β  R}R4
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Handout #1 SYSTEMS, SOLUTIONS, AND Prof. Moseley
ELEMENTARY EQUATION OPERATIONS

In high school you learned how to solve two linear (and possibly nonlinear) equations in
two unknowns by the elementary algebraic techniques of addition and substitution to eliminate
one of the variables.  These techniques may have been extended to three and four variables.  Also,
graphical or geometric techniques may have been developed using the intersection of two lines
or three planes.  Later, you may have been introduced to a more formal approach to solving a
system of m equations in n unknown variables.

a 11  x 1  +  a 12  x 2 +    + a 1n  x n = b 1
a 21  x 1  +  a 22  x 2 +    + a 2n  x n = b 2
                             (1)
                            
                            
a m1  x 1  +  a m2  x 2 +    + a mn  x n = b m

We assume all of the scalars aij, xi, and bj are elements in a field K.  (Recall that a field is an
abstract algebra structure that may be defined informally as a number system where you can add,
subtract, multiply , and divide.  Examples of a field are  Q, R, and C.  However, N and Z are not
fields.  Unless otherwise noted, the scalars can be assumed to be real or complex numbers.  i.e., K
= R or K = C.)  The formal process for solving m linear algebraic equations in  n  unknowns
is called Gauss Elimination.  We need a formal process to prove that a solution (or a parametric
expression for an infinite number of solutions) can always be obtained in a finite number of steps
(or a proof that no solution exists), thus avoiding the pitfall of a "circular loop" which may result
from ad hoc approaches taken to avoid fractions.  Computer programs using variations of this
algorithm avoid laborious arithmetic and handle problems where the number of variables is large. 
Different programs may take advantage of particular characteristics of a category of linear
algebraic equations (e.g., banded equations).  Software is also available for iterative techniques
which are not discussed here.  Another technique which is theoretically interesting, but only useful
computationally for very small systems is Cramer Rule which is discussed in Chapter 7.  

DEFINITION #1.  A solution to (1) is an n-tuple (finite sequence)  x 1, x 2, ..., x n in Kn 
(e.g., Rn or Cn ) such that all of the equations in (1) are true.  It can be considered to be a row
vector [ x 1, x 2, ..., x n ] or as a column vector [ x 1, x 2, ..., x n ]T using the transpose notation. 
When we later formulate the problem given by the scalar equatiuons (1) as a matrix or “vector”
equation, we will need our unknown “vector” to be a column vector, hence we use column
vectors.   If we use column vectors, the solution set for (1) is the set 

S = {  = [ x 1, x 2, ..., x n ]  Kn: when x 1, x 2, ..., x n  are substituted into (1), all of the x
equations in (1) are satisfied}.
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DEFINITION #2.  Two systems of linear algebraic equations are equivalent if their solution sets
are equal (i.e., have the same elements).

As with a single algebraic equation, there are algebraic operations that can be performed on a
system that yield a new equivalent system.  We also refer to these as equivalent equation
operations (EEO’s).  However, we will restrict the EEO’s we use to three elementary equation
operations.  

DEFINITION #3.  The Elementary Equation Operations (EEO’s) are 
1. Exchange two equations
2. Multiply an equation by a nonzero constant.
3. Replace an equation by itself plus a scalar multiple of another equation.

The hope of elimination using EEO’s is to obtain, if possible, an equivalent system of n
equations that is one-way coupled with new coefficients aij as follows:

a11x1 + a12x2 +      + a1nxn = b1
            a22x2 +      + a2nxn = b2 (2)
             
             
            

            annxn = bn 

where aii  0 for i = 1, 2, ...,n.  Since these equations are only one-way coupled, the last equation
may then be solved for xn and substituted back into the previous equation to find xn -1.  This
process may be continued to find all of the xi’s that make up the unique (vector) solution.  Note
that this requires that  m  n so that there are at least as many equations as unknowns (some
equations may be redundant) and that all of the diagonal coefficients aii are not zero.  This is a
very important special case.  The nonzero coefficients aii are called pivots.

Although other operations on the system of equations can be derived, the three EEO’s in
Definition #3 are sufficient to find a one-way coupled equivalent system, if one exists.  If
sufficient care is not taken when using other operations such as replacing an equation by a linear
combination of the equations, a new system which is not equivalent to the old one may result.
Also, if we restrict ourselves to these three EEO’s, it is easier to develop computational
algorithms that can be easily programed on a computer.  Note that applying one of these EEO’s
to a system of equations (the Original System or OS) results in a new system of equations (New
System or NS).  Our claim is that the systems OS and NS have the same solution set.

THEOREM #1.  The new system (NS) of equations obtained by applying an elementary equation
operation to a system (OS) of equations is equivalent to the original system (OS) of equations.  

Proof idea.  By Definition#2 we need to show that the two systems have the same solution set.
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EEO # 1   Whether a given =[x1, x2, ..., xn] is a solution of a given scalar equation is “clearly”
x

not dependent on the order in which the equations are written down.  Hence whether a given
=[x1, x2, ..., xn] is a solution of all equations in a system of equations is not dependent on the

x
order in which the equations are written down

EEO # 2  If  =[x1, x2, ..., xn] satisfies.  
x

ai1x1 + kai2x2 +      + ainxn = bi (3)

then by the theorems of high school algebra, for any scalar k it also satisfies 

kai1x1 + kai2x2 +     + kainxn = kbi. (4)

The converse can be shown if  k0 since k will have a multiplicative inverse.

EEO # 3.  If  = [x1, ..., xn]T satisfies each of the original equations, then it satisfies
x

ai1x1 +     + ainxn + k(aj1x1 +     + ajnxn) = bi + kbj. (5)

Conversely, if (5) is satisfied and 

aj1x1 +     + ajnxn = bj (6)

is satisfied then (5) - k (6) is also satisfied.  But this is just (3).
QED

THEOREM #2.  Every EEO has in inverse EEO of the same type.

Proof idea.  EEO # 1.  The inverse operation is to switch the equations back.  
EEO # 2.  The inverse operation is to divide the equation by k(0); that is, to multiply the
equation by 1/k.
EEO # 3.  The inverse operation is to replace the equation by itself minus k (or plus k) times the
previously added equation (instead of plus k times the equation).

QED

EXERCISES on Systems, Solutions, and Elementary Equation Operations

EXERCISE #1.  True or False.
_____ 1. The formal process for solving m linear algebraic equations in  n  unknowns is called 
               Gauss Elimination
_____ 2. Another technique for solving n linear algebraic equations in  n  unknowns is Cramer
                Rule 
_____ 3. A solution to a system of m linear algebraic equations in  n  unknowns  is an n-tuple
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              (finite sequence)  x 1, x 2, ..., x n in Kn (e.g., Rn or Cn ) such that all of the equations are 
             true. 
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Handout #2 INTRODUCTION TO GAUSS ELIMINATION Professor Moseley

Gauss elimination can be used to solve a system of m linear algebraic equations over a
field K in n unknown variables x 1, x 2, ..., x n in a finite number of steps.

a 11  x 1  +  a 12  x 2 +    + a 1n  x n = b 1
a 21  x 1  +  a 22  x 2 +    + a 2n  x n = b 2
                             (1)
                            
                            
a m1  x 1  +  a m2  x 2 +    + a mn  x n = b m

Recall

DEFINITION #1.  A solution of to (1) is an n-tuple  x 1, x 2, ..., x n which may be considered as a 
(row) vector [ x 1, x 2, ..., x n ] (or column vector) in Kn  (usually K is R or C ) such that all of the
equations in (1) are true.  The solution set for (1) is the set S = { [ x 1, x 2, ..., x n ] Kn: all of the
equations in (1) are satisfied}.  That is, the solution set is the set of all solutions.  The  set is the
set where we look for solutions.  In this case it is Kn.  Two systems of linear algebraic equations
are equivalent if their solution set are the same (i.e., have the same elements).

Recall also the three elementary equation operations (EEO’s) that can be used on a set of linear
equations which do not change the solution set.
1. Exchange two equations
2. Multiply an equation by a nonzero constant.
3. Replace an equations by itself plus a scalar multiple of another equation.

Although other operations on the system of equations can be derived, if we restrict
ourselves to these operations, it is easier to develop computational algorithms that can be easily
programed on a computer.

DEFINITION #2.  The coefficient matrix is the array of coefficients for the system (not
including the right hand side, RHS).

(2)

11 12 1n

21 22 2n

m1 m21 mn

a a a
a a a

a a a
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DEFINITION #3.  The augmented (coefficient) matrix is the coefficient matrix augmented by
the values from the right hand side (RHS).

   x1    x2              xn
+ ,
*a 11    a 12        a 1n *   b1 * Represents the first equation 
*a 21    a 22        a 2n *   b2 * Represents the second equation
*                         *     * (3)
*                         *     *
*                         *     *
*a m1    a m2        a mn *    bm * Represents the mth equation
. -

Given the coefficient matrix A and the right hand side (“vector”) , we denote the associated 

b

augmented matrix as [A ].  (Note the slight abuse of notation since A actually includes the

b

brackets.  This should not cause confusion.)

ELEMENTARY ROW OPERATIONS.  All of the information contained in the equations of a
linear algebraic system is contained in the augmented matrix.  Rather than operate on the original
equations using the elementary equation operations (EEO’s) listed above, we operate on the
augmented matrix using Elementary Row Operations (ERO's).

DEFINITION #4.  We define the Elementary Row Operations  (ERO's)
1.  Exchange two rows (avoid if possible since the determinant of the new coefficient matrix       
     changes sign).
2.  Multiply a row by a non zero constant (avoid if possible since the determinant of the new 
     coefficient matrix is a multiple of the old one).
3.  Replace a row by itself plus a scalar multiple of another row (the determinant of the new 
     coefficient matrix is the same as the old one).

There is a clear one-to-one correspondence between systems of linear algebraic equations and
augmented matrices including a correspondence between EEO’s and ERO’s.  We say that the two
structures are isomorphic.  Using this correspondence and the theorems on EEO’s from the
previous handout, we immediately have the following theorems.

THEOREM #1.  Suppose a system of linear equations is represented by an augmented matrix
which we call the original augmented matrix (OAM) and that the OAM is operated on by an ERO
to obtain a new augmented matrix (NAM).  Then the system of equations represented by the new
augmented matrix (NAM) has the same solution set as the system represented by the original
augmented matrix (OAM).

THEOREM #2.  Every ERO has an inverse ERO of the same type.

DEFINITION #5.  If  A  and  B  are m×n (coefficient or augmented) matrices over the field F, we
say that  B  is row-equivalent to A if  B  can be obtained from  A by finite sequence of ERO's.
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THEOREM #3.  Row-equivalence is an equivalence relation (Recall the definition of
equivalence relation given in the remedial notes or look up it up in a Modern Algebra text).

THEOREM #4  If  A  and  B  are m×n augmented matrices which are row-equivalent, then the
systems they represent are equivalent (i.e., have the same solution set).

Proof idea.  Suppose  A = A0  A1    Ak = B.  Using induction and Theorem #1, the two
systems can be shown to have the same solution set.

DEFINITION #6.  If  A is a m×n (coefficient or augmented) matrices over the field F, we call the
first nonzero entry in each row its leading entry.  We say that A is  in row-echelon form if: 
1. All entries below a leading entry are zero,
2. For i =2, ..., m, the leading entry in row i is to the right of the leading entry in row (i1),
3. All rows containing only zeros are below any rows containing nonzero entries.
If, in addition, 
4. The leading entry in each row is one,
5. All entries above a leading entry are zero,
then A is in reduced-row-echelon form (or row-reduced-echelon form). 
If A is in row-echelon form (or reduced-row-echelon form) we refer to the leading entries as
pivots.

For any matrix A, Gauss Elimination (GE) will always obtain a row-equivalent matrix U that is in
row-echelon form.  Gauss-Jordan Elimination (GJE) will yield a row-equivalent matrix R that is in

reduced-row-echelon form.      A b U c R d

GE GJE

 
 

EXAMPLE #1.  To illustrate Gauss elimination we consider an example:

  2x +  y + z  =  1 (1)
  4x +  y        = -2 (2)
2x + 2y + z =  7 (3)

It does not illustrate the procedure completely, but is a good starting point.  The solution set S
for (1), (2) and (3) is the set of all ordered triples,  [x,y,z]  which satisfy all three equations.  That
is, 

S = {  = [x, y, z]  R3 : Equations (1), (2), and (3) are true }
x

The coefficient and augmented matrices are  
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  A =   [A ] =  

x y z
2 1 1
4 1 0
2 2 1


















b

  x  y z RHS

2 1 1 1 represents equation 1
4 1 0 2 represents equation 2
2 2 1 7 represents equation 3


  
 

Note that matrix multiplication is not necessary for the process of solving a system of linear
algebraic equations.  However, you may be aware that we can use matrix multiplication to write
the system (1), (2), and (3) as A  =  where now it is mandatory that  be a column vector

x

b x

instead of a row vector. Also  = [1, 2, 7]T is a column vector.  (We use the transpose notation

b

to save space and paper.)

GAUSS ELIMINATION.  We now use the elementary row operations (ERO's) on the example in
a systematic way known as (naive) Gauss (Jordan) Elimination to solve the system.  The
process can be divided into three (3) steps.

Step 1.  Forward Elimination (obtain zeros below the pivots).This step is also called the
(forward) sweep phase.

         R 2R
R R

2 1 1
4 1 0
2 2 1

1
2

7
2 1

3 1


 



















3 2

2 1 1 1
0 1 2 4

R 3R 0 3 2 8

 
    
   

2 1 1
0 1 2

0 4

1

4
 



















0

4

This completes the forward elimination step.  The pivots are the diagonal elements 2, -1, and -4. 
Note that in getting zeros below the pivot 2, we can do 2 ERO’s and only rewrite the matrix
once.  The last augmented matrix represents the system.

      2x  +  y  +  z =  1 We could now use 4z = 4   z =  1
              y  2z = 4 back substitution y = 4 + 2z = 4 + 2(1) = 2  y = 2
                     4z = 4 . to obtain 2x = 1 y z = 1 (2) (1) = 2  x = 1.

The unique solution is sometimes written in the scalar form as x = 1, y = 2, and z = 1, but is
more correctly written in the vector form as the column vector [1,2,1]T.  Instead of back
substituting with the equations, we can use the following two additional steps using the
augmented matrix.  When these steps are used, we refer to the process as Gauss-Jordan
elimination.

Step 2.  Gauss-Jordan Normalization (Obtain ones along the diagonal).
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1/ 2 R

R
1/ 4 R

2 1 1
0 -1 - 2
0 0 - 4

1
4

- 4

1

2

3






















1 1/ 2 1/ 2
0 1 2
0 0 1

1/ 2
4
1

















 
We could now use back substitution but instead we can proceed with the augmented matrix.

Step 3.  Gauss-Jordan Completion Phase (Obtain zeros above the pivots)  
Variation #1  Right to Left.

