Solutions to the SAMPLE TEST \# 2

Ex. 1(a): $y^{\prime \prime}+10 y^{\prime}+25=0$. This is first order linear ODE in terms of y^{\prime}. That is, using $u=y^{\prime}$, we get $u^{\prime}+10 u=-25$.

Then $\mu=\exp \left(\int 10 d t\right)=e^{10 t}$. Also,
$u=\frac{1}{\mu} \int \mu(t) g(t) d t=e^{-10 t} \int e^{10 t}(-25) d t=e^{-10 t}\left(\frac{1}{10} e^{10 t}(-25)+C\right)=-2.5+C e^{-10 t}$.
Thus, $y=\int u(t) d t=\int\left(-2.5+C e^{-10 t}\right) d t=-2.5 t+C \frac{1}{-10} e^{-10 t}+C_{2}$.
Replacing constant $C \frac{1}{-10}$ with a constant C_{1} leads to answer: $y(t)=-2.5 t+C_{1} e^{-10 t}+C_{2}$.

Ex. 1(b): $y^{\prime \prime}+10 y^{\prime}+25 y=0$. This is second order linear homogeneous ODE with the characteristic equation $r^{2}+10 r+25=0$.

The equation is equivalent to $(r+5)^{2}=0$, so it has only one double root $r=-5$. Thus, a fundamental pair of solution of our ODE is: $e^{-5 t}$ and $t e^{-5 t}$, and its general solution answer: $y(t)=C_{1} e^{-5 t}+C_{2} t e^{-5 t}$.

Ex. 1(c): $y^{\prime \prime}+10 y^{\prime}+29 y=0$. This is second order linear homogeneous ODE with the characteristic equation $r^{2}+10 r+29=0$. By quadratic formula its roots are
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-10 \pm \sqrt{100-4 \cdot 29}}{2}=\frac{-10 \pm \sqrt{-16}}{2}=\frac{-10 \pm 4 \mathbf{i}}{2}=-5 \pm 2 \mathbf{i}$,
i.e., the equation has two complex roots, with real part $\lambda=-5$ and imaginary part $\mu=2$.

Thus, a fundamental pair of solution of our ODE is: $e^{-5 t} \cos (2 t)$ and $e^{-5 t} \sin (2 t)$,
and its general solution
answer: $y(t)=C_{1} e^{-5 t} \cos (2 t)+C_{2} e^{-5 t} \sin (2 t)$.
Ex. 1(d): $y^{\prime \prime}+10 y^{\prime}+24 y=0$. This is second order linear homogeneous ODE with the characteristic equation $r^{2}+10 r+24=0$.

The equation is equivalent to $(r+4)(r+6)=0$,
so it has two real roots: $r=-4$ and $r=-6$. Thus,
a fundamental pair of solution of our ODE is: $e^{-4 t}$ and $e^{-6 t}$, and its general solution answer: $y(t)=C_{1} e^{-4 t}+C_{2} e^{-6 t}$.

