MATH 261.005 Instr. K. Ciesielski Fall 2011

Partial Differential Equations, PDE, handout

Crucial Boundary Value problem: Find all non-zero solutions of the BVP, where $\lambda > 0$:

$$x''(t) + \lambda x(t) = 0, \ x(0) = 0 \text{ and } x(L) = 0.$$
(1)

Solution: Characteristic polynomial $r^2 + \lambda = 0$ has solution $r = \pm \sqrt{\lambda}$. This gives general solution $x(t) = c_1 \cos \sqrt{\lambda}t + c_2 \sin \sqrt{\lambda}t$.

x(0) = 0 leads to $0 = c_1 \cos 0 + c_2 \sin 0$, so $c_1 = 0$. Therefore, $x(t) = c_2 \sin \sqrt{\lambda}t$.

x(L) = 0 leads to $0 = c_2 \sin(\sqrt{\lambda}L)$. If $c_2 = 0$, then x(t) = 0, trivial solution we are not interested in. So, we will assume that $c_2 \neq 0$, what implies that

 $\sin(\sqrt{\lambda}L) = 0$, that is, $\sqrt{\lambda}L = n\pi$, where *n* is an integer. So, $\lambda = n^2\pi^2/L^2$, *n* being an integer.

Answer: (1) has non-zero solution for $\lambda_n = n^2 \pi^2 / L^2$, where *n* is an integer. The solution is given by

$$x_n(t) = \sin\left(\frac{n\pi}{L}t\right).$$

Heat PDE: For $\alpha \neq 0, t \geq 0$, and a fixed function f(x) defined for 0 < x < L

$$\alpha^2 x_{xx} = u_t, \quad u(x,0) = f(x) \text{ for } 0 \le x \le L; \quad u(0,t) = 0 \text{ and } u(L,t) = 0 \text{ for } t > 0.$$
 (2)

Solution: We hope (guess), that there is a solution of the form u(x,t) = X(x)T(t). This implies that $\alpha^2 X''T = XT'$, that is, $\frac{X''}{X} = \frac{1}{\alpha^2} \frac{T'}{T}$. We separated variables: x's on the left hand side, $\frac{X''}{X}$, t's on the right hand side, $\frac{1}{\alpha^2} \frac{T'}{T}$. This means that both sides equal to a constant, say $-\lambda$. (We will use only $\lambda > 0$.) So, $\frac{X''}{X} = \frac{1}{\alpha^2} \frac{T'}{T} = -\lambda$ for some constant λ .

We obtained two ordinary differential equations:

(BVP) $X'' + \lambda X = 0$, X(0) = 0 and X(L) = 0

(ODE) $T' + \alpha^2 \lambda T = 0$

(BVP) is PDE (1), so it has solutions $X_n(x) = \sin\left(\frac{n\pi}{L}x\right)$, each associated with $\lambda_n = n^2 \pi^2/L^2$. Then (ODE) becomes $T' + \alpha^2 (n^2 \pi^2/L^2)T = 0$ which fundamental solution is $T(t) = e^{-\left(\frac{n^2 \pi^2 \alpha^2}{L^2}t\right)}$

In particular, $u_n(x,t) = X_n(x)T_n(t) = e^{-\left(\frac{n^2\pi^2\alpha^2}{L^2}t\right)} \sin\left(\frac{n\pi}{L}x\right)$ is a solution for the problem $\alpha^2 x_{xx} = u_t, u(0,t) = u(L,t) = 0$ for t > 0. So is a linear combination of such solutions:

$$u_n(x,t) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n^2 \pi^2 \alpha^2}{L^2} t\right)} \sin\left(\frac{n\pi}{L} x\right).$$

(Actually, the infinite sum works only for some choice of c_n 's, see below.) Now, Fourier Series result tells us, how to choose c_n 's to unsure that $u(x,0) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{L}x\right)$ equals f(x) for $0 \le x \le L$:

$$c_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx.$$