    
1 3

2 3

nR 1/2nR 1 1/2 1/2 1/2
R 2R 0 1 2 4

0 0 1 1

  
   
  

1 2nR 1/2nR 1 1/2 0 0
0 1 0 2
0 0 1 1

  
 
 
  

1 0 0 -1
0 1 0 2
0 0 1 1

 
 
 
  

x 1
y 2
z 1

 



Variation #2 (Left to Right)

   
1 2nR 1/ 2 R 1 1/2 1/2 1/2

0 1 2 4
0 0 1 1

  
 
 
  

1 3

2 3

nR 1/2nR 1 0 -1/2 3/2
R 2R 0 1 2 4

0 0 1 1

  
   
  

1 0 0
0 1 0
0 0 1

-1
2
1

















x 1
y 2
z 1

 



Note that both variations as well as back substitution result in the same solution, . Tx = [-1,2,1]


It should also be reasonably clear that this algorithm can be programmed on a computer.  It
should also be clear that the above procedure will give a unique solution for  n  equations in  n 
unknowns in a finite number of steps provided zeros never appear on the diagonal.  The case
when zeros appear on the diagonal and we still have a unique solution is illustrated below.  The
more general case of  m  equations in  n  unknowns where three possibilities exist is discussed
later.

EXAMPLE #2.  To illustrate the case of zeros on the diagonal that are eliminated by row
exchanges consider:

           y   2 z   =  4 (4)
       4 z   =  4 (5)

  2x    + y   +    z   =  1 (6)

The augmented matrix is  

 [A ]   =    

b

  x  y z RHS

0 1 2 4 representsnequationn1
0 0 4 4 representsnequationn2
2 1 1 1 representsnequationn3

   
   
 

Note that there is a zero in the first row first column so that Gauss Elimination temporarily breaks
down.  However, note that the augmented matrix is row equivalent to those in the previous

Ch. 4 Pg. 10



problem since it is just the matrix at the end of the forward step of that problem with the rows in a
different order  To establish a standard convention for fixing the breakdown, we go down the first
column until we find a nonzero number.  We then switch the first row with the first row with a
nonzero entry in the first column.  (If all of the entries in the first column are zero, then x can be
anything and is not really involved in the problem.)  Switching Rows one and three we obtain

       





 





















0 1 2
0 0 4
2 1 1

4
4

1

2 1 1
0 0 4
0 1 2

1
4
4


 




















The 2 in the first row, first column is now our first pivot.  We go to the second row, second
column.  Unfortunately, it is also a zero.  But the third row, second column is not so we switch
rows.

       
2 1 1 1
0 0 4 4
0 1 2 4

 
    
     

2 1 1
0 1 2
0 0 4

1
4
4

 





















We now have the same augmented matrix as given at the end of the forward step for the previous
problem.  Hence the solution is x = 1, y = 2, and z = 1.  This can be written as the column vector
x = [1, 2, 1 ]T.

EXERCISES on Introduction to Gauss Elimination
EXERCISE #1.  True or False.
_____ 1. An elementary equation operation (EEO) that can be used on a set of linear algebraic 
              equations which does not change the solution set is “Exchange two equations”.
_____ 2. An elementary equation operation (EEO) that can be used on a set of linear algebraic 
               equations which does not change the solution set is “Multiply an equation by a nonzero 
               constant”.
_____ 3. An elementary equation operation (EEO) that can be used on a set of linear algebraic 
               equations which does not change the solution set is “Replace an equations by itself plus 
               a scalar multiple of another equation”.
_____ 4. An elementary row operation (ERO) of type one that can be used on a matrix is
               “Exchange two rows”. 
_____ 5. An elementary row operation (ERO) of type two that can be used on a matrix is
               “Multiply a row by a nonzero constant”
_____ 6. An elementary row operation (ERO) of type three that can be used on a matrix is
              “Replace a row by itself plus a scalar multiple of another row”.
_____ 7. There is a clear one-to-one correspondence between systems of linear algebraic
                equations and augmented matrices including a correspondence between EEO’s and
               ERO’s so that we say that the two structures are isomorphic.  
_____ 8. Every ERO has an inverse ERO of the same type.
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_____ 9. If  A  and  B  are m×n (coefficient or augmented) matrices over the field K, we say that 
               B  is row-equivalent to A if  B  can be obtained from  A by finite sequence of ERO's.
_____ 10. Row-equivalence is an equivalence relation 
_____ 11. If  A  and  B  are m×n augmented matrices which are row-equivalent, then the systems 
                  they represent are equivalent (i.e., have the same solution set)
_____ 12. If  A is a m×n (coefficient or augmented) matrix over the field K, we call the first
                  nonzero entry in each row its leading entry.  

EXERCISE #2.  Solve 4x +  y        = -2  
2x + 2y + z =  7

                                      2x +  y + z  =  1

EXERCISE #3.   Solve x1 +  x2 +  x3 + x4 =  1       
                                      x1 + 2x2  + x3     =  0          
                                                     x3 + x4  = 1                        
                                          x2 + 2x3 +  x4  = 1            

EXERCISE #4.  Solve  4x +  y        = -2  
2x + y + z =  7

                                      2x +  y + z  =  1

EXERCISE #5.   Solve  x1 +  x2 +  x3 + x4 =  1    
                                        x1 + 2x2  + x3     =  0       
                                                         x3 + x4  = 1                     
                                                x2 + 2x3 + 2x4  = 3

EXERCISE #6.  Solve  4x +  y        = -2  
2x + 2y + z = 5

                                      2x +  y + z  =  1

EXERCISE #7.  Solve  4x +  y        = -2  
2x + 2y + z = 1

                                      2x +  y + z  =  1
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Handout #3 CONNECTION WITH MATRIX Professor Moseley
ALGEBRA AND ABSTRACT LINEAR ALGEBRA

By using the definition of matrix equality we can think of the system of scalar equations 

a 11  x 1  +  a 12  x 2 +    + a 1n  x n = b 1
a 21  x 1  +  a 22  x 2 +    + a 2n  x n = b 2
                             (1)
                            
                            
a m1  x 1  +  a m2  x 2 +    + a mn  x n = b m

as one “vector” equation where “vector” means an n-tuple or column vector.  By using matrix
multiplication (1) can be written as

(2)
mxn nx1 mx1
A x b

 


where

 =  [xi]  Kn,    =  [bi]Km,   A =  = [aij]Kmxn .
x

x
x

x

1

2

n

































b

b
b

b

1

2

m
































a a a
a a a

a a a

11 12 1n

21 22 2n

m1 m21 mn

  
  

  
  
  

  



























If we think of Kn and Km as vector spaces, we can define 

T( ) = (3)
x A x

mxn nx1



so that T is a mapping from Kn to Km.  We write T: Kn    Km.  A mapping from a vector space
to  another vector space is called an operator.  We may now view the system of scalar equations
as the operator equation:  

T( ) =  (4)x

b

A column vector  Kn is a solution to (4) if and only if it is a solution to (1)  or (2).  Solutions
x

to (4) are just those vectors   in Kn  that get mapped to  in Km by the operator T.  The
x


b

equation 
T( ) = (5)
x


0

is called homogeneous and is the complementary equation to (4).  Note that it always has 
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 =  = [0, 0, ... , 0]T  Kn as a solution.  =  is called the trivial solution to (5) since it is 
x


0 x


0

always a solution.  The question is “Are there other solutions?” and if so “How many?”.  We 
now have a connection between solving linear algebraic equations, matrix algebra, and abstract 
linear algebra.  Also we now think of solving linear algebraic equations as an example of a
mapping problem where the operator T:Rn  Rm is defined by (3) above.  We wish to find all 
solutions to the mapping problem (4).  To introduce this topic, we define what we mean by a 
linear operator from one vector space to another.

DEFINITION #1.  An operator T:V  W is said to be linear  if    ,   V  and scalars  α,β, 
x y

it is true that
                T( α  + β ) = α T( )  + β T( ). (6)x y x y

T: Kn    Km defined by  T( ) =   is one example of a linear operator.  We will give others 
x A x

mxn nx1



later.  To connect the mapping problem to matrix algebra we reveal that if m = n, then (1) (2) and 
(4) have a unique solution if and only if the matrix A is invertible.  

THEOREM #1.  Suppose m = n so that (1) has the same number of equations as unknowns. 
Then (1), (2), and (4) have a unique solution if and only if the matrix A is invertible.

EXERCISES on Connection with Matrix Algebra and Abstract Linear Algebra

EXERCISE #1.  True or False.
_____ 1. Since  Kn and Km are vector spaces, we can define T( ) =  so that T is a

x A x
mxn nx1



               mapping from Kn to Km. 
_____ 2. A mapping from a vector space to  another vector space is called an operator.  
_____ 3. Solutions to  are just those vectors   in Kn  that get mapped to  in Km

mxn nx1 mx1
A x b

 
 x


b

              by the operator T( ) =  . 
x A x

mxn nx1



_____ 4. The equation T( ) = is called homogeneous and is the complementary equation to 
x


0

                where  T( ) = . 
mxn nx1 mx1
T x b

 
 
 
 


 x A x

mxn nx1



_____ 5.  =  is called the trivial solution to the complementary equation to .
x


0

mxn nx1 mx1
A x b

 


_____ 6. An operator T:V  W is said to be linear  if    ,   V  and scalars  α,β,  it is true
x y

             that T( α  + β ) = α T( )  + β T( ).x y x y
_____ 7. The operator T: Kn to Km defined by T( ) =  is a linear operator.

x A x
mxn nx1



_____ 8.  has a unique solution if and only if the matrix A is invertible.
nxn nx1 nx1
A x b
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Handout #4 POSSIBILITIES FOR Professor Moseley
LINEAR ALGEBRAIC EQUATIONS

We consider the three possible outcomes of applying Gauss elimination to the system of
scalar algebraic equations:

a 11  x 1  +  a 12  x 2 +    + a 1n  x n = b 1
a 21  x 1  +  a 22  x 2 +    + a 2n  x n = b 2
                             (1)
                            
                            
a m1  x 1  +  a m2  x 2 +    + a mn  x n = b m

THEOREM.   There exists three possibilities for the system (1):
1.  There is no solution.
2.  There exists exactly one solution.
3.  There exists an infinite number of solutions

We have illustrated the case where there exists exactly one solution.  We now illustrate the cases
where there exists no solution and an infinite number of solutions.

EXAMPLE.  Solve 

E1  x +     y  +  z  = b1
E2  2x + 2y + 3z  = b2 (2)
E3  4x + 4y + 8z  = b3

if    has the values 1)    and 2) .

b

b
b
b

1

2

3


















 
b b

1
1
1

1 
















 
b b

1
1
0

2 
















Solution: Forward Step.  Reduce  the augmented matrix

     R 2R

R 4R

1 1 1

2 2 3

4 4 8

b

b

b
2 1

3 1

1

2

3





















 R 4R

1 1 1
0 0 1
0 0 4

b
b 2b
b 4b3 2

1

2 1

3 1



















1 1 1
0 0 1
0 0 0

b
b b

b 4b + 4b

1

2 1

3 2 1




















as R3 4R2  b3 4b1 4(b2 2b1) = b3 4b2+4b1

This completes the forward elimination step.  We see that (2) has a solution if and only if
b3  4b2 + 4b1 = 0 or 4b1  4b2 + b3 = 0.  This means that the range of the operator T associated
with the matrix A  is the plane in R3 through the origin whose equation in x,y,z variables is 
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P: 4x  4y +z = 0 where P  R3.  If  = [1,1,1]T  then 4(1) 4(1) + 1 = 1 0 and hence we
 
b b1

have no solution.  If = [1,1,0]T then 4(1)  4(1) + 0 = 0 so there exists a solution.  In fact
 
b b 2

there exists an infinite number of solutions.  The pivots are already ones.  We finish the Gauss-
Jordan process for = [1,1,0]T .  Our augmented matrix is 

 
b b 2

        
1 2R R 1 1 1 1

0 0 1 1
0 0 0 0

  
  
  

1 1 0 2
0 0 1 1
0 0 0 0

 
  
  

x y       2
            z 1
           0 0

 
 


x 2 - y
z 1   

 

 
We can now write a (parametric) formula for the infinite number of solutions.

 =  =  +  y 
x

x
y
z


















2 y
y
1





















2
0
1

































1
1
0

It will become clear why one wishes to writw the solution in this form after you learn to solve
differential equations. 

CONVENIENT CHECKS.  There are convenient checks for the vectors that appear in the
formula for the infinite number of solutions.  Satisfying these checks does not guarantee a correct
solution.  However, failing these checks does guarantee an error.  

Since we claim to have all solutions to , letting y = 0, we see that 
3x3 3x1 3x1
A x b
 



 = [2, 0, 1]T should be a (particular) solution to .  (There are an infinite number ofpx Ax b 


solutions.)  u + v + w = 1     2 + 0 1 = 1 
2u + 2v + 5w = 1     2(2) + 2(0) + 5(1) = 1
4u + 4v + 5w = 0     4(2) + 4(0) + 8(1) = 0

Hence this part of the formula for the solution checks.  Careful analysis indicates that 
 = [1, 1, 0]T should be a solution to the complementary (homogeneous) equation .

x1 Ax 0 


 u + v + w = 0    1 + 1 + 0 = 0 
2u + 2v + 5w = 0     2( 1) +2(1) + 5(0) = 0 
4u + 4v + 8w = 0     4( 1) +4(1) + 8(0) = 0 

Hence this part of the formula for the solution also checks.

EXERCISES on Possibilities for Linear Algebraic Equations

EXERCISE #1.  True or False.
_____ 1. There exists three possibilities for the system .

mxn nx1 mx1
A x b



_____ 2. One possibility for the system is that there is no solution.
mxn nx1 mx1
A x b
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_____ 3. One possibility for the system  is that there exists exactly one solution.
mxn nx1 mx1
A x b



_____ 4. One possibility for the system is  an infinite number of solutions.
mxn nx1 mx1
A x b



EXERCISE #2. Solve   x +     y  +  z  = b1
  2x + 2y + 3z  = b2
  4x + 4y + 8z  = b3

if    has the values 1)    and 2) .
1

2

3

b
b b

b

 
 
 
  




1

1
b b 1

2

 
    
  

 
2

1
b b 2

0

 
 
 
 
 

 
 

 EXERCISE #3. Solve  x +     y  +  z  = b1
  2x + 2y + 3z  = b2
  4x + 4y + 4z  = b3

if    has the values 1)    and 2) .
1

2

3

b
b b

b

 
 
 
  




1

1
b b 2

4

 
 
 
 
 

 
 

2

1
b b 1

2
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Handout #2 WRITING SOLUTIONS OF Professor Moseley
LINEAR ALGEBRAIC EQUATIONS

Consider the system of linear equations

(1)A  x b
mxn nx1 mx1

 


Suppose we apply Gauss-Jordan elimination so that 

 
GE GJE

mxn mxnmxnmx1 mx1 mx1
A b     U c   R d    

        
 

 

where U is an upper triangular matrix obtained using Gauss Elimination,  is the result of applyingc

these same operations to ,  R is the row- reduced-echelon form of A obtained using Gauss -

b

Jordan elimination, and  is the result of applying these same operations to .  This means

d


b

that the matrix   has zeros above as well as below the pivots.  Recall that there all threeR d
mxn mx1







cases: 1)  No solution, 2)  Exactly one solution (a unique solution), and 3)  An infinite number of
solutions.

