NAME (print): _

MATH 251.007 Instr. K. Ciesielski Fall 2010

SAMPLE TEST # 2

Solve the following exercises. Show your work.

Ex. 1. Find the parametric equations of the line that passes through the point P(11, 13, -7) and is perpendicular to the plane with the equation: x - 2z = 17.

Ex. 2. Find the unit tangent vector to the curve $\mathbf{r}(t) = \langle e^t, t, \cos \pi t \rangle$ at the point (1, 0, 1).

Ex. 3. Find the volume of the pyramid with the vertices: P(3, 2, -1), Q(-2, 5, 1), R(2, 1, 5), and the origin O(0, 0, 0). The volume of a pyramid id equal 1/6th of the volume of parallelepiped spanned by the same vectors.

Ex. 4. Find an equation of the plane passing through point (1, 11, -13) and parallel to the plane with equation $2x - 17z + \pi = 0$.

Ex. 5. Describe and sketch the graphs of the surfaces given by the following equations. Name each surface. Give specific informations, like center and radius in the case of a sphere.

- (a) $2x^2 + 2y^2 + 2z^2 = 7x + 9y + 11z$.
- (b) $4y = x^2 + z^2$
- (c) $4y = z^2$

Ex. 6. Find the curvature κ of the curve with position vector $\mathbf{r}(t) = \mathbf{i} \cos t + \mathbf{j} \sin t + 2t \mathbf{k}$.

Ex. 7. Let $\mathbf{v}(t) = \mathbf{i}(t+1)^{-1} + \mathbf{k}t^3$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}_0 = 3\mathbf{i}$.

Ex. 8. Find the the arc length, s, of the curve with position vector $\mathbf{r}(t) = 2e^t \mathbf{i} + 2t \mathbf{j} + e^{-t} \mathbf{k}$ from t = 0 to t = 1.

Ex. 9. Sketch and fully describe the graph of a function $f(x, y) = \sqrt{1 + x^2 + y^2}$.

Ex. 10. Sketch and fully describe the domain of the following function, including the name of the surface representing the domain's boundary: $f(x, y, x) = \ln (25 - 4x^2 - 9y^2 - z^2)$.