Ex. 1(e): $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin t$. This is second order linear non-homogeneous ODE.
Its solution is of the form $y=y_{0}+y_{1}+y_{2}$, where
y_{0} is a general solution of the homogeneous ODE $2 y^{\prime \prime}+3 y^{\prime}+y=0$,
y_{1} is a particular solution of the non-homogeneous ODE $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}$, and
y_{2} is a particular solution of the non-homogeneous ODE $2 y^{\prime \prime}+3 y^{\prime}+y=3 \sin t$.
Thus, this exercise splits into three separate problems, for finding y_{0}, y_{1}, and y_{2}.
Finding y_{0} : The ODE $2 y^{\prime \prime}+3 y^{\prime}+y=0$ has the characteristic equation $2 r^{2}+3 r+1=0$, that is, $(2 r+1)(r+1)=0$. So it has two real roots $r=-1$ and $r=-0.5$.
This gives a fundamental pair of solution for $2 y^{\prime \prime}+3 y^{\prime}+y=0$ as e^{-t} and $e^{-t / 2}$ and $y_{0}=C_{1} e^{-t}+C_{2} e^{-t / 2}$.
Finding y_{1} : The method of undetermined coefficients says that the ODE $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}$ has solution of the form $y_{1}=t^{s}\left(a t^{2}+b t+c\right)$. We can take $s=0$, as $y_{1}=a t^{2}+b t+c$ is not of the form of y_{0}, the solution of the corresponding homogeneous ODE.
Then $y_{1}^{\prime}=2 a t+b$ and $y_{1}^{\prime \prime}=2 a$. Substituting this to $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}$ gives
$2(2 a)+3(2 a t+b)+\left(a t^{2}+b t+c\right) 1=t^{2}$, that is,
$a t^{2}+(6 a+b) t+(4 a+3 b+c)=1 t^{2}+0 t+0 \cdot 1$.
The coefficients of these two polynomials must be equal, that is,
$a=1,6 a+b=0$, and $4 a+3 b+c=0$.
This gives $a=1, b=-6 a=-6$, and $c=-4 a-3 b=-4+18=14$ and leads to $y_{1}=t^{2}-6 t+14$.
Finding y_{2} : The method of undetermined coefficients says that the ODE $2 y^{\prime \prime}+3 y^{\prime}+y=3 \sin t$ has solution of the form $y_{2}=t^{s}(A \sin t+B \cos t)$. We can take $s=0$, as $y_{2}=A \sin t+B \cos t$ is not of the form of y_{0}.
Then $y_{2}^{\prime}=A \cos t-B \sin t$ and $y_{2}^{\prime \prime}=-A \sin t-B \cos t$.
Substituting this to $2 y^{\prime \prime}+3 y^{\prime}+y=3 \sin t$ gives
$2(-A \sin t-B \cos t)+3(A \cos t-B \sin t)+(A \sin t+B \cos t) 1=3 \sin t$, that is,
$(-2 A-3 B+A) \sin t+(-2 B+3 A+B) \cos t=3 \sin t+0 \cos t$.
The coefficients of \sin and \cos must be equal, that is,
$-A-3 B=3$ and $3 A-B=0$.
Hence, $B=3 A,-A-3(3 A)=3$, so $A=-0.3$ and $B=3 A=-0.9$. So, $y_{2}=-0.3 \sin t-0.9 \cos t$.
Therefore $y=y_{0}+y_{1}+y_{2}$ leads to the
final answer: $y(t)=C_{1} e^{-t}+C_{2} e^{-t / 2}+t^{2}-6 t+14-0.3 \sin t-0.9 \cos t$.
Ex. 2: $y^{\prime \prime}+y^{\prime}-2 y=2 t, y(0)=0, y^{\prime}(0)=1$.
This is initial value problem for second order linear non-homogeneous ODE.
Its solution is of the form $y=y_{0}+y_{1}$, where
y_{0} is a general solution of the homogeneous ODE $y^{\prime \prime}+y^{\prime}-2 y=0$ and
y_{1} is a particular solution of the non-homogeneous ODE $y^{\prime \prime}+y^{\prime}-2 y=2 t$.
Thus, this exercise splits into three separate problems: finding y_{0}, finding y_{1}, finding in $y=y_{0}+y_{1}$ the constants satisfying the initial condition.
Finding y_{0} : The ODE $y^{\prime \prime}+y^{\prime}-2 y=0$ has the characteristic equation $r^{2}+r-2=0$, that is, $(r+2)(r-1)=0$. So it has two real roots $r=-2$ and $r=1$.
This gives a fundamental pair of solution for $2 y^{\prime \prime}+3 y^{\prime}+y=0$ as $e^{-2 t}$ and e^{t} and $y_{0}=C_{1} e^{-2 t}+C_{2} e^{t}$.
Finding y_{1} : The method of undetermined coefficients says that the ODE $y^{\prime \prime}+y^{\prime}-2 y=2 t$ has solution of the form $y_{1}=t^{s}(a t+b)$. We can take $s=0$, as $y_{1}=a t+b$
is not of the form of y_{0}, the solution of the corresponding homogeneous ODE.
Then $y_{1}^{\prime}=a$ and $y_{1}^{\prime \prime}=0$. Substituting this to $y^{\prime \prime}+y^{\prime}-2 y=2 t$ gives
$0+a-2(a t+b)=2 t$, that is, $-2 a t+(a-2 b)=2 t+0 \cdot 1$.
The coefficients of these two polynomials must be equal, that is,
$-2 a=2$ and $a-2 b=0$. Hence $a=-1$ and $b=a / 2=-1 / 2$,
giving $y_{1}=-t-0.5$. Thus, the general solution of ODE, $y=y_{0}+y_{1}$, is
$y=C_{1} e^{-2 t}+C_{2} e^{t}-t-0.5$.
Solving initial value problem: Taking derivative of y we get $y^{\prime}=-2 C_{1} e^{-2 t}+C_{2} e^{t}-1$.
$y(0)=0$ leads to $C_{1} e^{0}+C_{2} e^{0}-0-0.5=0$, that is, $C_{1}+C_{2}=0.5$.
$y^{\prime}(0)=1$ leads to $-2 C_{1} e^{0}+C_{2} e^{0}-1=1$, that is, $-2 C_{1}+C_{2}=2$.
Subtracting first equation from the second leads to $-3 C_{1}=1.5$, hence $C_{1}=-0.5$.
So, $C_{2}=0.5-C_{1}=1$ and we get
final solution: $y(t)=-0.5 e^{-2 t}+e^{t}-t-0.5$.