1)  If there is a row in  where the entries in R are all zero and the entry in  is nonzero R d
mxn mx1








d

(this corresponds to an equation of the form 0 = di   0).  Since this is not true, the system has no
 solution, and you conclude by writing: No Solution.

2)  If there are m n rows of all zeros (including the elements in ) and so n pivots (dependentd


variables) then each variable in is determined uniquely and there is exactly one solution. 
x

Conclude by giving the solution explicitly in both scalar and vector form.
3)  If there are an infinite number of solutions we proceed as follows:

a)  Separate the variables (i.e. the columns) into two groups.  Those corresponding to 
      pivots are the dependent (basic) variables.  Those not corresponding to pivots are 
      the  independent (free) variables.
b)  Write the equations that correspond to the augmented matrix [R  ].


d

c)   Solve these equations for the dependent variables in terms of the independent 
       variables.  (This is easy if GJE is used).
d)   Replace the dependent variables in the vector  x = [x1,  , xn]T  to obtain  x in terms 
       of the independent variables only.

e)   Write the infinite number of solutions in the paramentric form 

x

  x x c xp i i
i 1

k
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x = 1  
y = 2     Scalar form
z = 1

                where the ci’s are the independent variables.  Thus we see that there is a solution for
                each set of paramenter values.

Alternately we see that   x p can be obtained by letting all the ci’s (i.e. the independent variables) 
be zero.   If  then  can be taken to be .  The above procedure will in fact make it 

 
b 0

x p


0

zero.)  Hence the vectors xI  can be obtained by letting and letting each independent 
 
b 0

variable be one with the rest of the independent variables equal to zero.

EXAMPLE#1 .  Recall that the solution process for

  2x +  y + z  =  1 (1)
  4x +  y        = 2 (2)
2x + 2y + z =  7 (3)

using Gauss-Jordan elimination (right to left) on augmented matrices is

        2 1

3 1

2 1 1 1
R 2R 4 1 0 2
R R 2 2 1 7

 
   
    R R

2 1 1
0 1 2

3 2

1

83 2
  















3 0

4

       

1 / 2 R
R

1 / 4 R

2 1 1
0 1 2
0 0 4

1
4
4

1

2

3




 





















 R 1/ 2 R
R 2R

1 1/ 2 1/ 2
0 1 2
0 0 1

1/ 2
4
1

1 3

2 3




















   

 R 1/ 2 R 1 1/ 2 0
0 1 0
0 0 1

0
2
1

1 2 















1 0 0
0 1 0
0 0 1

-1
2
1

















    Vector form.
x

1
2
1


















EXAMPLE#2 .  Recall that the solution process for

E1  x +     y  +  z  = b1
E2  2x + 2y + 3z  = b2 (2)
E3  4x + 4y + 8z  = b3

if  = [1,1,1]T  using Gauss elimination (only the forward sweep is needed) on augmented
 
b b1
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matrices is

        R 2R
R 4R

1 1 1
2 2 3
4 4 8

1
1
1

2 1

3 1


















 R 4R

1 1 1
0 0 1
0 0 4

1
-1
-33 2

















1 1 1
0 0 1
0 0 0

1
-1
1

















x y z 1
z 1
0 1

  
 


The last equation (0=1) is not true so we see that the equations are inconsistent and that there is
no solution.  We write NO SOLUTION.

On the other hand, if  = [1,1,0]T  using Gauss-Jordan elimination on augmented matrices is
 
b b1

         R 2R
R 4R

1 1 1
2 2 3
4 4 8

1
1
0

2 1

3 1




















3 2

1 1 1 1
0 0 1 1

R 4R 0 0 4 3

 
  
   

1 2R R 1 1 1 1
0 0 1 1
0 0 0 0

  
  
  

1 2R R 1 1 0 2
0 0 1 1
0 0 0 0

  
  
  

    
x y       2
            z 1
           0 0

 
 


x 2 - y
z 1   

 

 We can now write a (parametric) formula for the infinite number of solutions.

 =  =  +  y   Vector Form Scalar Form
x 2 - y
z 1   

 

2 y
y
1





















2
0
-1

 
 
 
  

1
1
0

 
 
 
  

x 1 y
(y y)
z 1
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EXERCISES on Writing Solutions of Linear Algebraic Equations

EXERCISE #1.  Suppose the Gauss process yields   x +     y  +  z  = b1
                                                                                              2y + 3z  = b2
                                                                     8z  = b3
If  = [1,1,1]T , give the solution and the solution set.  What is the difference inT

1 2 3 1b =[b ,b ,b ] = b
 

these two questions.  How many solutions are there?  The solution should be written as ______. 
If  = [0,0,0]T , give the solution and the solution set. What is the difference inT

1 2 3 1b =[b ,b ,b ] = b
 

these two questions.  How many solutions are there?  The solution should be written as ______. 

EXERCISE #2.  Suppose the Gauss-Jordan process yields   
1 2

2 1

3 2 1

b -b1 0 0
0 1 0 b -b
0 0 0 b -b -b

 
 
 
 
 
 
 

If  = [1,1,1]T , give the solution and the solution set. What is the difference inT
1 2 3 1b =[b ,b ,b ] = b

 

these two questions.  How many solutions are there?  The solution should be written as ______. 
If  = [1,1,0]T , give the solution and the solution set. What is the difference inT

1 2 3 1b =[b ,b ,b ] = b
 

these two questions.  How many solutions are there?  The solution should be written as _____.
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Handout #6 ELEMENTARY MATRICES AND Prof. Moseley
SOLVING THE VECTOR EQUATION

DEFINITION #1.  An mxm matrix is said to be an elementary matrix if it can be obtained from
the mxm identity matrix  by means of a single ERO.I

mxm

THEOREM #1.  Let e(A) denote the matrix obtained when the ERO e is  applied to the matrix A. 
Now let E = e(I).  Then for any mxn matrix A, we have e(A) = EI.  That is, the effect of an ERO
e on a matrix A can be obtain by multiplying A by E where E = e(I).  Thus E is called the matrix
representation of e.

THEOREM#2.  All elementary matrices are invertible.  If E is an elementary matrix that
represents the ERO e with ERO inverse e1, then E1 is just the matrix representation of e1.

Suppose we apply Gauss-Jordan elimination to so that A  x b
mxn nx1 mx1

 


 A b         R d
mxn mx1

GJE

mxn mx1

 





 





via the sequence of ERO’s e1, e2, ...,en and Ei = ei(I) as well as Ei
1 = ei

1(I)  for i=1, 2, 3, ..., n.
then 

En En-1  E2 E1 A  = R  = En En-1  E2 E1  = 
x x


b


d

That is, we can solve the vector equation by repeatedly multiplying the vector (or matrix)
equation   by matrix representations of the appropriate ERO’s until we obtain A  x b

mxn nx1 mx1

 


R  = .  If we are in the unique solution case, then n  m, the first n row of R are the nxn
x


d

identity matrix I and we obtain  = where is the nx1 vector containing the first n
x


d r


d r

components of whose remaining m  n components are all zeros.  If not, we must examine R

d

and  more closely to determine which case we are in.  The main point is that instead of working

d

with the scalar equations or the augmented matrices, we may solve the vector (or matrix)
equation  by multiplying it successively by (invertible) elementary matrices to obtainA  x b

mxn nx1 mx1

 


an equivalent form of the vector equation where the unique solution is readily available, we know
immediately that there is no solution, or we may easily find a parametric form for all of the infinite
number of solutions.
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EXERCISES on Elementary Matrices and Solving the Vector Equations

EXERCISE #1.  True or False

_____ 1. An mxm matrix is said to be an elementary matrix if it can be obtained from the mxm
                identity matrix  by means of a single EROI

mxm
_____ 2. If e(A) denotes an ERO  applied to the matrix A and let E = e(I), then for any mxn 
               matrix A, we have e(A) = EI. 
_____ 3.  All elementary matrices are invertible. 
_____ 4.  If E is an elementary matrix that represents the ERO e with ERO inverse e-1, then E-1 is
                 just the matrix representation of e-1.

Ch. 4 Pg. 23



A SERIES OF CLASS NOTES  TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS 
TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS

LINEAR CLASS NOTES:
A COLLECTION OF HANDOUTS FOR 

REVIEW AND PREVIEW 
OF LINEAR THEORY 

INCLUDING FUNDAMENTALS OF 
LINEAR ALGEBRA

CHAPTER 5

Linear Operators,

Span, Linear Independence,

Basis Sets, and Dimension

1. Linear Operators

2. Spanning Sets

3. Linear Independence of Column Vectors

4. Basis Sets and Dimension
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Handout #1 LINEAR OPERATOR THEORY Professor Moseley

In this handout, we preview linear operator theory.  The most important examples of
linear operators are differential and integral operators and operators defined by matrix
multiplication.  These arise in many applications.  Lumped parameter systems (e.g., linear
circuits and mass spring systems) give rise to discrete operators defined on finite dimensional
vector spaces (e.g., Rn).  Differential and integral equations (e.g., Maxwell’s equations and the
Navier-Stokes equation) are used to model distributed (continuum) systems and require infinite
dimensional vector spaces.  These give rise to differential and integral operators on function
spaces.

Even without covering any topics in differential equations, your background in calculus 
should be sufficient to see how discrete and continuous operators are connected as linear
operators on a vector space.  

A function or map T from one vector space  V  to another vector space W is often call an
operator.  If we wish to think geometrically (e.g., if V and W are  R2 or R3) rather than
algebraically we might call T a transformation.

DEFINITION 1.  Let V and W be vector spaces over the same field K.  An operator T:V  W is
said to be linear  if   ,  V  and scalars  α,βK,  it is true that

x y

                T( α  + β  ) = α T( )  + β T( ). (1)
x y x y

THEOREM 1.    Let V and W be vector spaces over the same field K.  An operator T: V  W   is
linear if and only if the following two properties hold:
    i)  ,  ε V   implies   T( +  )  =  T( ) + T( ) (2)

x y x y x y
   ii)  αK  and   ε V implies  T(α )  =  α T( ). (3)

x x x

EXAMPLE 1  Let the operator  T:Rn  Rm be defined by matrix multiplication of the column 
vector  by the m× n  matrix  A; that is, let

x

         T( ) =df   (4)
x

mxn nx1
A x

where  Rn   and     Rm×n.  Then T is a linear

1

2

mxn

n

x
x

x

x

 
 
 
 

   
 
 
  



11 12 1n

21 22 2n

mxn

m1 m21 mn

a a a
a a a

a a a

A

   
    
   

     
   
 

    
operator.
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EXAMPLE 2  Let I = (a,b).  The operator  D:C1(I,R)  C(I,R) defined by

          D(f) =df  (5)
df
dx

where  f ε C1(I,R) = {f:I  R:   exists and is continuous on I} and
df
dx

C(I, R) ={f:I  R:f is continuous on I}.  Then D is a linear operator.  We may restrict D to 
A (I, R) ={f:I  R:f is analytic on I} so that D:A (I, R) A (I, R) maps a vector space back to
itself.

DEFINITION #2.  Let T:VW be a mapping from a set V to a set W.  The set 
R(T) = {y W: there exists an xV such that y = T(x) } is called the range of T.  If W has an 
additive structure (i.e., a binary operation which we call addition) with an additive identity which 
we call 0, then the set N(T) = {xV: T(x) = 0} is called the null set of T (or nullity of T).

If T is a linear operator from a vector space V to another vector space W, we can say more.

THEOREM #2  Let T:VW be a linear operator from a vector space V to a vector space W.  The 
range of T,  R(T) = {  W: there exists an V such that   = T( ) }, is a subspace of W

y x y x
and the null set of T, N(T) = { V: T( ) = 0} is a subspace of V.

x x

We rename these sets.

DEFINITION #3.  Let T:VW be a linear operator from a vector space V to another vector
space  W.  The set R(T) = {  W: there exists an  V such that   = T( ) } is called the

y x y x
range space of T and the set N(T) = { V: T( ) = } is called the null space of T. .

x x

0
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EXERCISES on Linear Operator Theory

EXERCISE #1.  True or False.
_____ 1. A linear circuit is an example of a lumped parameter system.

_____ 2. Amass/spring system is an example of a lumped parameter system. 

_____ 3. A function or map T from one vector space  V  to another vector space W is often call 
              an operator. 
_____ 4. An operator T:V  W is said to be linear  if   ,  V  and scalars  α,βK,  it is true 

x y
                that T( α  + β  ) = α T( )  + β T( ).

x y x y
_____ 5. An operator T: V  W   is linear if and only if the following two properties hold:
               i)  ,  ε V   implies   T( +  )  =  T( ) + T( ) and ii)  αK  and   ε V implies 

x y x y x y x

              T(α )  =  α T( ).
x x

_____ 6. The operator  T:Rn  Rm defined by  is a linear operator.
mxn nx1

T(x) A x
 

 _____ 7. The operator  D:C1(a,b)  C(a,b) be defined by  D(f) =df   is a linear operator.
df
dx

_____ 8. C(a,b) ={f:(ab)  R:f is continuous}.

_____ 9.  C1(a,b) = {f:(a,b)  R:   exists and is continuous}. 
df
dx

_____ 10. If T:VW , then the set R(T) = {y W: there exists an xV such that y = T(x) } is 
                 called the range of T.  
_____ 11. If T:VW and W has an additive structure (i.e., a binary operation which we call 
                addition) with an additive identity which we call 0, then the set N(T) = 
               {xV: T(x) = 0} is called the null set of T (or nullity of T).
_____ 12. If T:VW is a linear operator from a vector space V to a vector space W, then the 
                 range of T,  R(T) = {  W: there exists an V such that   = T( ) }, is a 

y x y x
                 subspace of W
_____ 14.If T:VW is a linear operator from a vector space V to a vector space W, then the null 
                 set of T, N(T) = { V: T( ) = 0} is a subspace of V.

x x
_____ 15. If T:VW is a linear operator from a vector space V to another vector space  W, then
                  the set R(T) = {  W: there exists an  V such that   = T( ) } is called the 

y x y x
                   range space of T. 
_____ 16. If T:VW is a linear operator from a vector space V to another vector space  W, then
                  the set N(T) = { V: T( ) = } is called the null space of T.

x x

0
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Handout # 2 SPANNING SETS Professor Moseley

DEFINITION #1.  If   , ,    ,  are vectors in a vector space  V  and α1,α2,,αn  
x1

x2
x n

are scalars, then

     α,    + α2    +    + αn  =   
x1

x2
x n

n

i 1
i 1

 x


 

is called a linear combination of the vectors.  (It is important to note that a linear combination
allows only a finite number of vectors.)

