MATH 261.005
Instr. K. Ciesielski
Fall 2011

Bernouli Equations

Format: $y^{\prime}+p(t) y=g(t) y^{n}$.
Solution:
(a) For $n=0$ and $n=1$ this is linear equation. For other n use substitution $v=y^{1-n}$.
(b) Since $y=v^{\frac{1}{1-n}}$, taking the derivative we get $y^{\prime}=\frac{1}{1-n} v^{\frac{1}{1-n}-1} v^{\prime}=\frac{1}{1-n} v^{\frac{n}{1-n}} v^{\prime}$.
(c) Substituting this to $y^{\prime}+p(t) y=g(t) y^{n}$ we get

$$
\frac{1}{1-n} v^{\frac{n}{1-n}} v^{\prime}+p(t) v^{\frac{1}{1-n}}=g(t)\left(v^{\frac{1}{1-n}}\right)^{n} .
$$

(d) Multiplying this by the reciprocal of $\frac{1}{1-n} v^{\frac{n}{1-n}}$, that is by $(1-n) v^{-\frac{n}{1-n}}$, we get $v^{\prime}+(1-n) p(t) v^{\frac{1}{1-n}} v^{-\frac{n}{1-n}}=(1-n) g(t) v^{\frac{n}{1-n}} v^{-\frac{n}{1-n}}$, that is, $v^{\prime}+(1-n) p(t) v=(1-n) g(t)$, since $\frac{1}{1-n}-\frac{n}{1-n}=1$. Algebra always leads to the linear equation!
(e) Next, solve (for v) the linear equation $v^{\prime}+(1-n) p(t) v=(1-n) g(t)$.
(f) Using again equation $y=v^{\frac{1}{1-n}}$, find the formula for y from the formula for v found in (e).

Types of First Order Differential Equations we studied:

linear: $y^{\prime}+p(t) y=g(t)$
separable: $M(x)=N(y) \frac{d y}{d x}$, leading to $\int M(x) d x=\int N(y) d y$
homogenous: $\frac{d y}{d x}=h(y / x)$; use substitution $v=y / x$ and fact that $\frac{d y}{d x}=v+x \frac{d v}{d x}$; the resulted equation is separable (in terms of v and x)

Bernouli: $y^{\prime}+p(t) y=g(t) y^{n}$; appropriate substitution (see above) leads to linear ODE exact: $M(x, y)+N(x, y) y^{\prime}=0$ (or $M(x, y) d x+N(x, y) d y=0$), when $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$; then the solution is of the form $\Psi(x, y)=c$, where $\frac{\partial \Psi}{\partial x}=M$ and $\frac{\partial \Psi}{\partial y}=N$.

