MATH 251
NAME (print): \qquad
Instr. K. Ciesielski
Fall 2014

SAMPLE TEST \# 1

Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.)

Ex. 1. Evaluate
(a) $3\left[\begin{array}{cc}2 & 3 \\ 4 & 5 \\ 11 & -1\end{array}\right]-5\left[\begin{array}{rr}0 & 8 \\ 4 & -2 \\ 5 & 1\end{array}\right]=$
(b) $\left[\begin{array}{rrr}1 & 2 & 1 \\ -1 & 6 & 3 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 0 & -1 \\ 2 & 3\end{array}\right]=$
(c) $\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]\left[\begin{array}{c}1 \\ 7 \\ -1\end{array}\right]=$
(d) $\left[\begin{array}{c}1 \\ 7 \\ -1\end{array}\right]\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]=$

Ex. 2. Solve each of the following systems of linear equations by representing as augmented matrix and transforming it to the row reduced echelon form. If the system inconsistent, give a reason for it explain the meaning of this fact in terms of solutions. If it is consistent, express its solution in the vertical vector form as $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$ or $\left[\begin{array}{c}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]+y\left[\begin{array}{r}0 \\ 5 \\ 11\end{array}\right]$.
(a) $\left\{\begin{aligned} a+b-c & =0 \\ a-4 b+2 c & =-1 \\ 2 a-3 b+c & =1\end{aligned}\right.$
(b) $\left\{\begin{aligned} a+b-c & =0 \\ a-4 b+2 c & =1 \\ 2 a-3 b+c & =1\end{aligned}\right.$
(c) $\left\{\begin{aligned} a+b-c & =0 \\ a+2 c & =1 \\ 2 a-3 b+c & =1\end{aligned}\right.$

Ex. 3. Find the determinant of the matrix. Each time you expand the matrix, you must expand it over a row or column that has the largest number of zeros. If necessary, use the row (or column) reduction method to create additional zeros.

$$
A=\left[\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
0 & 3 & 1 & 2
\end{array}\right]
$$

Ex. 4. Find the inverse matrix of

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

Ex. 5. Let A be as below. Show that it is its own inverse, that is, that $A^{-1}=A$.

$$
A=\left[\begin{array}{ccc}
1 / 2 & \sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Ex. 6. Let $\mathbf{a}=\langle 0,1,2\rangle, \mathbf{b}=\langle-1,0,7\rangle$, and $\mathbf{c}=\langle 2,3,-1\rangle$. Evaluate: $2 \mathbf{a}-\mathbf{b}+\mathbf{c},|\mathbf{c}|$, and $(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \times \mathbf{c})$. (Do not confuse vectors with numbers. No partial credit for solutions with such errors.)