EXAMPLE #1.  Consider the system of linear algebraic equations:

2x + y + z  =  1
4x + y      = -3
 x - 2y - z =  0     .   

This set of scalar equations can be written as the vector equation

       x    +      y      +     z      =   
2
4
1

 
 
 
  

1
1
2

















1
0
1

















1
3

0

















where the left hand side (LHS) is a linear combination of the (column vectors whose 
components come from the) columns of the coefficient matrix

A   =   .

2 1 1
4 1 0
1 2 1 

















If we generalize Example #1, we obtain:

THEOREM #1.  The general system  

(1)A x b
nxn nx1 nx1

 


has a solution if and only if the vector can be written as a linear combination of  the

b
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columns of  A.  That is,  is in the range space of T( ) = A  if and only if  can be written as

b x x


b

a linear combination of  the (column vectors whose components come from the) columns of  the
coefficient matrix. A.

DEFINITION #2.  Let  S  be a (finite) subset of a subspace  W  of a vector space  V.  If every
vector in  W  can be written as a linear combination of (a finite number of) vectors in  S, then  S 
is said to span W or to form a spanning set for  W.  On the other hand, if  S  is any (finite) set of
vectors, the span of S, written Span(S), is the set of all possible linear combinations of (a finite
number of) vectors in  S.

THEOREM #2.  For any (finite) subset  S  of a vector space  V, Span (S) is a subspace of V. 

THEOREM #3.  If (a finite set)  S  is a spanning set for  W, then Span S = W.

EXAMPLES.  Consider the following subsets of R3.

      1. S = {[1,0,0]T} = {î}.  Then  Span (S) = {x î: x  R} = x - axis.
      2. S = {[1,0,0]T, [0,1,0]T} = {î, j}.  Then Span (S) = {x î+y ĵ: x, y  R} = the xy plane.
      3. S = {[1,0,0]T, [1,1,0]T} = {î, î+ĵ}.  Then Span (S) = xy plane.
      4. S = {[1,0,0]T, [0,1,0]T, [1,1,0]T} = {î, ĵ, î+ĵ}.  Then Span (S) = xy plane.

DEFINITION #3.  For any matrix  , the span of the set of column vectors is the columnA
mxn

space of  A.  The usual notation for the column space is  R(A)  and sometimes RA.  Normally we
will use  R(A).  The reason for this notation is that when we think of the operator T( )  defined

x
by (matrix)  multiplication of the matrix  by the column vector   = [x1,,xn]T, we see that T A

mxn

x

maps vectors    Rn  into vectors    = A    Rm, the column space R(A)  is seen to be the
x y

x
range (space) of T.

COMMENT.  Consider the general system (1) above.  Theorem #1 can now be rephrased to say 
that (1) has a solution if and only if   is in the column space of  A (i.e. in the range of the 


b

operator T).

DEFINITION 4.    For any matrix  , the span of the set of row vectors is the row space A
mxn

of  A.  The usual notation for the row space is  R(AT)  and sometimes RAT since the row space of 
A is the column space of AT.  Normally we will use  R(AT).  

If we think of the operator TT( )  defined by (matrix)  multiplication of the matrix   by the 
x A

mxn

T

column vector = [y1,,ym]T, we see that AT  maps vectors Rm  into vectors = AT   Rn, 
y y x y

Ch. 5 Pg. 6



the row space R(AT)  is seen to be the range (space) of AT.

Recall that all of the coefficient matrices for the associated linear systems of algebraic equations 
obtained in the process of doing Gauss elimination are row equivalent.  Hence they all have the 
same row space.  However, they do not have the same column space.

EXERCISES on Spanning Sets

EXERCISE #1.  True or False.
_____ 1. If   , ,    ,  are vectors in a vector space  V  and α1,α2,,αn  are scalars, then  

x1
x2

x n

                α,    + α2    +    + αn  =   is a linear combination of the vectors
x1

x2
x n

n

i 1
i 1

 x


 

_____ 2. A linear combination allows only a finite number of vectors.

_____ 3. The linear algebraic equations: 2x + y + z  =  1, 4x + y   = 3, x  2y  z =  0,  is a 
                system of scalar equations.
_____ 4. The coefficient matrix for the system of linear algebraic equations: 2x + y + z  =  1,

               4x + y   = 3, x  2y  z =  0 is A   = .  

2 1 1
4 1 0
1 2 1 

















 _____ 5. The linear algebraic equations: 2x + y + z  =  1, 4x + y   = 3, x  2y  z =  0 can be

              written as the vector equation   x    +      y      +     z      =   .
2
4
1

 
 
 
  

1
1
2

















1
0
1

















1
3

0

















_____ 5. The left hand side (LHS) of the vector equation   x    +      y      +     z   
2
4
1

 
 
 
  

1
1
2

















1
0
1

















               =    is a linear combination of the column vectors whose components come from 
1
3

0

















               the columns of the coefficient matrix A   =   .

2 1 1
4 1 0
1 2 1 

















_____ 6. The general system   has a solution if and only if the vector can be writtenA x b
nxn nx1 nx1

 



b
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as a linear combination of  the columns of  A.  
_____ 7.  is in the range space of T( ) = A  if and only if  can be written as a linear 


b x x


b

              combination of  the column vectors whose components come from the columns of  the 
              coefficient matrix A.
_____ 8. If  S  be a finite subset of a subspace  W  of a vector space  V and  every vector in  W
               can be written as a linear combination of a finite number of vectors in  S, then  S  is said
               to span W or to form a spanning set for  W.
_____ 9.  If  S  be a finite subset of a subspace  W  of a vector space  V, then the span of S,
                  written Span(S), is the set of all possible linear combinations of a finite number of 
                  vectors in  S.
_____ 10.  For any finite subset  S  of a vector space  V, Span (S) is a subspace of V. 

_____ 11.  If  S  be a finite subset of a subspace  W  of a vector space  V and  S  is a spanning set 
                  for  W, then Span S = W.
_____ 12. For any matrix  , the span of the set of column vectors is the column space of  A.A

mxn

_____ 13.  The usual notation for the column space is  R(A)  and sometimes RA. 

_____ 14.  The reason that R(A) is the column space of A is that when we think of the operator 

                 T( )  defined by matrix  multiplication of the matrix  by the column vector  
x A

mxn

                 = [x1,,xn]T, we see that T  maps vectors    Rn  into vectors    = A    Rm 
x x y

x
                 which is the column space R(A)
_____ 14. The column space R(A) is the range space of T.

_____ 15.  has a solution if and only if  is in the  range of the operator T( ) = A .A x b
nxn nx1 nx1

 



b

x x

_____ 16.  has a solution if and only if   is in the column space of  A. A x b
nxn nx1 nx1

 



b

_____ 17.  For any matrix  , the span of the set of row vectors is the row space of  A. A
mxn

_____ 18.  The usual notation for the row space is  R(AT)  and sometimes RAT since the row
                  space of A is the column space of AT.    
_____ 19.  If we think of the operator TT( )  defined by (matrix)  multiplication of the matrix 

x
                 by the column vector = [y1,,ym]T, we see that AT  maps vectors Rm  into A

mxn

T y y

                vectors = AT   Rn, the row space R(AT)  is seen to be the range space of AT.
x y
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Handout #3 LINEAR INDEPENDENCE (OF COLUMN VECTORS) Professor Moseley

DEFINITION #1.  Let V be a vector space.  A finite set of vectors   V isS {x ,..., x }1 k
 

linearly independent (.i.) if the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous)
vector equation

                              (1)1 1 2 2 k kc x c x c x 0     
  

is   c1 = c2 =  = cn = 0; that is, (1) has only the trivial solution.  If there is a set of scalars not all
zero satisfying (1) then S is linearly dependent (.d.).

It is common practice to describe the vectors (rather than the set of vectors) as being
linearly independent or linearly dependent.  Although this is technically incorrect, it is wide
spread, and hence we accept this terminology.  Since we may consider (1) as a linear
homogeneous equation with unknown vector [ c1, c2, ..., cn]  Rn, if (1) has one nontrivial
solution, then it in fact has an infinite number of nontrivial solutions.  As part of the standard
procedure for showing that a set is linearly dependent directly using the definition (DUD) you
must exhibit one (and only one) such non trivial solution.  To show that a set is linearly
independent directly using the definition (DUD) you must show that the only solution of (1) is
the trivial solution (i.e. that all the ci's must be zero).  Before looking at the application of this
definition to column vectors, we state four theorems.

THEOREM #1.  Let V be a vector space.  If a finite set of vectors   V containsS {x ,..., x }1 k
 

the zero vector, then S is linearly dependent.

THEOREM #2.  Let V be a vector space.  If , then  V is linearly independent.
 
x 0 S {x}



Proof.  To show  S  is linearly independent we must show that c1  implies that  c1 = 0.  But
 
x = 0

by the zero product theorem,  if c1  is true then  c1 = 0 or .  But by hypothesis  . 
 
x = 0  

x = 0  
x 0

Hence c1  implies  c1  = 0.  Hence S =  where  is linearly independent.
 
x = 0 {x} x 0



Q.E.D.

THEOREM #3.  Let V be a vector space and  S = { , } V.  If either  or  is the zerox
y x

y
vector, then S is linearly dependent.

THEOREM #4.  Let V be a vector space and  S = { , } V where and  are nonzerox
y x

y
vectors.  Then S is linearly dependent if and only if one vector is a scalar multiple of the other. 

Although the definition is stated for an abstract vector space and hence applies to any
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vector space and we have stated some theorems in this abstract setting, in this section we focus on
column vectors in Rn (or Cn or Kn).  Since we now know how to solve a system of linear
algebraic equations, using this procedure, we can develop a “procedure” to show that a finite set
in Rn (or Cn or Kn) is linearly independent.  We also show how to give sufficient conditions to
show that a finite set in Rn (or Cn or Kn) is linearly dependent.

PROCEDURE.  To determine if a set   V is linearly independent or linearlyS {x ,..., x }1 k
 

dependent, we first write down the equation (1) and try to solve.  If we can show that the only
solution is the trivial solution c1 = c2 =  = cn = 0, then we have shown directly using the
definition (DUD) of linear independence that S is linearly independent.  On the other hand
(OTOH), if we can exhibit a nontrivial solution, then we have shown directly using the
definition of linear dependence that S is linearly dependent.  We might recall that the linear
theory assures us that if there is one nontrivial solution, that there are an infinite number of
nontrivial solutions.   However, to show that S is linearly dependent directly using the definition,
it is not necessary (or desirable) to find all of the nontrivial solutions.  Although you could argue
that once you are convinced (using some theorem) that there are an infinite number of solutions,
then we do not need to exhibit one, this will not be considered to be a proof directly using the
definition (as it requires a theorem).  Thus to prove that S is linearly dependent directly using the
definition of linear dependence, you must exhibit one nontrivial solution.  This will help you to
better understand the concepts of linear independence and linear dependence.  We apply these
“procedures” to finite sets in Rn (or Cn).  For Rn (or Cn) (1) becomes a system ofS {x ,..., x }1 k

 

n equations (since we are in Rn (or Cn) ) in k unknowns (since we have k vectors).  (This can be
confusing when applying general theorems about m equations in n unknowns.  However, this
should not be a problem when using DUD on specific problems.)

EXAMPLE #1.  Determine (using DUD) if   is linearly independent.
1 2 1

S , ,
1 3 2

      
       

      

Solution.  (This is not a yes-no question and a proof is required).  Assume

                                            (2)1 2 3

1 2 1 0
c c c

1 3 2 0
       

         
       

and (try to) solve.  The vector equation (2) is equivalent to the two scalar equations (since we are
in R2) in three unknowns (since S has three vectors).

c1+ 2c2 + c3 = 0
                          c1+ 3c2 + 2c3 = 0                                                                                       
(3)

Simple systems can often be solved using ad hoc (for this case only) procedures.  But for
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complicated systems we might wish to write this system in the form   and use GaussAc 0


elimination (on a computer).  Note that when we reduce A we do not have to augment.  Why?

For this example    and .  Since the system is homogeneous we can
1 2 1

A
1 3 2
 

  
 

1

2

3

c
c c

c

 
   
  



solve by reducing  A  without augmenting (Why?). 

1 2 3 1 2 3 3 3 3

2 3 2 31 2

c 2c c 0 c 2c c 2c c c1 2 1 1 2 1
c c 0 c cR R 1 3 2 0 1 1
           

             

Hence the general solution of (2) is  .
1 3

2 3 3

3 3

c c 1
c c c 1
c c 1

     
             
          

Hence there are an infinite number of solutions.  They are the vectors in the subspace 
W = {  R3 :  = c [2, -1, 1]T with c  R}.  Since there is a nontrivial solution, S  is linearly 

x x
dependent.  However, we must exhibit one nontrivial solution which we do by choosing 
c1=1, c2 = 1, and c3 = 1.  Hence we have 

 (4)
1 2 1 0

(1) ( 1) (1)
1 3 2 0
       

          
       

Since we have exhibited a nontrivial linear combination of the vectors in S, (4) alone proves that 
S  is a linearly dependent set in the vector space R2   QED

It may be easy to guess a nontrivial solution (if one exists).  We call this method the
Clever Ad Hoc (CAH) method.  You may have noted that the first and third vectors in the
previous example add together to give the second vector.  Hence the coefficients c1, c2, and c3
could have been easily guessed.

EXAMPLE #2.  Determine if   is linearly independent.

1 3 4
S 2 , 6 , 5

1 3 6

      
             
             

Solution.  (Again this is not a yes-no question and a proof is required)  Note that since 
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   we have 
1 3

3 2 6
1 3

   
   
   
   
   
   


 

. (5)
1 3 4 0

(3) 2 ( 1) 6 (0) 5 0
1 3 6 0

       
                 
               

Since we have exhibited a nontrivial linear combination of the vectors in S, (5) alone proves that 
S  is a linearly dependent set in the vector space R3 Hence  S  is linearly dependent.  Q.E.D.

We give a final example.