Ex. 3: Find a particular solution of the equation $y^{\prime \prime}+3 y=3 \sin 2 t$.
The method of undetermined coefficients says that the ODE
has solution of the form $y=t^{s}(a \sin 2 t+b \cos 2 t)$.
The corresponding homogeneous ODE has the characteristic equation $r^{2}+3=0$, so it has two complex roots $\pm \sqrt{3} \mathbf{i}$ and fundamental solutions $\sin \sqrt{3} t, \cos \sqrt{3} t$.
These are not of the form of $y=a \sin 2 t+b \cos 2 t$, so we can take $s=0$.
Then we calculate $y^{\prime \prime}=-4 a \sin 2 t-4 b \cos 2 t$.
Substitution of y and $y^{\prime \prime}$ to our ODE gives
$(-4 a \sin 2 t-4 b \cos 2 t)+3(a \sin 2 t+b \cos 2 t)=3 \sin 2 t$, that is,
$-a \sin 2 t-b \cos 2 t=3 \sin 2 t+0 \cos 2 t$.
The coefficients of \sin and cos must be equal, that is, $-a=3$ and $-b=0$, so $a=-3$ and $b=0$. This gives
a final solution: $y=-3 \sin 2 t$.
Ex. 4: Find a second solution of $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$, if $y_{1}(x)=e^{x}$ is its solution.
The method of reduction of order, which we must use, says to use substitution $y=v y_{1}$, that is (in our case), $y=v e^{x}$. We need to find v. First, we calculate $y^{\prime}=v^{\prime} e^{x}+v e^{x}=e^{x}\left(v^{\prime}+v\right)$ and $y^{\prime \prime}=\left(v^{\prime \prime} e^{x}+v^{\prime} e^{x}\right)+\left(v^{\prime} e^{x}+v e^{x}\right)=e^{x}\left(v^{\prime \prime}+2 v^{\prime}+v\right)$
Substituting these back to our ODE leads to
$(x-1) e^{x}\left(v^{\prime \prime}+2 v^{\prime}+v\right)-x e^{x}\left(v^{\prime}+v\right)+v e^{x}=0$, and after simplification,
$e^{x}\left[(x-1)\left(v^{\prime \prime}+2 v^{\prime}+v\right)-x\left(v^{\prime}+v\right)+v\right]=0$,
$e^{x}\left[(x-1) v^{\prime \prime}+(2(x-1)-x) v^{\prime}+((x-1)-x+1) v\right]=0$,
$e^{x}\left[(x-1) v^{\prime \prime}+(x-2) v^{\prime}\right]=0$. Dividing this by e^{x} and putting $u=v^{\prime}$ we get ODE
$(x-1) u^{\prime}+(x-2) u=0$. By further algebra we get
$(x-1) \frac{d u}{d x}=-(x-2) u$, so $\frac{d u}{u}=-\frac{x-2}{x-1} d x$ and $\int \frac{d u}{u}=-\int\left(1-\frac{1}{x-1}\right) d x$.
Hence $\ln |u|=-[x-\ln |x-1|+C]$. Thus
$|u|=\exp (-[x-\ln |x-1|+C])=e^{-x} e^{\ln |x-1|} e^{-C}=e^{-x}|x-1| e^{-C}$. Since $x>1$, we get
$|u|=e^{-x}(x-1) e^{-C}$ and $u=K(x-1) e^{-x}$, where $K= \pm e^{-C}$ is a constant.
From here $v=\int u d x=K \int(x-1) e^{-x} d x$. Then, by integration by parts,
