MATH 261.005
Instr. K. Ciesielski
Fall 2011

Partial Differential Equations, PDE, handout

Crucial Boundary Value problem: Find all non-zero solutions of the BVP, where $\lambda>0$:

$$
\begin{equation*}
x^{\prime \prime}(t)+\lambda x(t)=0, x(0)=0 \text { and } x(L)=0 . \tag{1}
\end{equation*}
$$

Solution: Characteristic polynomial $r^{2}+\lambda=0$ has solution $r= \pm \sqrt{\lambda}$. This gives general solution $x(t)=c_{1} \cos \sqrt{\lambda} t+c_{2} \sin \sqrt{\lambda} t$.
$x(0)=0$ leads to $0=c_{1} \cos 0+c_{2} \sin 0$, so $c_{1}=0$. Therefore, $x(t)=c_{2} \sin \sqrt{\lambda} t$.
$x(L)=0$ leads to $0=c_{2} \sin (\sqrt{\lambda} L)$. If $c_{2}=0$, then $x(t)=0$, trivial solution we are not interested in. So, we will assume that $c_{2} \neq 0$, what implies that $\sin (\sqrt{\lambda} L)=0$, that is, $\sqrt{\lambda} L=n \pi$, where n is an integer. So, $\lambda=n^{2} \pi^{2} / L^{2}, n$ being an integer.

Answer: (1) has non-zero solution for $\lambda_{n}=n^{2} \pi^{2} / L^{2}$, where n is an integer. The solution is given by

$$
x_{n}(t)=\sin \left(\frac{n \pi}{L} t\right) .
$$

Heat PDE: For $\alpha \neq 0, t \geq 0$, and a fixed function $f(x)$ defined for $0<x<L$

$$
\begin{equation*}
\alpha^{2} x_{x x}=u_{t}, \quad u(x, 0)=f(x) \text { for } 0 \leq x \leq L ; \quad u(0, t)=0 \text { and } u(L, t)=0 \text { for } t>0 \tag{2}
\end{equation*}
$$

Solution: We hope (guess), that there is a solution of the form $u(x, t)=X(x) T(t)$.
This implies that $\alpha^{2} X^{\prime \prime} T=X T^{\prime}$, that is, $\frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime}}{T}$.
We separated variables: x 's on the left hand side, $\frac{X^{\prime \prime}}{X}, t$'s on the right hand side, $\frac{1}{\alpha^{2}} \frac{T^{\prime}}{T}$. This means that both sides equal to a constant, say $-\lambda$. (We will use only $\lambda>0$.) So, $\frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime}}{T}=-\lambda$ for some constant λ.
We obtained two ordinary differential equations:
(BVP) $X^{\prime \prime}+\lambda X=0, \quad X(0)=0$ and $X(L)=0$
(ODE) $T^{\prime}+\alpha^{2} \lambda T=0$
(BVP) is PDE (1), so it has solutions $X_{n}(x)=\sin \left(\frac{n \pi}{L} x\right)$, each associated with $\lambda_{n}=n^{2} \pi^{2} / L^{2}$.
Then (ODE) becomes $T^{\prime}+\alpha^{2}\left(n^{2} \pi^{2} / L^{2}\right) T=0$ which fundamental solution is $T(t)=e^{-\left(\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t\right)}$ In particular, $u_{n}(x, t)=X_{n}(x) T_{n}(t)=e^{-\left(\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t\right)} \sin \left(\frac{n \pi}{L} x\right)$ is a solution for the problem $\alpha^{2} x_{x x}=u_{t}, u(0, t)=u(L, t)=0$ for $t>0$. So is a linear combination of such solutions:

$$
u_{n}(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t\right)} \sin \left(\frac{n \pi}{L} x\right)
$$

(Actually, the infinite sum works only for some choice of c_{n} 's, see below.) Now, Fourier Series result tells us, how to choose c_{n} 's to unsure that $u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi}{L} x\right)$ equals $f(x)$ for $0 \leq x \leq L$:

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