EXAMPLE #3.  Determine if    is linearly independent.
1 1

S ,
1 2

    
     

    

Solution.  Since  is not a multiple of  we assume 1
1
 
 
 
 

1
2
 
 
 
 

1 2
1 2

1 2

c c 01 1 0c c Ac 01 2 0 c 2c 0
     
     
          

 
    

 


where 

      and .  Hence
1 1

A
1 2
 

  
 

1

2

c
c

c
 

  
 



1 2 1 2 2

1 2 2

c c 01 1 1 1 c c c 0
R R c 01 2 0 1

       
         

Since we have proved that the trivial linear combination where c1 = c2 = 0 is the only linear
combination of the vectors in S that gives the zero vector in  R2 (i.e., we have proved that S  is a
linearly independent set.
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EXERCISES on Linear Independence (of Column Vectors)

EXERCISE #1.  True or False.
_____ 1. If V be a vector space and   V, then S is linearly independent (.i.) if S {x ,..., x }1 k

 

             the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous) vector equation          
             is   c1 = c2 =  = cn = 0.1 1 2 2 k kc x c x c x 0     

  

_____ 2. If V be a vector space and   V, then S is linearly independent (.i.) if S {x ,..., x }1 k
 

             the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous) vector equation          
             is the trivial solution.1 1 2 2 k kc x c x c x 0     

  

_____ 3.  If V be a vector space and   V, then S is linearly dependent (.d.) ifS {x ,..., x }1 k
 

              there is a set of scalars not all zero satisfying  .1 1 2 2 k kc x c x c x 0     
  

_____ 4. If V is a vector space and   V contains the zero vector, then S isS {x ,..., x }1 k
 

               linearly dependent.
_____ 5. If V be a vector space, and  V, then S is linearly independent.

 
x 0 S {x}



_____ 6.  If  c1  is true then by the zero product theorem either c1 = 0 or . _____ 
 
x = 0  

x = 0

_____ 7. If V is a vector space and  S = { , } V and  either  or  is the zero vector, then S x
y x

y
              is linearly dependent.
_____ 8. If V is a vector space and  S = { , } V where and  are nonzero vectors, then S isx

y x
y

              linearly dependent if and only if one vector is a scalar multiple of the other. 

EXERCISE #2.  Use the procedure given above to determine (using DUD) if is1 4 2S , ,1 3 2
       
      
            



linearly dependent or linearly independent or neither.  Thus you must explain completely.

EXERCISE #3.  Use the procedure given above to determine (using DUD) if  is
1 4 4

S 2 , 8 , 5
1 4 6

      
             
             

linearly dependent or linearly independent or neither.  Thus you must explain completely.

EXERCISE #4.  Use the procedure given above to determine (using DUD) if  
1 1

S ,
1 2

    
     

    
is linearly dependent or linearly independent or neither.  Thus you must explain completely.

EXERCISE #5. Prove Theorem #1.

EXERCISE #6. Prove Theorem #3.

EXERCISE #7. Prove Theorem #4.
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Handout #4 BASIS SETS AND DIMENSION Professor Moseley

DEFINITION #1.  Let B = { , ,..., }  W  V where W is a subspace of the vector space
x1

x2 kx

V.  Then B  is a basis of  W  if
 i) B  is linearly independent
ii) B spans  W  (i.e. Span  B = W)

To prove that a set  B  is a basis (or basis set or base) for  W  we must show both  i) and ii).  We
already have a method to show that a set is linearly independent.  To use DUD consider the
vector equation

c1  + c2  +  + ck  = (1)
x1

x2 kx

0

in the unknown variables c1, c2, ...,ck and show that the trivial solution  c1 = c2   = ck = 0 is the 
only solution of (1).  To show that  B  is a spanning set using DUD we must show that an 
arbitrary vector  W can be written as a linear combination of the vectors in B; that is we must 


b

show that the vector equation

c1   + c2   +  + ck   = (2)
x1

x2 kx

b

in the unknown variables  c1, c2, ...,ck always has at least one solution.

EXAMPLE (THEOREM) #1.  Show that B = { [1,0,0]T, [1,1,0]T }  is a basis for W = { [x, y, 0]T:
x,y  R }.
Solution. (proof)  To show linear independence  we solve

    or      to obtain c1 = c2 = 01 2

1 1 0
c 0 c 1 0

0 0 0

     
           
          

c c 0
      c 0
        0 0

1 2

2

 



     so that B is linearly independent.

  ii) To show  B  spans  W  we let   = [x, y, 0]  W (i.e., an arbitrary vector in W) andx

solve

                or    to obtain 1 2

1 1 x
c 0 c 1 y

0 0 0

     
           
          

c c
      c y
        0 0

1 2

2

 



x

c2 = y  c1 = xc2 = xy.  
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 Hence for any  we have  ;

x
x y W

0

 
   
  


x 1 1

x y (x y) 0 y 1
0 0 0

     
             
          



  that is, every vector in  W  can be written as a linear combination of vectors in B. 
  Hence  B  spans  W  and  Span  B = W.  

Since B is a linearly independent set and spans W, it is a basis for W.
Q.E.D.

EXAMPLE (THEOREM) #2.   B = where  is a basis of Rn. . 1 nˆ ˆe ,..., e
th

T
i

i slot
ê [0,...,0,1,0,...,0]

 


THEOREM #3.  Let B = { , ,..., }  W  V where W is a subspace of the vector space V. 1x 2x kx

Then B  is a basis of  W  iff  W, ! c1, c2, ...,cn such that .x 1 1 2 2 k kx c x c x c x     

The values of c1, c2, ...,cn associated with each are called the coordinates of  with respect tox x

the basis  B = { , ,..., }.  Given a basis, finding the coordinates of for any given vector is1x 2x nx x

an important problem..  
Although a basis set is not unique, if there is a finite basis, then the number of vectors in a

basis set isunique.

THEOREM #4.  If B = { , ,..., } is a basis for a subspace W in a vector space V, then
x1

x2 kx

every basis set for W has exactly k vectors.

DEFINITION #2.  The number of vectors in a basis set for a subspace W of a vector space V is 
the dimension of W.  If the dimension of W is k, we write dim W = k.

THEOREM #5.  The dimension of Rn over R (and the dimension of Cn over C) is n.

Proof idea.  Exhibit a basis and prove that it is a basis.  (See Example (Theorem) #2)
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EXERCISES on Basis Sets and Dimension

EXERCISE #1.  True or False.
_____ 1. If  B = { , ,..., }   V where is a vector space, then B  is a basis of  W  if

x1
x2

x n

 B  is linearly independent and B spans  W  (i.e. Span  B = W)
_____ 2. To show that  B  is a spanning set using DUD we must show that an arbitrary vector 
                W can be written as a linear combination of the vectors in B


b

_____ 3. To show that  B = { , ,..., }   V where V is a vector space is a spanning set
x1

x2
x n

we 
               must show that for an arbitrary  vector   W  the vector equation


b

              c1   + c2   +  + cn   =  in the unknown variables  c1, c2, ...,cn always has at 
x1

x2
x n


b

               least one solution.
_____ 4. If B = { , ,..., }  V where V is a vector space, then B  is a basis of  W  iff 

x1 2x
x n

                W, ! c1, c2, ...,cn such that .x 1 2 nx c x c x c x      
   

_____ 5. B = { [1,0,0]T, [1,1,0]T }  is a basis for W = { [x, y, 0]T: x,y  R }.

_____ 6. If  B = { , ,..., }  W  V where W is a subspace of the vector space V and  B 
x1 2x

x n

               is a basis of  W so that   W, ! c1, c2, ...,cn such that , then thex 1 2 nx c x c x c x      
   

                values of c1, c2, ...,cn associated with each are called the coordinates of  with x x

               respect to the basis  B.
_____ 7. A basis set for a vector space is not unique.

_____ 8. If B = { , ,..., } is a basis for a subspace W in a vector space V, then every
x1

x2
x n

                basis set for W has exactly n vectors.
_____ 9. The number of vectors in a basis set for a vector space V is called the dimension of V.  

_____ 10.  If the dimension of V is n, we write dim V = n.

 _____ 11. The dimension of Rn over R. 

_____ 12. The dimension of Cn over C is n.

EXERCISE #2. Show that B = { [1,0,0]T, [2,1,0]T }  is a basis for W = { [x, y, 0]T: x,y  R }.

EXERCISE #3. Show that  B = where  is a basis of Rn. . 1 nˆ ˆe ,..., e
th

T
i

i slot
ê [0,...,0,1,0,...,0]

 


EXERCISE #4. Show that the dimension of Rn over R is n.

EXERCISE #5. Show that the dimension of Cn over C is n.
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Handout #1 LINEAR OPERATOR THEORY Professor Moseley

In this handout, we review our preview of linear operator theory in the previous chapter. 
The most important examples of linear operators are differential and integral operators and
operators defined by matrix multiplication.  These arise in many applications.  Lumped
parameter systems (e.g., linear circuits and mass spring systems) have a finite number of state
variables and give rise to discrete operators defined by matrices on finite dimensional vector
spaces such as Rn.  Differential and integral equations (e.g., Maxwell’s equations and the Navier-
Stokes equation) are used to model distributed (continuum) systems having an infinite number
of state variables and require infinite dimensional vector spaces (i.e., function spaces).  That is,
we have differential and integral operators on function spaces.

Even without covering any topics in differential equations, your background in calculus 
should be sufficient to understand discrete and continuous operators as linear operators on vector
spaces.  

A function or map T from one vector space  V  to another vector space W is often called
an operator.  If we wish to think geometrically (e.g., if V and W are  R2 or R3) rather than
algebraically we might call T a transformation.

DEFINITION 1.    Let V and W be vector spaces over the same field K.  An operator T:V  W is
said to be linear  if for all ,   V  and scalars  α,β,  it is true that

x y
                T( α  + β  ) = α T( )  + β T( ). (1)

x y x y

THEOREM 1.    Let V and W be vector spaces over the same field K.  An operator T: V  W   is
linear if and only if the following two properties are true:

i)  ,   ε V   implies   T(  +  )  =  T( ) + T( ) (2)
x y x y x y

         ii)  α  a scalar and  εV implies  T(α )  =  α T( ). (3)
x x x

EXAMPLE 1  Let the operator  T:Rn  Rm be defined by matrix multiplication of the column 
vector  by the m× n  matrix  A; that is, let

x

          T( ) =df   (4)
x A

mxn

x
nx1

where  Rnx1 = Rn  and =      Rm×n.
x

x
x

x

nx1

1

2

n
































mxn
A

1,1 1,2 1,n

2,1 2,2 2,n

m,1 m,1 m,n

a a a
a a a

a a a
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Then T is a linear operator.

EXAMPLE 2  Let I = (a,b).  The operator  D:C1(I,R)  C(I,R) be defined by

          D(f) =df (5)
df
dx

where  f ε C1(I,R) = {f:I  R:  exists and is continuous on I} and
df
dx

C(I,R) ={f:I  R : f is continuous on I}.  Then D is a linear operator.  We may restrict D to 
A (I, R) ={f:I  R:f is analytic on I} so that D:A (I, R) A (I, R) maps a vector space back to
itself.

DEFINITION #2.  Let T:VW be a mapping from a set V to a set W.  The set 
R(T) = { y W: there exists an xV such that y = T(x) } is called the range of T.  If W has an
additive structure (i.e., a binary operation which we call addition) with an additive identity which
we call 0, then the set N(T) = {xV: T(x) = 0} is called the null set of T (or nullity of T).

If T is a linear operator from a vector space V to another vector space W, we can say more.

THEOREM #2  Let T:VW be a linear operator from a vector space V to a vector space W.  The 
range of T R(T) = {  W: there exists an  V such that   = T( ) }, is a subspace of W

y x y x
and the  null set of T, N(T) = { V: T( ) = 0} is a subspace of V.

x x

We rename these sets.

DEFINITION #3.  Let T:VW be a linear operator from a vector space V to another vector
space  W.  The set R(T) = { W: there exists an V such that  = T( ) } is called the

y x y x
range space of  T and the set N(T) = { V: T( ) = 0} is called the null space of T. .

x x
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Handout #2 INTRODUCTION TO ABSTRACT Professor Moseley
LINEAR MAPPING PROBLEMS

     We consider the (abstract) equation (of the first kind)

 T( ) =       (Nonhomogeneous) (1)
x


b

where  T  is a linear operator from the vector space  V  to the vector space W ( T:V  W ).  We
view (1) as a mapping problem; that is, we wish to find those  that are mapped by T to . x's b



THEOREM #1.  For the nonhomogeneous equation (1) there are three possibilities:
1)  There are no solutions.
2)  There is exactly one solution.
3)  There are an infinite number of solutions.

THEOREM #2.  For the homogeneous equation

 T( ) =       (Homogeneous) (2)
x


0

there are only two possibilities:
1)  There is exactly one solution, namely  =   ; that is the null space of  T (i.e. the set of 

x

0

     vectors that are mapped into the zero vector) is  N(T) = { }.

0

2)  There are an infinite number of solutions.  If the null space of  T  is finite dimensional, say 
     has dimension k ε N, then the general solution of (2)  is of the form

  = c1   +   +ck   =   (3)
x x1

x k

k

i i
i 1

c  x

 

    where B = { ,, }  is a basis for  N(T)  and  ci, i=1,...,k  are arbitrary constants.
x1

x k

THEOREM #3.  The nonhomogeneous equation (1) has at least one solution if  is        

b

contained in the range space of  T, R(T), (the set of vectors W for which there exist V 
w v

such that T[ ] = ).  If this is the case, then the general solution of (1) is of the form
v w

  =   +  (4)
x x p

x h

where    is a particular (i.e. any specific) solution to (1) and  is the general (e.g. a
x p

x h

parametric formula for all) solution(s) of (2).  If N(T) is finite dimensional then 

  =   +  =  + c1   +   +ck   = + (5)
x x p

x h
x p

x1
x k

x p c  xi i
i 1

k 
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where B = { ,, } is a basis of N(T).  For the examples, we assume some previous
x1

x k

knowledge of determinants and differential equations.  Even without this knowledge, you
should get a feel for the theory.  And if you lack the knowledge, you may wish to reread this
handout after obtaining it. 

EXAMPLE 1  OPERATORS DEFINED BY MATRIX MULTIPLICATION 
We now apply the general linear theory to operators defined by matrix multiplication.  We look
for the unknown column vector    = [x1,x2,,xn]T.  (We use the transpose notation on a row

x
vector to indicate a column vector to save space and trees.)  We consider the operator
 T[ ] = A  where A is an m×n matrix.

x x

THEOREM 4.  If   is in the column (range) space of the matrix (operator)  A, then  the general

b

solution to the nonhomogeneous system of algebraic equation(s)

     =   (6)A
mxn

x
nx1


b

mx1

can be written in the form

  =   + c1   +   +ck   =  +   (7)
x x p

x1
x k

x p c  xi i
i 1

k 




where  is a particular ( i.e. any) solution to (6) and
x p

              = c1   +   +ck   =   (8)
x h

x1
x k c  xi i

i 1

k 




is the general solution (i.e. a parametric formula for all solutions) to the complementary
homogeneous  equation

     =   (9)A
mxn

x
nx1 mx1

0


Here B = { ,, } is a basis for the null space N(T) ( also denoted by N(A) ) which has
x1

x k

dimension  k.  All of the vectors  , ,,  can be founded together using the computationalpx x1 kx

technique of Gauss Elimination.  If N(T) = { }, then the unique solution of   =   is  

0 A

mxn nx1
x


b

mx1

x p

(and the unique solution to   is  = ).
mx1mxnnx1
0A x 
 x h


0

nx1

THEOREM 5.  If  n = m, then we consider two cases (instead of three) for equation (6):
 1)   det A  0 so that A is nonsingular; then the matrix A has a unique inverse, A1 (which is
       almost never computed),  and for any Rm,   =   always has the unique solution 


b A

nxn

x
nx1


b

nx1
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       =A1 .  Thus the operator  is one-to-one and onto so that any vector  is x b


T(x) = Ax  
b

      always in the range space  R(A)  and only the vector =A1 . maps to it.  Again, the matrix  
x


b

      A defines an operator that is a one-to-one and onto mapping from  Rn to Rn (or Cn to Cn). 
 2)  det A = 0 so that A is singular; then either there is no solution or if there is a solution, 
      then there are an infinite number of solutions.  Whether there is no solution or an infinite
       numbers of solutions depends on , specifically, on whether εR(A) or not.  The operator


b


b

       defined by tha matrix  A  is not one-to-one or onto and the dimension of N(A) is greater than 
       or equal to one.

