MATH 251
Instr. K. Ciesielski
Fall 2014

## SAMPLE TEST \# 3

Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.)

Ex. 1. Show that the following limit does not exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+7 y^{4}}
$$

Solution:
On $x$-axis, $y=0: L_{1}=\lim _{x \rightarrow 0} \frac{x^{3} \cdot 0}{x^{4}+0}=0$.
On the line $y=x: L_{2}=\lim _{x \rightarrow 0} \frac{x^{3} \cdot x}{x^{4}+7 x^{4}}=\lim _{x \rightarrow 0} \frac{x^{4}}{8 x^{4}}=\frac{1}{8}$.
Answer: Limit does not exist as $L_{1} \neq L_{2}$.

Ex. 2. Compute the first order partial derivatives of $f(x, y, z)=z e^{x^{2}} \cos y$.
Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=f_{x}=z e^{x^{2}} \cos y \cdot 2 x=2 x z e^{x^{2}} \cos y \\
& \frac{\partial f}{\partial y}=f_{y}=z e^{x^{2}}(-\sin y)=-z e^{x^{2}} \sin y \\
& \frac{\partial f}{\partial z}=f_{z}=e^{x^{2}} \cos y
\end{aligned}
$$

Ex. 3. Compute all second order partial derivatives of $g(s, t)=e^{5 t}+t \sin (3 s)$.
Solution:

$$
\begin{array}{lll}
g_{s}=3 t \cos (3 s) & g_{s s}=-9 t \sin (3 s) & g_{s t}=3 \cos (3 s) \\
g_{t}=5 e^{5 t}+\sin (3 s) & g_{t s}=3 \cos (3 s) & g_{t t}=25 e^{5 t}
\end{array}
$$

Ex. 4. Find an equation of the plane tangent to the surface $z=x^{2}-5 y^{3}$ at the point $P(2,1,-1)$.

Solution:

$$
\begin{aligned}
& z_{x}=2 x ; \quad z_{x}(P)=2 \cdot 2=4 \\
& z_{y}=-15 y^{2} ; \quad z_{y}(P)=-15 \cdot 1^{2}=-15
\end{aligned}
$$

Normal vector $\mathbf{n}=\left\langle z_{x}(P), z_{y}(P),-1\right\rangle=\langle 4,-15,-1\rangle$.
Answer: $4(x-2)-15(y-1)-1(z+1)=0 \quad$ or $\quad 4 x-15 y-z+6=0$.

Ex. 5. Find the absolute maximum and the absolute minimum of the function $f(x, y)=$ $x^{3}-x y$ on the region bounded below by parabola $y=x^{2}-1$ and above by line $y=3$. You will get credit only if all critical points are found.

Solution: The curves intersect, when $x^{2}-1=3$, that is, when $x= \pm 2$.
Thus, we need to consider the region above $x^{2}-1$ and below 3 for $x$ in the interval $[-2,2]$.
Region's interior: $\quad f_{x}(x, y)=3 x^{2}-y$ and $f_{y}(x, y)=-x$. This leads to system $3 x^{2}-y=0$ and $-x=0$, with only solution $(x, y)=(0,0)$. This point belongs to the region. This is our first critical point.

Lower boundary: $y=x^{2}-1$ and $-2 \leq x \leq 2$. Then
$g(x)=f\left(x, x^{2}-1\right)=x^{3}-x\left(x^{2}-1\right)=x$ and $g^{\prime}(x)=1$ is never 0.
So, there are no true critical points, but we need to consider the endpoints of $g, x= \pm 2$.
This give us the critical points $(x, y)=( \pm 2,3)$.

Upper boundary: $y=3$ and $-2 \leq x \leq 2$. Then
$g(x)=f(x, 3)=x^{3}-3 x$ and $g^{\prime}(x)=3 x^{2}-3$, which is 0 when $x= \pm 1 \in[-2,2]$.
This give us the critical points $(x, y)=( \pm 1,3)$. (Plus the end points $(x, y)=( \pm 2,3)$, considered above.)

Checking the critical points: $\quad f(0,0)=0$;
$f(2,3)=2^{3}-6=2 ; f(-2,3)=(-2)^{3}+6=-2$;
$f(1,3)=1^{3}-3=-2 ; f(-1,3)=(-1)^{3}+3=2$;
Answer: $f$ has the absolute maximum value 2, at points $(2,3)$ and $(-1,3)$.
$f$ has the absolute minimum value -2 , at points $(-2,3)$ and $(1,3)$.

Ex. 6. Find the volume of the solid bounded above by the surface $z=28 x y$, bounded below by $x y$-plane, and which is above the region bounded by $y=x^{6}$ and $y=x$.