$v=\int u d x=K\left[(x-1)\left(-e^{-x}\right)-\int 1\left(-e^{-x}\right) d x\right]=K\left[e^{-x}-x e^{-x}-e^{-x}+c\right]=K\left[-x e^{-x}+c\right]$
Taking $c=0$ and $K=-1$, we get $v=x e^{-x}$ and a second solution for our ODE:
$y=v e^{x}=x e^{-x} e^{x}=x$.
Answer: $y=x$.
Ex. 5: $y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t}, t>0$; use the variation of parameters method.
The homogeneous part of our ODE has the characteristic equation
$r^{2}+4 r+4=$, that is, $(r+2)^{2}=0$. There is only one, double root $r=-2$,
so $y^{\prime \prime}+4 y^{\prime}+4 y=0$ has solutions $y_{1}=e^{-2 t}$ and $y_{2}=t e^{-2 t}$.
The method of the variation of parameters says that a particular solution is of the form $y=u_{1} y_{1}+u_{2} y_{2}$, where $u_{1}=-\int \frac{y_{2} g(t)}{W} d t$ and $u_{2}=\int \frac{y_{1} g(t)}{W} d t$.
Here $g(t)=t^{-2} e^{-2 t}$ and W is Wronskian:
$W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{-2 t} & t e^{-2 t} \\ -2 e^{-2 t} & (1-2 t) e^{-2 t}\end{array}\right|=\left(e^{-2 t}\right)^{2}[(1-2 t)-(-2 t)]=e^{-4 t} \neq 0$. So
$u_{1}=-\int \frac{y_{2} g(t)}{W} d t=-\int \frac{\left(t e^{-2 t}\right) t^{-2} e^{-2 t}}{e^{-4 t}} d t=-\int t^{-1} d t=-\ln t$ and
$u_{2}=\int \frac{y_{1} g(t)}{W} d t=\int \frac{\left(e^{-2 t}\right) t^{-2} e^{e^{-2 t}}}{e^{-4 t}} d t=\int t^{-2} d t=-t^{-1}$. As $y=u_{1} y_{1}+u_{2} y_{2}$, we get
Answer: $y=(-\ln t) e^{-2 t}+\left(-t^{-1}\right) t e^{-2 t}$, that is, $y=(-\ln t) e^{-2 t}-e^{-2 t}$,
or just $y=(-\ln t) e^{-2 t}$, as $e^{-2 t}$ is a solution to the homogeneous part.
Ex. 6. The ODE is of the form $m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F(t)$.
Here there is no external force, that is, $F(t)=0$.
We have the weight $w=2 l b$ and so mass $m=\frac{w}{g}=\frac{2 l b}{32 f t / \mathrm{sec}^{2}}=\frac{1}{16} \frac{\mathrm{lbsec}}{\mathrm{ft}}$.
$\gamma=\frac{\text { resisting force }}{\text { velocity }}=\frac{8 l b}{11 \mathrm{ft} / \mathrm{sec}}=\frac{8}{11} \frac{\mathrm{lb} \mathrm{sec}}{f t}$
$k=\frac{\text { stretch weight }}{\text { displacement }}=\frac{2 l b}{0.5 f t}=4 l b / f t$.
Clearly, initial position and velocity are $u(0)=3$ in $=0.25 f t$ and $u^{\prime}(0)=-0.7 \mathrm{ft} / \mathrm{sec}$. (Negative, as our positive direction is down.)
Answer: $\frac{1}{16} u^{\prime \prime}+\frac{8}{11} u^{\prime}+4 u=0, u(0)=0.25, u^{\prime}(0)=-0.7$.