EXAMPLE 2  LINEAR DIFFERENTIAL EQUATIONS
To avoid using x as either the independent or dependent variable, we look for the unknown
function  u (dependent variable) as a function of  t (independent variable).  We let the domain of u
be I = (a,b) and think of the function  u  as a vector in an (infinite dimensional) vector (function)
space.

THEOREM 6.  If  g  is in the range space  R(L)  of the linear differential operator  L  (i.e. 
g ε R(L) )  then the general solution to the nonhomogeneous equation

L[ u(t) ] = g(t)  t   I (10)

can be written in the form

u(t)  =  up(t)  +  uh(t) (11)

where  up  is a particular solution to (10) and  uh  is the general solution to the homogeneous
equation

L[ u(t) ]  =  0  t   I (12)

Special cases:
1) L[ u(t) ] = u" + p(t)u + q(t)u.     Second Order Scalar Equation.

For this case, we let I = (a,b) and L:A (I,R) A (I,R).  It is known that the dimension of
the 
            null space is two so that

                            uh(t) = c1u1(t) + c2u2(t).

    2)     L[ u(t) ] =  po(t)   +   +  pn(t) u(t)            nth  Order Scalar Equation.
n

n

d u
dt

Again we let I = (a,b) and L:A (I,R) A (I,R).  For this case, the dimension of the null 
            space is  n  so that
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          uh(t)  = c1 u1(t)  +   +cn un(t)  =   .c  u (t)i i
i 1

n




   3)      L[ ] =                      First Order System  ("Vector" Equation)
u(t) du

dt


P (t)u(t)

nxn



             Again we let I = (a,b), but now  L:A (I,Rn) A (I,Rn) where  A (I,Rn) =

{ }; nu(t) : I R


            that is the set of all time varying "vectors".  Here the word "vector" means an  n-tuple of 
            functions.  We replace (10) with 

L[ ]  =    
u(t) g(t)

             and  (12)   with 
L[ ] = .  

u(t)

0

             Then
  =    +  
u(t) u (t)p

u (t)h

            where
         = c1 +   + cn    (i.e. the null space is  n  dimensional).

u (t)h
u (t)1

u (t)n
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Handout #1 INTRODUCTION TO COMPUTATION OF DETERMINANTS Prof. Moseley

Rather than give a fairly complicated definition of the determinant in terms of minors and
cofactors, we focus only on two methods for computing the determinant function det:Rn×nR (or

det:CnxnC).  Let  A= .  The we define det(A) = adbc.  Later we will show that 
a b
c d
 
 
 

A1 = .  For ARn×n (or Cn×n), we develop two methods for computinga b a b1 1
c d c dad bc det A

    
        

det(A): Laplace Expansion  and  Gauss Elimination
But first, we give (without proof) several properties of determinants that aid in their

evaluation.

THEOREM.   Let ARn×n (or Cn×n).  Then
1. (ERO's of type 1) If B is obtained from A by exchanging two rows, then det(B) =  det(A).
2. (ERO's of type 2) If B is obtained from A by multiplying a row of A by a0,  then 
     det(B) = a det(A).
3. (ERO's of type 3) If B is obtained from A by replacing a row of A by itself plus a scalar
multiple of another row,  then det(B) =  det(A).
4. If U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using
only ERO's of type 3, then det(A) = det(U)
5. If URn×n (or Cn×n) is upper triangular, then det(U) is equal to the product of the diagonal
elements.
6. If A has a row (or column) of zeros, then det(A) = 0..  
7. If A has two rows (or columns) that are equal, then det(A) = 0..  
8. If A has one row (column) that is a scalar multiple of another row (column), then det(A) = 0..  
9. det(AB) =det(A) det(B)..
10.If det(A)  0, then det(A1) = 1/det(A).
11. det(AT) = det(A).

EXERCISES on Introduction of Computation of Determinants

EXERCISE #1.  True or False.

_____ 1. If A= , then det(A) = adbc
a b
c d
 
 
 

_____ 2.If A= , then  A1 = .
a b
c d
 
 
 

a b1
c dad bc

 
   

_____ 3.If  ARn×n (or Cn×n), there are (at least) two methods for computing det(A).
_____ 4. If  ARn×n (or Cn×n), Laplace Expansionis one method for computing det(A)
_____ 5. 3.If  ARn×n (or Cn×n), use of Gauss Elimination is one method for computing det(A).
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_____ 6. If  ARn×n (or Cn×n) and B is obtained from A by exchanging two rows, then
               det(B) =  det(A).
_____ 7. If  ARn×n (or Cn×n) and B is obtained from A by multiplying a row of A by a0,  then 
                det(B) = a det(A).
_____ 8. If  ARn×n (or Cn×n) and B is obtained from A by replacing a row of A by itself plus a
                scalar multiple of another row,  then det(B) =  det(A).
_____ 9. If  ARn×n (or Cn×n) and U is the upper triangular matrix obtained from A by Gauss
               elimination (forward sweep) using only ERO's of type 3, then det(A) = det(U)
_____ 10. If  ARn×n (or Cn×n) and  URn×n (or Cn×n) is upper triangular, then det(U) is equal to
                the product of the diagonal elements.
_____ 11. If  ARn×n (or Cn×n) and A has a row of zeros, then det(A) = 0.
_____ 12. If  ARn×n (or Cn×n) and A has a column of zeros, then det(A) = 0.  
_____ 13. If  ARn×n (or Cn×n) and A has two rows that are equal, then det(A) = 0.  
_____ 14. If  ARn×n (or Cn×n) and A has two columns that are equal, then det(A) = 0. 
_____ 15. If  ARn×n (or Cn×n) and  A has one row that is a scalar multiple of another row, then 
                 det(A) = 0.  
_____ 16. If  ARn×n (or Cn×n) and  A has one column that is a scalar multiple of another column,
                 then det(A) = 0.  
_____ 17. If  A,BRn×n (or Cn×n) then  det(AB) =det(A) det(B)..
_____ 18. If  ARn×n (or Cn×n) and det(A)  0, then det(A1) = 1/det(A).
_____ 19. If  ARn×n (or Cn×n), thjen  det(AT) = det(A).

EXERCISE #2. Compute det A where 0 5
A

0 1
 

   

EXERCISE #3. Compute det A where 1 2
A

3 1
 

   

EXERCISE #4. Compute det A where 1 i
A

i 1
 

   

EXERCISE #5. Compute det A where   1 i
A

i 0
 

  
 

EXERCISE #6. Compute A1 if 2 5
A

3 7
 

  
 

EXERCISE #7. Compute A1 if  2 1
A

5 3
 

  
 

EXERCISE #8. Compute A1 if  1 i
A

i 2
 

  
 

EXERCISE #9. Compute A1 if    1 i
A

i 0
 

   

EXERCISE #10. Compute A1 if 0 5
A

0 1
 

   

EXERCISE #11. Compute A1 if  1 2
A

3 1
 

   

EXERCISE #12. Compute A1 if  1 i
A

i 1
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Handout #2     COMPUTATION USING LAPLACE EXPANSION Professor Moseley

We give an example of how to compute a determinant using Laplace expansion..

EXAMPLE. Compute det(A) where A=  using Laplace expansion..

2 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2

 
   
  
  

Solution: Expanding in terms of the first row we havc

det(A) =  = 2  (1)  

2 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2


 

 


2 1 0
1 2 1

0 1 2


 



1 1 0
0 2 1
0 1 2

 




+(0) (0)

1 2 0
0 1 1
0 0 2


 

1 2 1
0 1 2
0 0 1

 



so the last two 3x3's are zero.  Hence expanding the first remaining 3x3 in terms of the first row
and the second interms of the first column we have

 det(A)  = 2  (1)   2 1 1 1 1 2( 1) (0)1 2 0 2 0 1
 
 
 
 

     
 

2 1 1 0 1 0(0) (0)1 2 1 2 2 1
 
 
 
 

   
  

   = 2[(41) +(2)] + [4  1] = 2 + 3 = 5 
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EXERCISES on Computation Using Laplace Expansion

EXERCISE #1.  Using Laplace expansion, compute det A where A=   
3 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2

 
   
  
  

EXERCISE #2.  Using Laplace expansion, compute det A where A=   
2 1 0 0
1 2 1 0

0 1 2 1
0 0 1 3

 
   
  
  

EXERCISE #3.  Using Laplace expansion, compute det A where A=   
2 1 0 0
1 2 1 0

0 1 2 0
0 0 1 2

 
   
 
  

EXERCISE #4.  Using Laplace expansion, compute det A where A=  
1 0 2
0 1 3
0 1 4

 
 
 
  

EXERCISE #5.  Using Laplace expansion, compute det A where A=  
1 0 0
0 1 3
2 1 4

 
 
 
  

EXERCISE #6.  Using Laplace expansion, compute det A where A=  
1 0 2
0 1 0
0 1 4
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Handout #3         COMPUTATION USING GAUSS ELIMINATION Professor Moseley

We give an example of how to compute a determinant using Gauss elimination.

EXAMPLE. Compute det(A) where A=  using Gauss elimination.

2 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2

 
   
  
  

Recall
THEOREM.   Let ARn×n (or Cn×n).  Then
3. (ERO's of type 3) If B is obtained from A by replacing a row of A by itself plus a scalar
multiple of another row,  then det(B) =  det(A).
4. If U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using
only ERO's of type 3, then det(A) = det(U).

     2 1

2 1 0 0
R (1/ 2)R 1 2 1 0

0 1 2 1
0 0 1 2

 
    
  
  

3 2

2 1 0 0
0 3 / 2 1 0

R (2 / 3)R 0 1 2 1
0 0 1 2

 
  
   
  

        

3 2

2 1 0 0
0 3/ 2 1 0
0 0 4 / 3 1

R (3/ 4)R 0 0 1 2

 
  
 
   

2 1 0 0
0 3 / 2 1 0
0 0 4 / 3 1
0 0 0 5 / 4

 
  
 
 
 

Since only ERO's of Type 3 were used, we have  det(A) = det(U) = 2(3/2)(4/3)(5/4) = 5.

EXERCISES on Computation Using Gauss Elimination

EXERCISE #1.  Using Gauss elimination, compute det A where A=  
3 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2

 
   
  
  

EXERCISE #2.  Using Gauss elimination, compute det A where A=   
2 1 0 0
1 2 1 0

0 1 2 1
0 0 1 3

 
   
  
  

EXERCISE #3.  Using Gauss elimination, compute det A where A=   
2 1 0 0
1 2 1 0

0 1 2 0
0 0 1 2
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Handout #1 INTRODUCTION TO CRAMER’S RULE Prof. Moseley

Cramer’s rule is a method of solving  when A is square and the determinant of AAx = b


which we denote by D  0.  The good news is that we have a formula.  The bad news is that,
computationally, it is not efficient for large matrices and hence is never used when n > 3.  Let A
be an nxn matrix and A = [aij].  Let  be nx1 column vectors andT

1 2 nx = [x ,x ,...,x ] and b


.  Now let Ai be the matrix obtained from A by replacing the ith column of a byi ix = [x ] and b = [b ]


the column vector .  Denote the determinant of Ai by Di.  Then xi = Di/D  so thatb


.T T
1 2 n ix = [x ,x ,..., x ] = [D / D]

EXERCISES on Introduction to Cramer’s Rule

EXERCISE #1. Use Cramer’s rule to solve where   and Ax = b
 2 3

A
3 5
 

  
 

2
b =

3
 
 
 



EXERCISE #2. Use Cramer’s rule to solve where  and Ax = b
 2 3

A
3 5
i

i
 

  
 

2
b =

3
 
 
 



EXERCISE #3.Use Cramer’s rule to solve  where Ax = b
 1 1 1 5

A 1 1 3 and b 1
2 1 1 3

   
          
      



EXERCISE #4. Use Cramer’s rule to solve 
 x1 +  x2 +  x3 + x4 =  1        
x1 + 2x2  + x3     =  0        
x3 + x4  = 1                       
x2 + 2x3 +  x4  = 1            
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A SERIES OF CLASS NOTES  TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS
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Handout #1 NORMED LINEAR SPACES Prof. Moseley

Since solving linear algebraic equations for a field K require only a finite number of exact
algebraic steps, any field will do.  However, actually carrying out the process usually involves
approximate arithmetic and hence approximate solutions.  In an infinite dimensional vector space
the solution process often requires an infinite process that converges.  Hence the vector space (or
its field) must have additional properties.  Physicists and engineers think of vectors as quantities
which have length and direction.  Although the notion of direction can be discusssed, the
definition of a vector space does not include the concept of the length of a vector.  The
abstraction of the concept of length of a vector is called a norm and vector  spaces (also called
linear spaces) which have a norm (or length) are called normed linear spaces.  Having the
notion of length in a vector space gives us the notion of a unit vector (i.e. a vector of length one). 

DEFINITION #1.  A normed linear space is a real or complex vector space V on which a norm
has been defined.  A norm (or length) is a function  such that:V { : 0}    R R

1) x 0, x V  
 

 if and only if  x 0
 x 0



2)     scalars αx x x V    
  

3)   (this is called the triangle in equality)1 2 1 2 1 2x x x x x ,x V    
 

Note that the zero vector  is the only vector with zero length.  For all other vectors 0


x

we have .  Hence for each non zero  we can define the unit vector x 0 x

. (1)1 xu u(x) x
x x

  


   
 

LEMMA #1.  If V, and , then . x V, x 0 
  1 xu u(x) x

x x
  

   
  u 1

Proof.  Let .  Then1 xu u(x) x
x x

  


   
 

Statement Reason

      Definition of           1u x
x

 
 û

= Property (2) above       1 x
x




= Algebraic Properties of Rx
x





= 1 Algebraic Properties of R.
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THEOREM #1.  If  , then  can be written as  where  is a unit vector in thex 0
 x x x u

   u

direction of  and  gives the length of .x x x

Proof  idea.  That   is the length or norm of   follows from the definition of   as a norm orx x x

length.  Since ,   and we define  as before as the unit vector wex 0


x 0
 u 1 xu u(x) x

x x
  


   

 

see that  is a positive scalar multiple of  so that it is pointed in the same “direction” as .  Tou x x

show that  is left as an exercise.   QEDx x u
  

The abstraction of the notion of distance between two points in a set (or vector space) is
called a metric.  

