MATH 251.007 Instr. K. Ciesielski Fall 2012

NAME (print):

SAMPLE FINAL TEST

Solve the following exercises. Show your work.

Ex. 1. Find the determinant of the matrix. Each time you expand the the matrix, you must expand it over a row or column that has the largest number of zeros. If necessary, use the row (or column) reduction method to create additional zeros.

$$\left[\begin{array}{ccccc}
1 & 2 & -11 & 1 \\
0 & 0 & 2 & 0 \\
7 & 1 & 0 & 2 \\
-2 & 0 & 9 & 0
\end{array}\right]$$

Ex. 2. Find the inverse matrix of

$$\left[\begin{array}{ccc}
1 & 0 & 2 \\
3 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]$$

Ex. 3. Let $\mathbf{a} = \langle 0, 1, 2 \rangle$, $\mathbf{b} = \langle -1, 0, 7 \rangle$, and $\mathbf{c} = \langle 2, 3, -1 \rangle$. Evaluate $(\mathbf{a} \cdot \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c})$.

Ex. 4. Find the parametric equations of the line that passes through the point P(11, 13, -7) and is perpendicular to the plane with the equation: x - 2z = 17.

Ex. 5. Let $\mathbf{v}(t) = \mathbf{i}(t+1)^{-1} + \mathbf{k}t^3$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}_0 = 3\mathbf{i}$.

Ex. 6. Describe and sketch the graph of the equation: $4z^2 = x^2 + y^2$.

Ex. 7. Compute the first order partial derivatives of $h(x, y, z) = e^{2x+3z} \sin x \tan y$.

Ex. 8. Compute the second order partial derivatives of $g(u,v) = \ln(u+2v) - \sin u \cos v$.

Ex. 9. Find an equation of the plane tangent to the surface $z = \ln x - \sin y$ at the point $P(1, \pi/2, -1)$.

Ex. 10. Find the absolute maximum and the absolute minimum of the function $f(x,y) = 4x^2 + 2xy + y^2$ on the region bounded below by the parabola $y = x^2$ and above by the line y = 9.

Ex. 11. Evaluate the integrals:

(a)
$$\int_{-1}^{2} \int_{-y}^{0} (x + 2y^2) dx dy =$$

(b)
$$\int_0^1 \int_0^\pi \frac{1}{x+1} + \sin y \, dy \, dx =$$

(c)
$$\int \int_R \frac{dy \ dx}{\sqrt{9-x^2-y^2}}$$
, where R is the second quadrant region bounded by $x^2+y^2=4$.

Ex. 12. Find the mass of the solid bounded by the hemisphere $x^2 + y^2 + z^2 \le R^2$, $z \ge 0$, with the density $\delta(x, y, z) = x^2 + y^2 + z^2$.

Ex. 13. Find the mass of the plane lamina bounded by x = 0 and $x = 9 - y^2$ with density $\delta(x, y) = x^2$.

Ex. 14. Set up the integral formulas, including the limits of the integrations, for the following problems. Do not evaluate the integrals!

- (a) The mass of the solid T with the density $\delta(x, y, z) = x^2 + e^z$ bounded by the surfaces: 6x + 2y + z = 12, x = 0, y = 0, and z = 0.
- (b) The volume of the solid bounded by $z = x^2 + y^2$, z = 0, x = 0, y = 0, and x + y = 1.

Ex. 15. Evaluate the integral, where C is the graph of $y = x^3$ from (-1, -1) to (1, 1).

$$\int_C y^2 dx + x dy =$$

Ex. 16. Evaluate the integral

$$\int_{(\pi/2,\pi/2)}^{(\pi,\pi)} (\sin y + y \cos x) \, dx + (\sin x + x \cos y) \, dy =$$

Ex. 17. Apply Green's theorem to evaluate the following integral, where the simple closed curve C is the boundary of the circle $x^2 + y^2 = 1$.

2

$$\oint_C (\sin x - x^2 y) \, dx + xy^2 \, dy =$$