MATH 251
Instr. K. Ciesielski
Fall 2014

SAMPLE FINAL TEST

(longer than the actual Final Test)
Solve the following exercises. Show your work.

Ex. 1. ST \#1 Ex 3: Find the determinant of the matrix. Each time you expand the the matrix, you must expand it over a row or column that has the largest number of zeros. If necessary, use the row (or column) reduction method to create additional zeros.

$$
A=\left[\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
0 & 3 & 1 & 2
\end{array}\right]
$$

Ex. 2. ST \#1 Ex 4: Find the inverse matrix of

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

Ex. 3. ST \#1 Ex 6: Let $\mathbf{a}=\langle 0,1,2\rangle, \mathbf{b}=\langle-1,0,7\rangle$, and $\mathbf{c}=\langle 2,3,-1\rangle$. Evaluate: $2 \mathbf{a}-\mathbf{b}+\mathbf{c},|\mathbf{c}|$, and $(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \times \mathbf{c})$. (Do not confuse vectors with numbers. No partial credit for solutions with such errors.)

Ex. 4. ST \#2 Ex 1: Find a vector equation of the line that passes through the point $P(11,13,-7)$ and is perpendicular to the plane with the equation: $x-2 z=17$.

Ex. 5. ST \#2 Ex 7: Let $\mathbf{v}(t)=\mathbf{i}(t+e)^{-1}+\mathbf{k} t^{3}$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}(0)=3 \mathbf{i}$.

Ex. 6. ST \#2 Ex 10: Sketch and fully describe the domain of the following function, including the name of the surface representing the domain's boundary: $f(x, y, z)=$ $\ln \left(25-4 x^{2}-9 y^{2}-z^{2}\right)$.

Ex. 7. ST \#3 Ex. 2: Compute the first order partial derivatives of $f(x, y, z)=z e^{x^{2}} \cos y$.
Ex. 8. ST \#3 Ex. 3: Compute all second order partial derivatives of $g(s, t)=e^{5 t}+t \sin (3 s)$.
Ex. 9. ST \#3 Ex. 4: Find an equation of the plane tangent to the surface $z=x^{2}-5 y^{3}$ at the point $P(2,1,-1)$.

Ex. 10. ST \#3 Ex. 8: Find the point on the cone $z=\sqrt{x^{2}+y^{2}}$ which is the closest to the point $(4,-8,0)$.

Ex. 11. ST \#3 Ex. 5: Find the absolute maximum and the absolute minimum of the function $f(x, y)=x^{3}-x y$ on the region bounded below by parabola $y=x^{2}-1$ and above by line $y=3$. You will get credit only if all critical points are found.

Ex. 12. ST \#4 Ex. 1(a)\&(c): Set up the integral formulas, including the limits of the integrations, for the following problems. Do not evaluate the integrals!
(a) The volume of the solid bounded by $z=x^{2}+y^{2}, z=0, x=0, y=0$, and $x+y=1$.
(c) The mass of the solid T with the density $\delta(x, y, z)=x^{2}+e^{z}$ bounded by the surfaces: $6 x+2 y+z=12, x=0, y=0$, and $z=0$.

Ex. 13. ST \#4 Ex. 2: Evaluate the integrals:
(a) $\int_{0}^{1} \int_{0}^{\pi} \frac{1}{x+1}+\sin y d y d x=$
(b) $\int_{-2}^{0} \int_{0}^{y}\left(x+2 y^{2}\right) d x d y=$
(c) $\iint_{R} \frac{d y d x}{\sqrt{9-x^{2}-y^{2}}}$, where R is the second quadrant region bounded by $x^{2}+y^{2}=4$.

Ex. 14. ST \#4 Ex. 3: Find the mass of the solid bounded by the hemisphere $x^{2}+y^{2}+z^{2} \leq$ $R^{2}, z \geq 0$, with the density $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.

Ex. 15. ST \#4 Ex. 4: Find the mass of the plane lamina bounded by $x=0$ and $x=9-y^{2}$ with density $\delta(x, y)=x^{2}$.

Ex. 16. ST \#4 Ex. 6: Evaluate the integral, where C is the graph of $y=x^{3}$ from $(-1,-1)$ to $(1,1)$
$\int_{C} y^{2} d x+x d y=$
Ex. 17. ST \#4 Ex. 8: Find a potential function of the vector field and use the fundamental theorem for line integrals to evaluate
$\int_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}(\sin y+y \cos x) d x+(\sin x+x \cos y) d y=$
Ex. 18. ST \#4 Ex. 9: Apply Green's theorem to evaluate the following integral, where the simple closed curve C, with counter clockwise direction, is the boundary of the circle $x^{2}+y^{2}=1$.
$\oint_{C}\left(\sin x-x^{2} y\right) d x+x y^{2} d y=$