DEFINITION #2.    A metric space is a set S on which a metric has been defined.  A metric (or
distance between) on S is a function ρ:S×SR+={αRα0}  such that

1) ρ(x,y)0 f x,yS.
ρ(x,y) =0   if and only if x=y.

2) ρ(x,y) = ρ(y,x).
3) ρ(x,z)  ρ(x,y) + ρ(y,z) (this is also called the triangle in equality)

THEOREM #2.  Every normed vector space is a metric space with the metric .(x, y) x y  
   

However, we note that a metric space need not be a vector space.  Geometrically in R3,  ρ is the
distance between the tips of the position vectors  and .  A metric yields the notion of ax y

topology, but we need not develop this more general concept.  However, to discuss approximate
solutions, we do need  the notion of completeness.  Although it could be developed in a more
general context, we are content to discuss complete vector spaces.    

DEFINITION #3.  A Cauchy sequence of vectors is a sequence  in a normed linearn 1n{x


 }
space V such that for any ε>0, there exists N with   < ε whenever m,n>N.

xn
xm

Thus get close together when n and m are large.  m nx and x 

DEFINITION #4.  A sequence of vectors  in a vector space V is convergent if there existn 1n{x


 }
such that for any ε>0, there exists N with   < ε whenever n>N.

x xn
x

DEFINITION #5.  A vector space is complete if every Cauchy sequence of vectors converges.  A
Banach Space is a complete normed linear space.
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The concepts of metric (or topology) and completeness are essential for computing limits; for
example, in the process of computing approximate solutions and obtaining error estimates.
Completeness does for a vector space what R does for Q (which are just special cases).  It makes
sure that there are no holes in the space so that Cauchy sequences (that look like they ought to
converge) indeed have a vector to converge to.  If we wish to solve problems in a metric space S
and S is not complete, we can construct the completion of S which we usually denote by . S
Then, since   is complete, we can obtain approximate solutions. S
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Handout #2 INNER PRODUCT SPACES Prof. Moseley

Recall that to determine if two vectors in R3 are perpendicular, we compute the dot
product.  The abstraction of the notion of dot product in an abstract vector space is called an
inner product.  Vector spaces on which an inner product is defined are called inner product
spaces.  As we will see, in an inner product space we have not only the notion of two vectors
being perpendicular but also the notions of length of a vector and a new way to determine if a
set of vectors is linearly independent.

DEFINITION #1.  An inner product space is a real or complex vector space  V  on which an
inner product is defined.  A inner product is a function (,): V × VR such that 
                                    ____

1)  (x, y) (y,x) x, y V  
     

(the bar over the inner product indicates complex conjugate.  If  V  is a real vector
space, it is not necessary and we see that the inner product is commutative for real
vector spaces.)

2)   and scalars α.( x, y) (x, y) x, y V    
     

3) .1 2 11 2 1 2(x x , y) (x , y) (x , y) x ,x , y V    
         

(Properties 2 and 3) say that the inner product is linear in the first slot.)
4) (x, x) 0 x V  

  

  (x,x) 0 iff x 0 
  

If  V  is an inner product space we define a mapping,   by: V { : 0} 
    R R

. (1)x (x,x)  

THEOREM #1.   given by (1) defines a norm on any inner product space and hencex (x,x)  

makes it into a normed linear space.  (See the previous handout)

DEFINITION #2.  A Hilbert space is a complete, inner product space. 

Again, the concept of completeness in a vector space is an abstraction of what R does for Q.  R is
complete; Q is not.

EXAMPLE (THEOREM).  Let  V = Rn  and define the inner product by  
n

T
i i

i 1

(x, y) x y x y


    

where .  Note that we can define the inner product in Rn in terms of matrixT T
1 nx [x ,..., x ]



multiplication.  Note also .  We can then prove (i.e. verify) that  defines anT(x, y) y x
    T(x, y) x y

   

inner product (i.e. satisfies the properties in the definition of an inner product).  
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Proof of 2).  Let , thenT T
1 nx [x ,..., x ]

 T T
1 ny [y ,..., y ]



Statement Reason
       = definition of inner product for Rn.  ( x, y)

   Tx y
 

= notation and definition of transpose

1

1 n

n

y

( [x ,..., x ])

y

 
  
  
 
 

  

= definition of scalar multiplication 

1

1 n

n

y

[ x ,..., x ]

y

 
  
   
 
 

  
= (αx1)y1 + (αx2)y2 ++ (αxn)yn definition matrix multiplication     
= α(x1y1 + x2y2 ++ xnyn) properties real numbers            
= definition of matrix multiplicationT(x y)

 

= definition of inner product          (x, y)
 

QED

Note that in Rn we have 

. (2)
n

T 2 2 2
1 n i

i 1

x (x,x) x x x x x


            

In R3 we know that two vectors are perpendicular if their dot product is zero.  We abstract this
idea by defining two vectors in an inner product space to be orthogonal (rather than use the word
perpendicular) if their inner product is zero.

DEFINITION #3.  The row vectors =[x1,x2,...,xn] and =[y1,y2,...,yn] in Rn  are orthogonal if
x y

(and only if) .T(x, y) x y 0 
   

Pythagoras Extended.  In R3  (or any real inner product space) we might define two vectors to be
perpendicular if they satisfy the Pythagorean theorem; that is if 

. (3)2 2 2x y x y ( (x, y))    
 

Since ,   (3) may be rewritten asx y (x y)  
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(x, x) (y, y) (x y,x y)   
       

  =  (4)(x,x) 2(x, y) (y, y) 
     

(since the inner product is commutative; Cn is different.)  

THEOREM #2.  and  in Rn  are perpendicular iff they are orthogonal.x y

DEFINITION #4.   is a unit vector (i.e. a vector of length one) in the direction of thexû
x






nonzero vector  (  has no direction).  Hence any nonzero vector  can be written asx 0


x

   where  is the magnitude or length and  is a unit vector in the direction ofxx x
x




 


x xû
x






 .x

DEFINITION #5.  The cosine of the acute angle θ ( 0  θ  π) between two nonzero vectors  x

and  Rn isy

 (5)
T(x, y) x ycos( )

x y x y
  

   

   

Note:  This is often used as the geometric definition of dot product in R3.
To show that (5) does yield θ in R3 we first extend the concept of projection.

DEFINITION #6.  The vector projection of a vector  in the direction of a non-zero vector b


a

is given by 
(a,b)p b cos

a
  

 


           scalar

  ap b cos
a

 
    

 




      magnitude     unit vector giving direction of  p

      of p

    2

(a,b) a (a,b) a
a a a

 
   


  

The magnitude of   is called the scalar projection of  in the direction of  p b


a
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Handout #3 ORTHOGONAL SUBSPACES Prof. Moseley

We first review the definition, a theorem, and the test for a subspace.

DEFINITION #1.  Let  W  be a nonempty subset of a vector space  V.  If for any vectors  
,   W and scalars  α,β  K (recall that normally the set of scalars  K  is either R or C), we 

x y
have that α  + β   W, then  W  is a subspace of  V.

x y

THEOREM #1.  A nonempty subset  W  of a vector space  V  is a subspace of  V  if and only if 
for ,   V  and  α  K (i.e. α  is a scalar) we have.

x y
 i) ,   W  implies   +   W, and
x y x y

ii)    W  implies  α  W.
x x

TEST FOR A SUBSPACE.  Theorem #1 gives a good test to determine if a given subset of a
vector space is a subspace since we can test the closure properties separately.  Thus if  W  V
where V is a vector space, to determine if W is a subspace,we check the following three points.

1)  Check to be sure that  W  is nonempty.  (We usually look for the zero vector since if 
     there is W, then 0  =  must be in W.  Every vector space and every subspace x x 0



     must contain the zero vector.)
2)  Let  and   be arbitrary elements of  W  and check to see if   +   is in  W.  

x y x y
                  (Closure of vector addition)
   3)   Let  be an arbitrary element in  W  and check to see if  α  is in W. 

x x
                  (Closure of scalar multiplication).

DEFINITION #2  Let  W1 and W2 be subspaces of  a vector space  V.  Then the sum of W1 and
W2 is defined as W1 +W2 ={ : }.1 2x x

 
1 1 2 2x W and x W  

THEOREM #2  Let  W1 and W2 be subspaces of  a vector space  V.  Then the sum of W1 and W2
is subspace of V.

DEFINITION #3  Let  W1 and W2 be subspaces of  a vector space  V such that
.  Then the sum of W1 and W2 defined as W1 +W2 ={ : 1 2 0W W 


 1 2x x

 

} is a direct sum which we denote by 1 1 2 2x W and x W  
1 2W W

THEOREM #3  Let W1 and W2 be subspaces of a vector space V and 
.  Then for every vector  in V there exist unique 1 2 1 2 1 1 2 2:V = W W = x + x x W and x W      x

vectors W1 and W2 such that .1x 2x
1 2x = x + x  
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DEFINITION #4  Let  W1 and W2 be subspaces of  a real inner product space  V with inner 
product (,).  W1 and W2 are said to be orthogonal to each other if  +   x  W1 and   x +  y y

 W2, we have  ( , ) = 0.  We write W1 2 W2.x y

THEOREM #4.  If A Rm×n, then its row space is orthogonal to its null space and its column 
space is orthogonal to its left null space.  We write R(AT) 2 N(A) and R(A) 2 N(AT).

DEFINITION #5  Let  W  be a subspace of a real inner product space  V  with inner product (,).
The orthogonal complement of W is the set W 2 = { V: ( , ) = 0   W}.y x y x

THEOREM #5.  Let  W  be a subspace of a real inner product space  V  with inner product (,).
Then the  orthogonal complement of W, W 2 = { V: ( , ) = 0    W}, is a subspace.y x y x

THEOREM #6.  Let  W  be a subspace of a real inner product space  V  with inner product (,).
Then the  orthogonal complement of W 2 is W.  We write (W 2) 2 = W.

THEOREM #7.  If A Rm×n, then its row space is the orthogonal complement of its null space 
and the null is the orthogonal complement to the row space.  We write R(AT) 2 = N(A) and   
 N(A) 2 = R(AT).  Similarly, R(A) 2 = N(AT) and   N(AT) 2 = R(A).

THEOREM #8.  Let  W  be a nonempty subset of a real inner product space  V with inner 
product (,).  Then V is the direct sum of W and W 2 , V = W  W 2.

THEOREM #9.  If A Rm×n, then Rn = R(AT)  N(A) and  Rm = R(A)  N(AT).  
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Handout #4 INTRODUCTION TO ERROR ANALYSIS Prof. Moseley
IN NORMED LINEAR SPACES

In vector spaces where the concept of length or norm (as well as direction) is available, 
we can talk about approximate solutions to the mapping problem 

T( ) = (1)u b


where T is a linear operator from V to W; T:VW where V and W are normed linear spaces.  
Let  V be an approximate solution of (1) and V be the exact solution which we assume au eu

to exist and be unique.  A measure of how good a solution  is is given by the norm or length of au

the error vector in V,

;v e aE u u 
  

that is,
.V v e aE E u u  

  

If T is invertible (e.g., if T:RnRn, is defined by a matrix, T( ) = A  and detA0), then x x

1 1 1
V v e a a aE E u u T (b) T (b ) T (b b )        

     

where .  (The inverse of a linear operator, if it exists, is a linear operator.)  By a well-a ab T(u )
 

known theorem in analysis, 

1 1
a aT (b b ) T b b   

   

      
where  T-1 is the norm of the operator T-1 which we assume to be finite.  If an a priori 
“estimate” (i.e., bound) of T-1, say T-1  C, can be obtained, then an “estimate of” (i.e., 
bound for) EV can be obtained by first computing .  Even without an estimate of (bound ab b

 

for) T-1, we may use 

E = EW = .   b  ba = b  T(ua)a ab b b T(u )  
   

where 

; W a aE b b b T(u )   
   

is a measure of the error for .  After all, if , then  so that EW = 0.  We call EW au a eu u 
aT(u ) b



the error vector in W.  Note that this error vector (and hence E) can always be 
computed whereas  usually can not.  (If  is known, then the exact solution  is VE


VE


e a Vu u E 
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known and there is no need for an approximate solution.)  In fact, E can be computed 
independent of whether (1) has a unique solution or not.  We refer to a solution that minimizes 
E = EW as a least error solution.  If (1) has one or more solutions, then these are all least error 
solutions since they all give E = 0.  On the other hand, if (1) has no solution, then choosing  tou

minimize E gives a “best possible” solution.  Under certain conditions, it is unique.
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Handout #5 ORTHOGONAL BASIS AND BASIS SETS FOR  Prof. Moseley
INFINITE DIMENSIONAL VECTOR SPACES  

DEFINITION #1.  Let S = { , ,..., }  W  V where W is a subspace of the inner product1x 2x kx

space V. Then S is said to be (pairwise) orthogonal if for all i,j we have { , )  = 0  for ij.  If Six jx

is a basis of W, it is called an orthogonal basis.  (This requires that S does not contain the zero
vector.)  An orthogonal basis is said o be othonormal if for alli, ix 0

If B = { , ,..., } V is an orthogonal basis for the inner product space V, then the1x 2x kx

coordinates for are particularly easy to compute.  Let x V


 .  (1)1 1 2 2 k kx c x c x c x V      

To find ci, take the inner product of both  sides with .jx

 .  1 1 2 2j j k k(x ,x) (x ,c x c x c x )       

 1 1 2 2j j j j k k(x ,x) (x ,c x ) (x ,c x ) (x ,c x )         

1 1 2 2j j j k j k(x ,x) c (x ,x ) c (x ,x ) c (x ,x )         

(2)j j j j(x , x) c (x ,x )
   

so that 

. (3)
j

j
j j

(x ,x)
c

(x ,x )


 

 

The concepts of a basis and orthogonal basis can be extended to infinite dimensional
spaces.  We first extend the concepts of linear independence and spanning sets.  

DEFINITION #2.  An infinite set S in a vector space V is linearly independent if every finite
subset of S is linearly independent.  Thus the countable set { , ,..., ,...} is linearly1x 2x kx

independent if Sn = { , ,..., } is linearly independent for all nN.1x 2x kx

DEFINITION #3.    Let the countable set S = { , ,..., ,...}  W  V where W is a subspace1x 2x kx

of a vector space V.  S is a Hamel spanning set for W if for all , there exists nN and c1, x W


c2, ..., cn such that  .  If V is a topological vector space (e.g. a normed linear1 1 2 2 n nx c x c x c x      
   

space), then S is a Schauder spanning set for W if for all , there exist c1,  c2, ..., cn,... suchx W


that  .1 1 2 2 n n n n
n 1

x c x c x c x c x
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DEFINITION #3.    Let B = { , ,..., }  W  V where W is a subspace of a vector space V. 1x 2x nx

B is a Hamel basis for W if it is linearly independent and a Hamel spanning set for W.  If V is a
topological vector space (e.g. a normed linear space), then B is a Schauder basis for W if it is
linearly independent and a Schauder spanning set for W..