Solution: The curves intersect, when $x^{6}=x$, that is, when $x=0$ and $x=1$.
Thus, we need to find an integral above $x^{6}$ and below $x$, on the interval $[0,1]$ :
$\int_{0}^{1} \int_{x^{6}}^{x} 28 x y d y d x=\int_{0}^{1}\left[14 x y^{2}\right]_{y=x^{6}}^{y=x} d x=\int_{0}^{1}\left[14 x^{3}-14 x^{13}\right]_{y=x^{6}}^{y=x} d x=\left[\frac{14}{4} x^{4}-x^{14}\right]_{x=0}^{x=1}=2.5$

Ex. 7. Evaluate $\int_{0}^{1} \int_{0}^{x} 4 e^{x^{2}} d y d x$
Solution: $\int_{0}^{1} \int_{0}^{x} 4 e^{x^{2}} d y d x=\int_{0}^{1}\left[4 e^{x^{2}} y\right]_{y=0}^{y=x} d x=\int_{0}^{1} 4\left(e^{x^{2}} x-e^{x^{2}} 0\right) d x=\int_{0}^{1} 4 e^{x^{2}} x d x$
Using substitution $v=x^{2}$, we obtain that it is equal

$$
\left[2 e^{x^{2}}\right]_{x=0}^{x=1}=2\left(e^{1}-e^{0}\right)=2(e-1) .
$$

Ex. 8. Find the point on the cone $z=\sqrt{x^{2}+y^{2}}$ which is the closest to the point $(4,-8,0)$.
Solution: Distance of $(x, y, z)$ on the surface from $(4,-8,0)$ is $\sqrt{(x-4)^{2}+(y+8)^{2}+(z-0)^{2}}$. Since $z^{2}=x^{2}+y^{2}$, this is equal to
$f(x, y)=\sqrt{(x-4)^{2}+(y+8)^{2}+\left(x^{2}+y^{2}\right)}$.
$f_{x}(x, y)=\frac{2(x-4)+2 x}{2 \sqrt{(x-4)^{2}+(y+8)^{2}+\left(x^{2}+y^{2}\right)}}$ and $f_{y}(x, y)=\frac{2(y+8)+2 y}{2 \sqrt{(x-4)^{2}+(y+8)^{2}+\left(x^{2}+y^{2}\right)}}$.
$f_{x}=0$ when $2(x-4)+2 x=0$, that is, $4 x-8=0$, so $x=2$.
$f_{y}=0$ when $2(y+8)+2 y$, that is, $4 y+16=0$, so $y=-4$.
This gives critical point $(2,-4)$. Since these are the coordinates of a point on the cone, we get $z=\sqrt{2^{2}+(-4)^{2}}=\sqrt{20}$.

Answer: Point $(2,-4, \sqrt{20})$.

Ex. 9. Find the directional derivative of $f(x, y)=10 e^{y} \sin x$ at the point $P(\pi / 4,0)$ in the direction of the vector $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$.

Solution: The unit vector in the direction of $\mathbf{v}$ is equal

$$
\begin{aligned}
& \mathbf{u}=\frac{1}{|\mathbf{v}|} \mathbf{v}=\frac{1}{\sqrt{4^{2}+(-3)^{2}}} \mathbf{v}=\frac{1}{5}\langle 4,-3\rangle=\langle .8,-.6\rangle \\
& f_{x}(x, y)=10 e^{y} \cos x ; f_{x}(P)=10 e^{0} \cos (\pi / 4)=5 \sqrt{2} . \\
& f_{y}(x, y)=10 e^{y} \sin x ; f_{x}(P)=10 e^{0} \sin (\pi / 4)=5 \sqrt{2} . \\
& \nabla f(P)=\left\langle f_{x}(P), f_{y}(P)\right\rangle=\langle\sqrt{2} / 2, \sqrt{2} / 2\rangle . \\
& D_{\mathbf{u}} f(P)=\nabla f(P) \cdot \mathbf{u}=\langle 5 \sqrt{2}, 5 \sqrt{2}\rangle \cdot\langle .8,-.6\rangle=(5 \sqrt{2})(.8)+(5 \sqrt{2})(-.6)=\sqrt{2} .
\end{aligned}
$$

Ex. 10. Find the gradient of $g(x, y, z)=x^{2}+e^{y z}+\cos (x+2 y)$.
Solution: $\nabla g(x, y, z)=\left\langle g_{x}, g_{y}, g_{z}\right\rangle=\left\langle 2 x-\sin (x+2 y), z e^{y z}-2 \sin (x+2 y), y e^{y z}\right\rangle$.

