Notes

Krzysztof Chris Ciesielski

Definition of a field: Chapter 1, page 5. Examples:

real numbers \mathbb{R} ; also complex numbers \mathbb{C} and rational numbers \mathbb{Q} .

Important points on Linear Algebra:

Matrices: definition and the following operations transpose, scalar multiplication, addition and multiplication of matrices; zero matrix θ $(A + \theta = \theta + A = A)$; the identity matrix I (AI = A and IB = B);

Properties:

A(BC) = (AB)C; AB need not be equal BA; AB = I implies BA = I; Typical exercise for this material:

Exercise 1 For
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 11 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 8 \\ 4 & -2 \\ 5 & 1 \end{bmatrix}$ find A^{T} , $2A - 3B$, $A^{T}B$, and BA^{T} .

Vector spaces: Definition 1, Chapter 3 page 2.

Examples:

- $K^{n \times m}$ the family of all $n \times m$ -matrices over the field K; e.g. $\mathbb{R}^{n \times m}$
- $\mathbb{R}^{n\times 1}$ the family of all *n*-dimensional (column) matrices $[x_1\cdots x_n]^T$; often denotes as \mathbb{R}^n ;
- \mathbb{R}^2 , the classical plane vectors $[x \ y]^T$ often identified with $[x \ y]$ and written as $\langle x, y \rangle$; similarly 3D-vectors \mathbb{R}^3 ;
- The family $\mathcal{F}(D,\mathbb{R})$ of all functions from a set $D \subset \mathbb{R}$ into \mathbb{R} ; also the classes of: all polynomials; of all differentiable functions; of solutions of some differential equations; etc;

Subspaces: Definition 1, Chapter 3 page 10.

Theorem 1 If V is a vector space (over the field K) and W is non-empty subset of V, then W is a subspace if, and only if, v + w and cv are in W for every c from K and $x \in W$.

Examples:

- $W = \{\langle x, 3x \rangle : x \in \mathbb{R}\}$, a line in the plane \mathbb{R}^2 is a vector subspace of \mathbb{R}^2 ;
- polynomials forms a vector subspace of $\mathcal{F}(D,\mathbb{R})$; so are differentiable functions;

System of linear equations Ax = b:

For a system $A\mathbf{x} = \mathbf{b}$ of m equations with n unknowns x_1, \ldots, x_n, A is $m \times n$ coefficient matrix, $\mathbf{x} = [x_1, \ldots, x_n]^T$, and $\mathbf{b} = [b_1, \ldots, b_n]^T$.

Solutions of Ax = b via Gauss elimination:

Use of Gauss elimination, that is, using augmented matrix approach. If the system is consistent (i.e., has at least one solution), the solution must be expressed in the vertical vector form:

$$\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \text{ or } \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + \alpha \begin{pmatrix} 0 \\ 5 \\ 11 \end{pmatrix} \text{ or } \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + \alpha \begin{pmatrix} 0 \\ 5 \\ 11 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}.$$

From the text: Example # 1, Ch. 4, Pg. 8 From the text: Example # 2, Ch. 4, Pg. 19

Class of August 27, 2013:

Next class: Quiz # 1, material as in the page 1 of the Sample Test # 1, available at

http://www.math.wvu.edu/~kcies/teach/CurrentTeaching.html Solve exercise 2 from the Sample Test # 1, via Gauss elimination.

System of linear equations Ax = b, revisited:

For a system $A\mathbf{x} = \mathbf{b}$ of m equations with n unknowns x_1, \ldots, x_n, A is $m \times n$ coefficient matrix, $\mathbf{x} = [x_1, \dots, x_n]^T$, and $\mathbf{b} = [b_1, \dots, b_n]^T$. When $\mathbf{b} = \mathbf{0} = [b_1, \dots, b_n]^T$, then the system $A\mathbf{x} = \mathbf{b}$ (i.e., $A\mathbf{x} = \mathbf{0}$) is a

homogeneous system.

The solutions x of the homogeneous system Ax = 0, that is, V = $\{\mathbf{x}: A\mathbf{x} = \mathbf{0}\}\$, is a vector space:

 $\mathbf{0} \in V$ and $\alpha \mathbf{x} + \beta \mathbf{y} \in V$ for every $\mathbf{x}, \mathbf{y} \in V$.

In other words, V is a null space of the operator A: $\mathbf{x} \mapsto A\mathbf{x}$.

A function T from a vector space into another is a linear operator when

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha T(\mathbf{x}) + \beta T(\mathbf{y}).$$

Its null space is the set of all vectors **x** for which $T(\mathbf{x}) = \mathbf{0}$. Null space of any linear operator is also a vector space.

In particular $A\mathbf{x} = \mathbf{0}$ has either one, or infinitely many solutions.

If \mathbf{x}_p is a solution for $A\mathbf{x} = \mathbf{b}$, then

 \mathbf{x} solution for $A\mathbf{x} = \mathbf{b}$ if, and only if, it is of the form $\mathbf{x}_p + \mathbf{x}_h$, where \mathbf{x}_h is a solution for $A\mathbf{x} = \mathbf{0}$.

Inverse of a square, $n \times n$, matrix A If there exists a matrix B such that BA = I, then also AB = I and B is unique. It is denoted as A^{-1} and referred to as the inverse of A. Example: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $ad - bc \neq 0$, then the inverse of A exists and $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Note, $A^{-1} \neq \frac{1}{A}$. In fact, quotient $\frac{1}{A}$ has no sense at all! A is *singular* if A^{-1} does not exists; otherwise, it is *non-singular*.

- **Q.** What A^{-1} is useful for?
 - **A.** Many uses. E.g.: $A\mathbf{x} = \mathbf{b}$ if, and only if, $\mathbf{x} = A^{-1}\mathbf{b}$.

Also, in deter mining when vectors $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^n$ are linearly independent (form a basis) — notions to be discussed.

- **Q.** When does A^{-1} exist (i.e., when A is non-singular)? **A.** E.g.: when the *determinant* of A, denoted |A| or det A, is $\neq 0$. Calculation of the determinants to be discussed, chapter 7.
- **Q.** When A is non-singular, how to find A^{-1} ? **A.** Gaussian elimination (again), to be explained.

Calculation of the determinant: Via arbitrary row (or column) expansion, definition, Example on page Ch. 6, Pg 4. Also, via Gaussian elimination, see Ch. 6, Pg 6.

Solving Ax = b via *Cramer Rule*: application of determinants. Just state (Ch. 6, Pg 7), no exercises.

Finding A^{-1} via Gaussian elimination: Chapter 9. To find A^{-1} : (1) write augmented matrix [A; I]; (2) Gaussian elimination to transform it to a matrix [I; B]; (3) declare that A^{-1} equals B.

Go over Exercises 4, 5 from the sample test and Example 1, Ch. 7, Pg 5.

Solving Ax = b via *Cramer Rule*: application of determinants. Just state (Ch. 6, Pg 7), no exercises.

Linear independents of vectors and basis: Just discuss these notions. No exercises.