EXAMPLE. 1) Let  B = {1, x, x2, x3, ...}.  Then B is a Hamel basis for the set of all polynomials
P (R,R) and a Scauder basis for the set of all analytic functions with an infinite radius of
convergence about x = 0.  Note that both of these spaces are infinite dimensional.
2) Let B = { , ,..., ,...} be an infinite linearly independent set in a real topological vector1x 2x nx

space.  Then B is a Hamel basis for the subspace W1 = { = c1 +c2 ++cn : c1, c2, ,...cnR}x 1x 2x nx

of V and   B is a Schauder basis for the subspace W2 = { = c1 +c2 ++cn +: c1, c2,x 1x 2x nx

,...cn,...R where the series converges} of V.  Again, note that both of these spaces are infinite
dimensional.

If B = { , ,..., ,...} V is an orthogonal basis for the Hilbert space H, then the coordinates1x 2x nx

for are particularly easy to compute.  Let x H


 .  (4)1 1 2 2 n nx c x c x c x H          
   

To find ci, take the inner product of both  sides with .jx

 .  j j 1 1 2 2 n n(x ,x) (x ,c x c x c x )          
     

 j j 1 1 j 2 2 j n n(x ,x) (x ,c x ) (x ,c x ) (x ,c x )          
       

j 1 j 1 2 j 2 n j n(x ,x) c (x , x ) c (x ,x ) c (x ,x )          
       

      (5)j j j j(x ,x) c (x ,x )
   

. (6)
j

j
j j

(x ,x)
c (x ,x )

 

 

Note that this is the same formula as for the finite dimensional case.
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Handout #1 RE-INTRODUCTION TO MATRIX INVERSES Prof. Moseley

Recall that if A and B are square, then we can compute both AB and BA.  Unfortunately,
these may not be the same.

THEOREM #1.  If n >1, then there exists A, BR n×n such that AB  BA.  Thus matrix
multiplication is not commutative.  

Thus AB=BA is not an identity.  Can you  give a counter example for n=2? (i.e. an example
where AB  BA.)

DEFINITION #1.  For square matrices, there is a multiplicative identity element.  We define
the n×n matrix I by

 =         One's down the diagonal.  Zero's everywhere else.I
mxn

1 0 0

0 1 0

0 0 1

  

  

  

  

  

  





























THEOREM #2. We have      =        =              A  Knxn   A
nxn

I
nxn

I
nxn

A
nxn

A
nxn

DEFINITION #2.  If there exists B such that AB = I., then B is a right (multiplicative) inverse
of A.    If there exists C such that CA = I., then C is a left (multiplicative) inverse of A.  If  
AB = BA = I, then B is a (multiplicative) inverse of A and we say that A is invertible.  If B is
the only matrix with the property that AB = BA = I, then B is the inverse of A.  If A has a unique
inverse, then we say A is nonsingular and denote its inverse by A-1.

THEOREM #3. Th identity matrix is its own inverse.  

Later we show that if A has a right and a left inverse, then it has a unique inverse.  Hence we
prove that A is invertible if and only if it is nonsingular.  Even later, we show that if A has a right
(or left) inverse, then it has a unique inverse.  Thus, even though matrix multiplication is not
commutative, a right inverse is always a left inverse and is indeed the inverse.  Some matrices
have inverses; others do not.  Unfortunately, it is usually not easy to look at a matrix and
determine whether or not it has a (multiplicative) inverse.

THEOREM #4. There exist A, BR n×n such that AI is invertible and B has no inverse.   
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INVERSE OPERATION.  If  B  has a right and left inverse then it is a unique inverse ((i.e.,  B-1

such that B-1B = BB-1 = I) and we can define Right Division  AB-1 and  Left Division  B-1A of A
by B (provided B-1 exists).  But since matrix multiplication is not commutative, we do not know

that these are the same.  Hence   is not well defined since no indication of whether we mean
A
B

left or right division is given.

EXERCISES on Re-introduction to Matrix Inverses

EXERCISE #1.  True or False.
_____ 1. If A and B are square, then we can compute both AB and BA. 
_____ 2. If n >1, then there exists A, BR n×n such that AB  BA. 
_____ 3. Matrix multiplication is not commutative.  
_____ 4. AB=BA is not an identity.
_____ 5.  For square matrices, there is a multiplicative identity element, namely the n×n matrix I,   

              given by  = .nxnI

1 0 0

0 1 0

0 0 1

  

  

  

  

  

  





























_____ 6.    A  Knxn   we have    =        =            A
nxn

I
nxn

I
nxn

A
nxn

A
nxn

_____ 7.  If there exists B such that AB = I., then B is a right (multiplicative) inverse of A. 

_____ 8.   If there exists C such that CA = I., then C is a left (multiplicative) inverse of A.
_____ 9.  If AB = BA = I, then B is a multiplicative inverse of A and we say that A is invertible. 
_____ 10. If B is the only matrix with the property that AB = BA = I, then B is the inverse of A.
_____ 11.  If A has a unique inverse, then we say A is nonsingular and denote its inverse by A-1.
_____ 12. The identity matrix is its own inverse.  
_____ 13. If A has a right and a left inverse, then it has a unique inverse.  
_____ 14. A is invertible if and only if it is nonsingular. 
_____ 15. If A has a right (or left) inverse, then it has a unique inverse. 
_____ 16.  Even though matrix multiplication is not commutative, a right inverse is always a left
                   inverse.
_____ 17.  The inverse of a matrix is unique.
_____ 18.  Some matrices have inverses; others do not.  
_____ 19. It is usually not easy to look at a matrix and determine whether or not it has a 
                  (multiplicative) inverse.
_____ 20.  There exist A, BR n×n such that AI is invertible and B has no inverse
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EXERCISE #2.   Let   α= 2,   A = , and B =  .    Compute the following:
1 i 1 i

1 0
 









1 0
i 1+ i










  = ___________.  AT =____________.   A* = ____________.   αA = ____________. A

 A+B =____________.   AB =_____________. 

EXERCISE #3.   Let   α= 3,   A = , and B =  .    Compute the following:
i 1 i
0 1 + i

 
 
 

1 0
i 1+ i










  = ___________.  AT =____________.   A* = ____________.   αA = ____________. A

 A+B =____________.   AB =_____________. 

EXERCISE #4. Solve  where , , and  .  
2x2 2x1 2x1
A x b

 1 i
A

i 1
 

   

x
x

 y 
 

  
 

 1
b

 i 
 

  
 



EXERCISE #5. Solve  where , , and  
2x2 2x1 2x1
A x b

 1 i
A

i 1
 

   

x
x

 y 
 

  
 

 1
b

 0 
 

  
 



EXERCISE #6 Solve  where , , and  
2x2 2x1 2x1
A x b

 1 i
A

i 0
 

  
 

x
x

 y 
 

  
 

 1
b

 i 
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Handout #3   COMPUTATION USING GAUSS/JORDAN ELIMINATION Professor Moseley

We give an example of how to compute the inverse of a matrix A using Gauss-Jordan
elimination (or Gauss-Jordan reduction).  The procedure is to augment A with the identity matrix. 
Then use Gauss-Jordan to convert A into I.  Magically, I is turned into A1.  Obviously, if A is not
invertible, this does not work.

EXAMPLE#1. Use Gauss-Jordan reduction to compute A1 where A= .
2 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2

 
   
  
  

     2 1

2 1 0 0 1 0 0 0
R (1/2)R 1 2 1 0 0 1 0 0

0 1 2 10 0 1 0
0 0 1 2 0 0 0 1

  
    
  
 

  

3 2

2 1 0 0 1 0 0 0
0 3/ 2 1 0 1/ 2 1 0 0

R (2 / 3)R 0 1 2 1 0 0 1 0
0 0 1 2 0 0 0 1

  
  
   
 

  

        

4 3

2 1 0 0 1 0 0 0
0 3/ 2 1 0 1/ 2 1 0 0
0 0 4 / 3 11/ 3 2 / 3 1 0

R (3/ 4)R 0 0 1 2 0 0 0 1

  
  
 
 

   

2 1 0 0 1 0 0 0
0 3/ 2 1 0 1/ 2 1 0 0
0 0 4 / 3 1 1/ 3 2 / 3 1 0
0 0 0 5/ 41/ 4 1/ 2 3/ 4 1

  
  
 
 
  

We now divide by the pivots to make them all one.

     
1

2

3

4

1/ 2R 2 1 0 0 1 0 0 0
2/ 3R 0 3/ 2 1 0 1/ 2 1 0 0
3/ 4R 0 0 4/ 3 1 1/3 2/3 1 0
5/ 4R 0 0 0 5/ 41/ 4 1/ 2 3/ 4 1

  
  
 
 
  

1 1 / 2 0 0 1 / 2 0 0 0
0 1 2 / 3 0 1 / 3 2 / 3 0 0
0 0 1 3 / 4 1 / 4 1 / 2 3 / 4 0
0 0 0 1 1 / 5 2 / 5 3 / 5 4 / 5

  
  
 
 
  

We now make zeros above the pivots.

  
3 4

1 1/2 0 0 1/2 0 0 0
0 1 2/3 0 1/3 2/3 0 0

R 3/4R 0 0 1 3/41/4 1/2 3/4 0
0 0 0 1 1/5 2/5 3/5 4/5

  
  
  
 
  

3

1 1/2 0 01/2 0 0 0
R2 2/3R 0 1 2/3 01/3 2/3 0 0

0 0 1 0 2/5 4/5 6/5 3/5
0 0 0 11/5 2/5 3/5 4/5

  
   
 
 
  

 
1 2R 1/ 2R 1 1/ 2 0 0 1/ 2 0 0 0

0 1 2 / 3 0 3 / 5 6 / 5 4 / 5 2 / 5
0 0 1 0 2 / 5 4 / 5 6 / 5 3 / 5
0 0 0 1 1/ 5 2 / 5 3 / 5 4 / 5

   
  
 
 
  

1 1 / 2 0 0 4 / 5 3 / 5 2 / 5 1 / 5
0 1 2 / 3 0 3 / 5 6 / 5 4 / 5 2 / 5
0 0 1 0 2 / 5 4 / 5 6 / 5 3 / 5
0 0 0 1 1 / 5 2 / 5 3 / 5 4 / 5

  
  
 
 
  

Hence A1 = .  We will check.
4 / 5 3 / 5 2 / 5 1 / 5
3 / 5 6 / 5 4 / 5 2 / 5
2 / 5 4 / 5 6 / 5 3 / 5
1 / 5 2 / 5 3 / 5 4 / 5
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 AA1 = .
2 1004/53/52/51/5 1000
12 103/56/54/52/5 0100
0 12 12/54/56/53/5 0010
00 121/52/53/54/5 0001

   
       
    
      

Hence A1 =   is indeed the inverse of A.
4 / 5 3 / 5 2 / 5 1/ 5
3 / 5 6 / 5 4 / 5 2 / 5
2 / 5 4 / 5 6 / 5 3 / 5
1/ 5 2 / 5 3 / 5 4 / 5

 
 
 
 
 
 

EXAMPLE#2.  For a 2x2 we can do the computation in general.  This means that we can obtain a
formula  for a 2x2.  We can do this for a 3x3, but the result is not easy to remember and we are

better off just using Gauss-Jordan for the particular matic of interest.  Let A= .  For the
a b
c d
 
 
 

2x2, we will assume that a0.  We leave it to the exercises to show that the formula that we will
derive for a0 also works for a = 0.  Proceeding we first get zeros below the pivots.

  or  
2 1

1 0a b
R - c / aR 0 1c d

 
 
  

a b 1 0
c c0 d b 1
a a

 
 
  
  

a b 1 0
a d c b c0 1

a a

 
  
  

Next we make the pivots all one.  We now assume that det(A)= adbc 0 so that the matrix is
nonsingular.

  1

2

a b 1 01/ aR
ad cb ca / (ad bc)R 0 1

a a

 
   
  

1 2
1/ a 0R b / aR 1 b / a

c a0 1
ad bc ad bc

   
 

  

  

1 c b a
1 0 ad bc a ad - bc
0 1 c a

ad bc ad bc

b
a a

   
 
 
   

ad - (bc - bc) b
1 0 a(ad bc) ad bc
0 1 c a

ad bc ad bc

 
 

 
 
  

 


 

d b
1 0 a(ad bc) ad bc
0 1 c a

ad bc ad bc

 
 

 
 
  

 


 

Hence A1 =  

d b
d b d b1 1a(ad bc) ad bc = =
c a c aad bc detAc a

ad bc ad bc

                      

EXERCISES on Computation Using Gauss-Jordan Elimination

EXERCISE #1. Using the formula  A1 =  , compute  A1 when A=   d b1=
c ad e t A

 
  

6 1
11 2
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EXERCISE #2. Using the formula  A1 =  ,  compute  A1 where A=    d b1=
detA c a

 
 
 




3 1
4 2
 
 
 

EXERCISE #3. Using Gauss-Jordan elimination, compute  A1 where A=
1 2 0
0 2 1
0 0 1

 
 
 
  

EXERCISE #4. Using Gauss-Jordan elimination, compute  A1 where A=   
1 0 2
2 1 3
4 1 8

 
  
  

EXERCISE #5.  Let A= . Without using the formula  A1 =  0 b
c d
 
 
 

d b1=
c ad e t A

 
  

use Gauss-Jordan to show that  A1 = .  Thus you have proved that the formulad b1=
c 0d e t A

 
  

works even when a = 0.

EXERCISE #6. Using the formula  A1 =  ,  compute  A1 where A= . d b1=
detA c a

 
 
 




0 1
4 2
 
 
 

EXERCISE #7. Compute A1 if 2 5
A

3 7
 

  
 

EXERCISE #8. Compute A1 if  2 1
A

5 3
 

  
 

EXERCISE #9. Compute A1 if  1 i
A

i 2
 

  
 

EXERCISE #10. Compute A1 if    1 i
A

i 0
 

   

EXERCISE #11. Compute A1 if 0 5
A

0 1
 

   

EXERCISE #12. Compute A1 if  1 2
A

3 1
 

   

EXERCISE #13. Compute A1 if  1 i
A

i 1
 

   

EXERCISE #14. Using Gauss elimination, compute  A1 where A=   
3 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2

 
   
  
  

EXERCISE 15.  Using Gauss elimination, compute  A1 where A=   
2 1 0 0
1 2 1 0

0 1 2 0
0 0 1 2

 
   
 
  

EXERCISE #16.  Using Gauss elimination, compute  A1 where A=   
2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2

 
  
 
 
 

EXERCISE #17.  Using Gauss elimination, compute  A1 where A=   
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
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