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SAMPLE FINAL TEST

Solve the following exercises. Show your work.

Ex. 1. Find the determinant of the matrix. Each time you expand the the matrix, you must
expand it over a row or column that has the largest number of zeros. If necessary, use the
row (or column) reduction method to create additional zeros.

1 2 −11 1
0 0 2 0
7 1 0 2
−2 0 9 0


Ex. 2. Find the inverse matrix of 1 0 2

3 1 0
1 1 1


Ex. 3. Let a = 〈0, 1, 2〉, b = 〈−1, 0, 7〉, and c = 〈2, 3,−1〉. Evaluate (a · b) · (b× c).

Ex. 4. Find the parametric equations of the line that passes through the point P (11, 13,−7)
and is perpendicular to the plane with the equation: x− 2z = 17.

Ex. 5. Let v(t) = i(t + 1)−1 + kt3 be a velocity of a particle. Find the acceleration vector
a(t) of the particle and its position vector r(t), where its initial position was r0 = 3i.

Ex. 6. Describe and sketch the graph of the equation: 4z2 = x2 + y2.

Ex. 7. Compute the first order partial derivatives of h(x, y, z) = e2x+3z sinx tan y.

Ex. 8. Compute the second order partial derivatives of g(u, v) = ln(u+ 2v)− sinu cos v.

Ex. 9. Find an equation of the plane tangent to the surface z = ln x − sin y at the point
P (1, π/2,−1).

Ex. 10. Find the absolute maximum and the absolute minimum of the function f(x, y) =
4x2 + 2xy + y2 on the region bounded below by the parabola y = x2 and above by the line
y = 9.
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Ex. 11. Evaluate the integrals:

(a)
∫ 2

−1

∫ 0

−y
(x+ 2y2) dx dy =

(b)
∫ 1

0

∫ π

0

1

x+ 1
+ sin y dy dx =

(c)
∫ ∫

R

dy dx√
9− x2 − y2

, where R is the second quadrant region bounded by x2 + y2 = 4.

Ex. 12. Find the mass of the solid bounded by the hemisphere x2 + y2 + z2 ≤ R2, z ≥ 0,
with the density δ(x, y, z) = x2 + y2 + z2.

Ex. 13. Find the mass of the plane lamina bounded by x = 0 and x = 9− y2 with density
δ(x, y) = x2.

Ex. 14. Set up the integral formulas, including the limits of the integrations, for the
following problems. Do not evaluate the integrals!

(a) The mass of the solid T with the density δ(x, y, z) = x2 + ez bounded by the surfaces:
6x+ 2y + z = 12, x = 0, y = 0, and z = 0.

(b) The volume of the solid bounded by z = x2 + y2, z = 0, x = 0, y = 0, and x+ y = 1.

Ex. 15. Evaluate the integral, where C is the graph of y = x3 from (−1,−1) to (1, 1).∫
C
y2 dx+ xdy =

Ex. 16. Evaluate the integral∫ (π,π)

(π/2,π/2)
(sin y + y cosx) dx+ (sinx+ x cos y) dy =

Ex. 17. Apply Green’s theorem to evaluate the following integral, where the simple
closed curve C is the boundary of the circle x2 + y2 = 1.∮
C

(sinx− x2y) dx+ xy2 dy =
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